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Abstract. Inequalities involving logarithmic mean of arbitrary order are obtained. These results
are derived from the Lazarević and Causa-Huygens inequalities for hyperbolic functions. Some
inequalities for the weighted sums of powers are also utilized. In particular cases obtained results
simplify to known inequalities for the logarithmic mean of a low order.

1. Introduction

The history of mean values is long and laden with detail. Among means of two
variables the logarithmic mean has attracted attention of several researchers. A two-
parameter generalizations of the logarithmic mean have been introduced by K. B. Sto-
larsky (see [15]). A particular case of Stolarsky mean is called the logarithmic mean of
arbitrary order (see (2.1)). The goal of this note is to establish new inequalities satisfied
by the latter mean. Some known inequalities involving logarithmic mean of order one
are special cases of the main results established in this paper. In Section 2 we give
definitions of bivariate means used in the sequel. Also, some known inequalities in-
volving hyperbolic functions are included in this section. The main results of this note
are established in Section 3.

2. Definitions and preliminaries

Throughout the sequel we will assume that x and y are positive and unequal num-
bers. We begin this section with definitions of certain bivariate means used in the sequel.
The logarithmic mean of order t ∈ R of x and y , denoted by Lt(x,y) ≡ Lt , is defined
as follows [11]:

Lt(x,y) =

{
L(xt ,yt)

1
t if t �= 0,

G(x,y) if t = 0,
(2.1)
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where L(x,y) ≡ L =
x− y

lnx− lny
is the logarithmic mean of order one and G(x,y) ≡G =

√
xy is the geometric mean of x and y . Another mean used in this paper is the power

mean At(x,y) ≡ At of order t ∈ R :

At(x,y) =

⎧⎪⎨
⎪⎩

(
xt + yt

2

) 1
t

if t �= 0,

G(x,y) if t = 0.

(2.2)

It is worth mentioning that all means defined above belong to a two-parameter
family of mens introduced by K.B. Stolarsky in [15]. These means have been studied
by several researchers. See, e.g., [10], [6] and the references therein.

The key inequality used in this paper is the following one

(coshx)1/3 <
sinhx

x
<

2+ coshx
3

(2.3)

(x �= 0) . First inequality in (2.3) is due to Lazarević [2] while the second one is com-
monly referred to as the Cusa-Huygens inequality for hyperbolic functions. Inequalities
(2.3) are special cases of inequalities established in [9].

For later use let us recall a result which has been established in [5] (see Theorem
3.2).

THEOREM 2.1. Let u, v , γ and δ be positive numbers which satisfy the following
conditions

(i) min(u,v) < 1 < max(u,v),
(ii) 1 < uγvδ ,

(iii) γ + δ < γ
1
u

+ δ
1
v
.

Then the following inequality

2 <

(
1
u

)γ p

+
(

1
v

)δ p

< uγ p + vδ p. (2.4)

holds true provided γ � 1 , δ � 1 , and p � 1. Second inequality in (2.4) is valid if
p > 0 .

We will also utilize the following result (see [5], Theorem 3.1).

THEOREM 2.2. Assume that the numbers u, v , γ and δ satisfy assumptions of
Theorem 2.1. Further, let α and β be positive numbers and assume that v < 1 < u.
Then

α + β < αup + βvq (2.5)

if either

p > 0 and q � p
δα
γβ

, (2.6)

or if
q � p � −1 and δα � γβ . (2.7)
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Conditions of validity of (2.5) when u < 1 < v are also obtained in [5]. We omit
further details.

3. Main results

In this section we shall establish inequalities involving logarithmic mean Lt . For
the later use let us introduce a variable λ = (t/2) ln(x/y) (t ∈ R) . One can easily
verify, using (2.1) - (2.2), that

A
(
eλ ,e−λ

)
= coshλ =

(
At

G

)t

(3.1)

and

L
(
eλ ,e−λ

)
=

sinhλ
λ

=
(

Lt

G

)t

. (3.2)

This implies that
tanh λ

λ
=

(
Lt

At

)t

(3.3)

Our first result reads as follows.

THEOREM 3.1. Let x and y be positive and unequal numbers, let t �= 0 , and let
p � 1 . Then

2 <

(
G
Lt

)2pt

+
(

At

Lt

)pt

<

(
Lt

G

)2pt

+
(

Lt

At

)pt

. (3.4)

Second inequality in (3.4) holds true for p > 0.

Proof. We shall prove the assertion using Theorem 2.1 with

u =
sinhz

z
,v =

tanh z
z

,γ = 2,δ = 1.

It is well known that v < 1 < u holds for all z �= 0. Moreover, the first inequality in

(2.3) can be written as 1 < u2v while the second one is the same as 3 < 2
1
u

+
1
v
. Letting

z = λ , where λ is the same as above, we obtain

2 <

(
λ

sinhλ

)2pt

+
(

λ
tanh λ

)pt

<

(
sinhλ

λ

)2pt

+
(

tanh λ
λ

)pt

.

Application of (3.2) and (3.3) completes the proof. �
Particular cases of inequality (3.4) have been obtained in [4].

COROLLARY 3.2. The following inequalities

2L
L+G

<
A1/2

L
<

L2

GA1/2
<

L+G
2G

(3.5)

hold true.
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Proof. We utilize the first two members of (3.4) with p = 1 and t = 1
2 and next

apply L1/2 = L2/A1/2 , to obtain

2 <
A1/2G

L2 +
A1/2

L
. (3.6)

Multiplying both sides of (3.6) by L/(L + G) we obtain the first inequality in (3.5).
The second inequality in (3.5) is equivalent to A2

1/2G < L3 (see [13] and [7]), while the
third one is equivalent to the first inequality in (3.5). The proof is complete. �

The first inequality in (3.5) has been established in [12].
A generalization of the inequality which connects first and third members of (3.4)

reads as follows.

THEOREM 3.3. Let x > 0, y > 0 (x �= y), and let t �= 0 . Further, let α > 0 and
β > 0 .Then

α + β < α
(

Lt

G

)pt

+ β
(

Lt

At

)qt

(3.7)

if either

p > 0 and q � p
α
2β

, (3.8)

or if
q � p � −1 and α � 2β . (3.9)

Proof. We shall prove this result using Theorem 2.2 with

u =
sinhz

z
,v =

tanh z
z

,γ = 2,δ = 1.

As pointed out in the proof of Theorem 3.1 that they satisfy conditions (i) - (iii). Let-
ting z = λ , where λ is the same as in the proof of Theorem 3.1, we conclude, using
inequality (2.5), that

α + β < α
(

sinhλ
λ

)p

+ β
(

tanh λ
λ

)q

.

Making use of (3.2) and (3.3) we obtain the desired result. This completes the proof. �
To this end we will assume that α > 0 and β > 0. Several inequalities can be

derived from (3.7). For the sake of presentation we define the weights

w1 = α/(α + β ) and w2 = β/(α + β ).

Clearly w1 +w2 = 1. We shall now prove the following.

COROLLARY 3.4. Let t �= 0 . If α � 2β , then

Lt
t < w1G

t +w2A
t
t . (3.10)

Also, if α � 2β , then
L−t

t < w1G
−t +w2A

−t
t . (3.11)
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Proof. In order to establish (3.10) it suffices to use Theorem 3.3 with p = q =−1.
Similarly, (3.11) can be obtained using Theorem 3.3 with p = q = 1. This completes
the proof. �

Letting in (3.10) t = 1 and t = 1/2 we obtain, respectively,

L < w1G+w2A

and
L < w1(A1/2G)1/2 +w2A1/2

provided α � 2β . The last two inequalities are known in mathematical literature in the
case when α = 2 and β = 1 (see [1], [7], and [14]). Similarly, letting in (3.11) t = −1
and t = −1/2 we obtain, respectively,

L−1 < w1G
−1 +w2A

−1

and
L−1 < w1(A1/2G)−1/2 +w2A

−1
1/2

provided α � 2β . For more inequalities involving L−1 , the interested reader is referred
to [8].

Inequalities for the extended logarithmic mean Et , where Et−1
t = Lt

t/L have been
derived in [3]. They can be used to obtain more inequalities for the mean discussed in
this paper.
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[6] E. NEUMAN, J. SÁNDOR, Inequalities involving Stolarsky and Gini means, Math. Pannon. 14, 1

(2003), 29–44.
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[9] E. NEUMAN, J. SÁNDOR, On some inequalities involving trigonometric and hyperbolic functions

with emphasis on Cusa-Huygens, Wilker and Huygens inequalities, Math. Inequal. Appl. 13, 4 (2010),
715–723.
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[13] J. SÁNDOR, On certain inequalities for means II, J. Math. Anal. Appl. 199 (1996), 629–635.
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