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APPROXIMATE HERMITE––HADAMARD TYPE

INEQUALITIES FOR APPROXIMATELY CONVEX FUNCTIONS

JUDIT MAKÓ AND ZSOLT PÁLES

(Communicated by C. P. Niculescu)

Abstract. In this paper, approximate lower and upper Hermite–Hadamard type inequalities are
obtained for functions that are approximately convex with respect to a given Chebyshev system.

1. Introduction

Throughout this paper R , R+ , N and Z denote the sets of real, nonnegative real,
natural and integer numbers respectively. Given a nonempty open real interval I , denote
by Δ(I) and Δ◦(I) the sets

{(x,y) ∈ I× I | x � y} and {(x,y) ∈ I× I | x < y},

respectively. Given a nonempty open real interval I , denote by Δ(I) and Δ◦(I) the sets

{(x,y) ∈ I× I | x � y} and {(x,y) ∈ I× I | x < y},

respectively. We say that a pair (ω0,ω1) is a Chebyshev system over I , if ω0,ω1 : I →R

are continuous functions and

Ω(x,y) :=
∣∣∣∣ ω0(x) ω0(y)
ω1(x) ω1(y)

∣∣∣∣ > 0 ((x,y) ∈ Δ◦(I)). (1.1)

One can easily see, that if ω0 is a positive function, then (1.1) holds if and only if
ω1/ω0 is strictly increasing on I . In this latter case, (ω0,ω1) will be called a posi-
tive Chebyshev system over I . On the other hand, we can always assume that ω0 is a
positive function, because for every Chebyshev system (ω0,ω1) , there exists α,β ∈ R

such that αω0 + β ω1 > 0 (cf. [1], [2]). In the sequel, for fixed x,y ∈ I , the partial
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functions u �→ Ω(u,y) and u �→ Ω(x,u) will be denoted by Ω(·,y) and Ω(x, ·) , re-
spectively. An important property of Chebyshev systems is that for every two pairs
(x,ξ ),(y,η) ∈ I×R with x �= y the function ω defined as

ω := ξ
Ω(·,y)
Ω(x,y)

+ η
Ω(x, ·)
Ω(x,y)

is the unique linear combination of ω0 and ω1 such that ω(x) = ξ and ω(y) = η hold.
Given a positive Chebyshev system (ω0,ω1) over I and a proper subinterval J of

I , a function f : J → R is called (ω0,ω1)-convex on J if, for all x < u < y from J ,
∣∣∣∣∣∣

f (x) f (u) f (y)
ω0(x) ω0(u) ω0(y)
ω1(x) ω1(u) ω1(y)

∣∣∣∣∣∣ � 0, (1.2)

or equivalently,

f (u) � Ω(u,y)
Ω(x,y)

f (x)+
Ω(x,u)
Ω(x,y)

f (y). (1.3)

If (1.2) holds with strict inequality sign “>”, then f is said to be strictly (ω0,ω1)-
convex on J .

The integral average of any standard convex function f : I → R can be estimated
from the midpoint and the endpoints of the domain as follows:

f
(x+ y

2

)
�

1∫
0

f
(
tx+(1− t)y

)
dt � f (x)+ f (y)

2
(x,y ∈ I). (1.4)

This is the well known Hermite–Hadamard type inequality. The above implication was
discovered by Hadamard [5]. (See also [10], [7], and [12], [4], [11], [12], [13] for a
historical account.) In [3] and [1], the authors established the following connections
between (ω0,ω1)-convexity and Hermite–Hadamard type inequality.

THEOREM A. Let (ω0,ω1) be a positive Chebyshev system on an open interval
I and let ρ : I → R be a positive integrable function. Define, for all elements x < y of
I , the functions ξ (x,y) , c(x,y) , c1(x,y) and c2(x,y) by the formulas

ξ (x,y) =
(ω1

ω0

)−1(∫ y
x ω1ρ∫ y
x ω0ρ

)
and c(x,y) =

∫ y
x ω0ρ

ω0(ξ (x,y))
,

c1(x,y) =
1

Ω(x,y)

∣∣∣∣∣
∫ y
x ω0ρ ω0(y)∫ y
x ω1ρ ω1(y)

∣∣∣∣∣ and c2(x,y) =
1

Ω(x,y)

∣∣∣∣∣
ω0(x)

∫ y
x ω0ρ

ω0(y)
∫ y
x ω1ρ

∣∣∣∣∣ .
(1.5)

If a function f : I → R is (ω0,ω1)-convex, then for all elements x < y of I , it satisfies
the inequality

c(x,y) f (ξ (x,y)) �
y∫

x

fρ � c1(x,y) f (x)+ c2(x,y) f (y). (1.6)
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In Theorem 2.2 and Theorem 3.12 below, these results will be generalized to the
context of approximate (ω0,ω1)-convex, i.e., to the case when f satisfies an inequality
analogous to (1.3) whose right hand side involves also an error term.

Let X be a real linear space and D ⊂ X be a convex subset. In order to describe
the old and new results about the connection of approximate Jensen convexity and the
approximate Hermite–Hadamard inequality with variable error terms, we need to intro-
duce the following terminology.

For a function f : D→R , we say that f is hemi-P , if, for all x,y∈D , the mapping

t �→ f ((1− t)x+ ty) (t ∈ [0,1]) (1.7)

has property P . For example f is hemiintegrable, if for all x,y ∈ D the mapping
defined by (1.7) is integrable. Analogously, we say that a function h : (D−D) → R is
radially-P , if for all u ∈ D−D , the mapping

t �→ h(tu) (t ∈ [0,1])

has property P on [0,1] .
In [6], Házy and second author of this paper established a connection between an

approximate lower Hermite–Hadamard type inequality and an approximate Jensen type
inequality by proving the following result.

THEOREM B. Let α : (D−D) → R+ be a nonnegative radially Lebesgue inte-
grable even function. Assume that f : D→ R is hemi-Lebesgue integrable and approx-
imately Jensen convex in the sense of

f
(x+ y

2

)
� f (x)+ f (y)

2
+ α(x− y) (x,y ∈ D). (1.8)

Then f also satisfies the approximate lower Hermite–Hadamard inequality

f

(
x+ y

2

)
�

1∫
0

f
(
tx+(1− t)y

)
dt +

1∫
0

α(t(x− y))dt (x,y ∈ D). (1.9)

In [8] (cf. [14], [15]) the authors established the connections between an approx-
imate upper Hermite–Hadamard type inequality and an approximate Jensen type in-
equality as stated in the following theorem.

THEOREM C. Let α : (D−D) → R+ be a nonnegative radially Lebesgue inte-
grable even function and ρ : [0,1]→R+ be a nonnegative Lebesgue integrable function
with

∫ 1
0 ρ = 1 . Assume that f : D → R is hemiintegrable on D and satisfies the ap-

proximate Jensen inequality (1.8). Then, for x,y ∈ D, f also satisfies the approximate
upper Hermite–Hadamard inequality

∫ 1

0
f
(
tx+(1− t)y

)
ρ(t)dt � λ f (x)+ (1−λ ) f (y)

+
∞

∑
n=0

1
2n

∫ 1

0
α

(
2dZ(2nt)(x− y)

)
ρ(t)dt,

(1.10)

where λ :=
∫ 1
0 tρ(t)dt and, for s ∈ R , dZ(s) := dist(s,Z) = inf{|s− k| : k ∈ Z} .
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In Theorem 2.5 and Theorem 3.14 below these results will be generalized and
extended to the setting of (ω0,ω1)-convexity.

2. From approximate (ω0,ω1)-convexity to approximate lower
Hermite–Hadamard inequality

In this section we will investigate the implication between an (ω0,ω1)-convexity
type inequality and a lower Hermite–Hadamard inequality. Consider the following ba-
sic assumptions.

(A1) (T,A ,μ) is a measure space.

(A2) Λ : T ×Δ◦(I) → R+ is μ -integrable in its first variable.

(A3) M : T ×Δ◦(I) → R is A -measurable in its first variable and for all t ∈ T , the
map (x,y) �→ M(t,x,y) is a two-variable mean on I . M0 : Δ◦(I) → I is a strict
mean such that

μ{t ∈ T | Λ(t,x,y) > 0, M(t,x,y) �= M0(x,y)} > 0 if (x,y) ∈ Δ◦(I).
(2.1)

(A4) There exist an (ω0,ω1)-Chebyshev system on I such that ω0 is positive. Fur-
thermore, for i ∈ {0,1} ,

ωi(M0(x,y)) =
∫
T

Λ(t,x,y)ωi(M(t,x,y))dμ(t) ((x,y) ∈ Δ◦(I)). (2.2)

For all (x,y) ∈ Δ◦(I) , denote

T ′
x,y := {t ∈ T | Λ(t,x,y) > 0, M(t,x,y) < M0(x,y)},

T ′′
x,y := {t ∈ T | Λ(t,x,y) > 0, M(t,x,y) � M0(x,y)}.

Observe that, for all (x,y) ∈ Δ◦(I) , T ′
x,y and T ′′

x,y are in A , moreover, by (2.1), the
μ -measure of T ′

x,y ∪T ′′
x,y is positive. Define, for all (x,y) ∈ Δ◦(I) , i ∈ {0,1} ,

S′i(x,y) =
∫

T ′
x,y

Λ(t,x,y)ωi(M(t,x,y))dμ(t) and

S′′i (x,y) =
∫

T ′′
x,y

Λ(t,x,y)ωi(M(t,x,y))dμ(t).
(2.3)

The following proposition describes the properties of these sets and numbers.

PROPOSITION 2.1. If (A1)–(A4) hold, then for all (x,y) ∈ Δ◦(I) ,

S′i(x,y)+S′′i (x,y) = ωi(M0(x,y)) (i ∈ {0,1}). (2.4)

Furthermore, the μ -measure of the sets T ′
x,y and T ′′

x,y is positive.
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Proof. Let (x,y) ∈ Δ◦(I) . (2.2) implies that

ωi(M0(x,y)) =
∫
T

Λ(t,x,y)ωi(M(t,x,y))dμ(t)

=
∫

{t∈T |Λ(t,x,y)>0}
Λ(t,x,y)ωi(M(t,x,y))dμ(t) = S′i(x,y)+S′′i (x,y),

for i ∈ {0,1} . Hence (2.4) holds. To prove the positivity of μ(T ′
x,y) and μ(T ′′

x,y) ,
assume that μ(T ′

x,y) = 0. Then S′i(x,y) = 0 and, in view of (2.1), it follows that
μ(T ′′

x,y) > 0. Thus, by (2.4), we have that

ωi(M0(x,y)) = S′i(x,y)+S′′i (x,y) = S′′i (x,y) =
∫

T ′′
x,y

Λ(t,x,y)ωi(M(t,x,y))dμ(t)

for i ∈ {0,1} . Dividing the above identities by each other and using also the positivity
of ω0 , we get that

∫
T ′′
x,y

Λ(t,x,y)ω1(M(t,x,y))dμ(t)

∫
T ′′
x,y

Λ(t,x,y)ω0(M(t,x,y))dμ(t)
=

ω1(M0(x,y))
ω0(M0(x,y))

.

Rearranging this equality, we obtain that

∫

T ′′
x,y

Λ(t,x,y)Ω(M0(x,y),M(t,x,y))dμ(t) = 0.

Hence,
∫

{t∈T |Λ(t,x,y)>0,M(t,x,y)>M0(x,y)}
Λ(t,x,y)Ω(M0(x,y),M(t,x,y))dμ(t) = 0.

On the other hand, for all t ∈ T with M(t,x,y) > M0(x,y) , we have that Ω(M0(x,y),
M(t,x,y)) > 0 and, by (2.1), μ({t ∈ T | Λ(t,x,y) > 0, M(t,x,y) > M0(x,y)}) > 0. This
yields that

∫

{t∈T |Λ(t,x,y)>0,M(t,x,y)>M0(x,y)}
Λ(t,x,y)Ω(M0(x,y),M(t,x,y))dμ(t) > 0,

which is a contradiction.
The proof for the case when μ(T ′′

x,y) = 0 is analogous. �

One of the main result of this paper is established in the following theorem.
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THEOREM 2.2. Assume that (A1)–(A4) hold. Let f : I → R be a locally upper
bounded Borel measurable solution of the approximate (ω0,ω1)-convexity type func-
tional inequality

f (u) � Ω(u,y)
Ω(x,y)

f (x)+
Ω(x,u)
Ω(x,y)

f (y)+ εx,y(u) (u ∈ [x,y]), (2.5)

where for all (x,y) ∈ Δ◦(I) and u ∈]x,y[ , the function (v,w) �→ εv,w(u) is bounded and
Borel measurable for (v,w)∈ [x,u]× [u,y] . Then f also satisfies the approximate lower
Hermite–Hadamard type inequality

f (M0(x,y)) �
∫
T

Λ(t,x,y) f
(
M(t,x,y)

)
dμ(t)+E(x,y) ((x,y) ∈ Δ(I)), (2.6)

where E : Δ◦(I) → R is defined by the following way

E(x,y) =∫
T ′
x,y

∫
T ′′
x,y

Λ(t ′,x,y)Λ(t ′′,x,y)Ω(M(t ′,x,y),M(t ′′,x,y))εM(t′ ,x,y),M(t′′ ,x,y)(M0(x,y))dμ(t ′′)dμ(t ′)

∫
T ′
x,y

∫
T ′′
x,y

Λ(t ′,x,y)Λ(t ′′,x,y)Ω(M(t ′,x,y),M(t ′′,x,y))dμ(t ′′)dμ(t ′)
.

(2.7)

REMARK 2.3. In the above theorem, the regularity condition for f can be relaxed
if the error function εx,y enjoys boundedness and continuity properties. For instance, if
εx,y is bounded on [x,y] for some (x,y)∈ Δ◦(I) , then (2.5) implies that f is bounded on
[x,y] . Similarly, if limsupu→x+0 εx,y(u) = 0 for some (x,y) ∈ Δ◦(I) , then (2.5) implies
that f is upper semicontinuous at x from the right.

Proof. Let (x,y)∈Δ◦(I) . Substituting in (2.5) x by M(t ′,x,y) and y by M(t ′′,x,y) ,
and u by M0(x,y) , where t ′ ∈ T ′

x,y and t ′′ ∈ T ′′
x,y , we get that

Ω(M(t ′,x,y),M(t ′′,x,y)) f (M0(x,y))
�Ω(M0(x,y),M(t ′′,x,y)) f (M(t ′,x,y))

+ Ω(M(t ′,x,y),M0(x,y)) f (M(t ′′,x,y))
+ Ω(M(t ′,x,y),M(t ′′,x,y))εM(t′ ,x,y),M(t′′ ,x,y)(M0(x,y)).

Multiplying this inequality by Λ(t ′,x,y)Λ(t ′′,x,y) and integrating with respect to μ×μ
on T ′

x,y ×T ′′
x,y , we get that
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∫

T ′
x,y

∫

T ′′
x,y

Λ(t ′,x,y)Λ(t ′′,x,y)Ω(M(t ′,x,y),M(t ′′,x,y))dμ(t ′′)dμ(t ′) f (M0(x,y))

�
∫

T ′
x,y

∫

T ′′
x,y

Λ(t ′,x,y)Λ(t ′′,x,y)Ω(M0(x,y),M(t ′′,x,y)) f (M(t ′,x,y))dμ(t ′′)dμ(t ′)

+
∫

T ′
x,y

∫

T ′′
x,y

Λ(t ′,x,y)Λ(t ′′,x,y)Ω(M(t ′,x,y),M0(x,y)) f (M(t ′′,x,y))dμ(t ′′)dμ(t ′)

+
∫

T ′
x,y

∫

T ′′
x,y

Λ(t ′,x,y)Λ(t ′′,x,y)Ω(M(t ′,x,y),M(t ′′,x,y))×

× εM(t′ ,x,y),M(t′′ ,x,y)(M0(x,y))dμ(t ′′)dμ(t ′).
(2.8)

Applying Fubini’s theorem and the notation of (2.3), we get that

∫
T ′
x,y

∫
T ′′
x,y

Λ(t ′,x,y)Λ(t ′′,x,y)Ω(M(t ′,x,y),M(t ′′,x,y))dμ(t ′′)dμ(t ′)

=
(
S′0(x,y)S

′′
1(x,y)−S′1(x,y)S

′′
0(x,y)

)
.

(2.9)

Observe that (S′0(x,y)S
′′
1(x,y)− S′1(x,y)S

′′
0(x,y)) is positive. Indeed, by the definition

of the Chebyshev-system, we have, for all (t ′,t ′′) ∈ T ′
x,y ×T ′′

x,y ,

Ω(M(t ′,x,y),M(t ′′,x,y)) > 0.

By Proposition 2.1, the measure of T ′
x,y ×T ′′

x,y is positive. Hence the left hand side of
(2.9) is positive. Using the identity (2.4), it follows that

∫
T ′
x,y

∫
T ′′
x,y

Λ(t ′,x,y)Λ(t ′′,x,y)Ω(M0(x,y),M(t ′′,x,y)) f (M(t ′,x,y))dμ(t ′′)dμ(t ′)

=
(
ω0(M0(x,y))S′′1(x,y)−ω1(M0(x,y))S′′0(x,y)

) ∫

T ′
x,y

Λ(t ′,x,y) f (M(t ′,x,y))dμ(t ′)

=
(
(S′0(x,y)+S′′0(x,y))S

′′
1(x,y)− (S′1(x,y)+S′′1(x,y))S

′′
0(x,y)

)
×

∫
T ′
x,y

Λ(t ′,x,y) f (M(t ′,x,y))dμ(t ′)

=
(
S′0(x,y)S

′′
1(x,y)−S′1(x,y)S

′′
0(x,y)

) ∫

T ′
x,y

Λ(t ′,x,y) f (M(t ′,x,y))dμ(t ′),

(2.10)
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and similarly,

∫

T ′
x,y

∫

T ′′
x,y

Λ(t ′,x,y)Λ(t ′′,x,y)Ω(M(t ′,x,y),M0(x,y)) f (M(t ′′,x,y))dμ(t ′′)dμ(t ′)

=
(
S′′1(x,y)S

′
0(x,y)−S′′0(x,y)S

′
1(x,y)

) ∫
T ′′
x,y

Λ(t ′′,x,y) f (M(t ′′,x,y))dμ(t ′′).
(2.11)

Substituting the above formulas (2.9), (2.10), and (2.11) into (2.8) and dividing the
inequality so obtained by (S′0(x,y)S

′′
1(x,y)−S′1(x,y)S

′′
0(x,y)) , we get (2.6) with the error

function E : Δ◦(I) → R defined by (2.7), which completes the proof. �

REMARK 2.4. A direct corollary of this theorem is the lower Hermite–Hadamard
type inequality established by Theorem A. Indeed, suppose that, with the notations
introduced in (1.5), the assumptions of Theorem A hold. Then, the (ω0,ω2)-convexity
of f implies that it is locally bounded and Borel measurable. We show first that the
conditions of Theorem 2.2 are also valid. Let μ denote the Lebesgue measure on [0,1]
and define, for all (x,y) ∈ Δ◦(I) , t ∈ [0,1] ,

M0(x,y) := ξ (x,y), M(t,x,y) := (1− t)x+ ty, and

Λ(t,x,y) :=
(y− x)ρ((1− t)x+ ty)

c(x,y)
.

Since M(t,x,y) = M0(x,y) can hold only for one value of t , hence (2.1) holds trivially.
We also have

∫ 1

0
Λ(t,x,y)ω1(M(t,x,y))dt =

y− x
c(x,y)

∫ 1

0
ρ((1− t)x+ ty)ω1((1− t)x+ ty)dt

=
1

c(x,y)

∫ y

x
ρω1 = ω0(ξ (x,y))

∫ y
x ω1ρ∫ y
x ω0ρ

= ω0(ξ (x,y))
ω1

ω0
(ξ (x,y)) = ω1(ξ (x,y)) = ω1(M0(x,y))

and, similarly,

∫ 1

0
Λ(t,x,y)ω0(M(t,x,y))dt =

1
c(x,y)

∫ y

x
ρω0 = ω0(ξ (x,y)),

which proves (2.2). Thus all the assumptions (A1)–A(4) are verified. Therefore, if a
function f : I → R is (ω0,ω1)-convex, i.e., satisfies (2.5) with εx,y := 0, then it fulfills
(2.6) with E := 0, which, by the obvious identity 1

c(x,y)
∫ y
x fρ=

∫ 1
0 Λ(t,x,y) f (M(t,x,y))dt

is equivalent to the left hand side inequality in (1.6).

The following result could be deduced form Theorem 2.2, however a direct proof
is more convenient here. Given a set D , denote {(x,y) | x,y ∈ D, x �= y} by D2∗ .
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THEOREM 2.5. Let D be a convex set of a linear space X . Let A be a sigma
algebra containing the Borel subsets of [0,1] and μ be a probability measure on the
measure space ([0,1],A ) such that the support of μ is not a singleton. Denote

μ1 :=
∫

[0,1]

tdμ(t) and S(μ) := μ
(
[0,μ1]

) ∫

]μ1,1]

tdμ(t)− μ
(
]μ1,1]

) ∫

[0,μ1]

tdμ(t).

Assume that f : D → R is and hemi-μ -integrable solution of the functional inequality

f ((1− t)x+ ty) � (1− t) f (x)+ t f (y)+ ηx,y(t) ((x,y) ∈ D2∗, t ∈ [0,1]) (2.12)

where, for all (x,y) ∈ D2∗ , ηx,y : [0,1] → R is a function such that

I(x,y) :=
∫

]μ1,1]

∫

[0,μ1]

(t ′′ − t ′)η(1−t′)x+t′y,(1−t′′)x+t′′y

( μ1− t ′

t ′′ − t ′
)
dμ(t ′)dμ(t ′′)

exists in [−∞,∞] for all (x,y) ∈ D2∗ . Then, for all (x,y) ∈ D2∗ , the function f also
satisfies the lower Hermite–Hadamard type inequality

f ((1− μ1)x+ μ1y) �
∫

[0,1]

f
(
(1− t)x+ ty)dμ(t)+

1
S(μ)

I(x,y) ((x,y) ∈ D2∗).

(2.13)

REMARK 2.6. In the above theorem, the hemi-μ -integrability condition for f
can be relaxed if the error function ηx,y enjoys boundedness and continuity properties.
For instance, if ηx,y is upper bounded on [x,y] for some (x,y)∈D2∗ , then (2.5) implies
that f ((1− t)x+ ty) is upper bounded for t ∈ [0,1] . Similarly, if limsupt→0+0 ηx,y(t) =
0 for some (x,y) ∈ D2∗ , then (2.5) implies that f ((1− t)x+ ty) is an upper semicon-
tinuous function of t at zero from the right.

Proof. Let (x,y)∈D2∗ . Substituting in (2.12) x by (1− t ′)x+ t ′y , y by (1− t ′′)x+
t ′′y and t by μ1−t′

t′′−t′ , where 0 � t ′ � μ1 and μ1 < t ′′ � 1, we get that

f ((1− μ1)x+ μ1y) � t ′′ − μ1

t ′′ − t ′
f ((1− t ′)x+ t ′y)+

μ1 − t ′

t ′′ − t ′
f ((1− t ′′)x+ t ′′y)

+ η(1−t′)x+t′y,(1−t′′)x+t′′y

(μ1 − t ′

t ′′ − t ′
)
.

(2.14)

Multiplying (2.14) by t ′′−t ′ and integrating on [0,μ1]×]μ1,1] with respect to the prod-
uct measure μ × μ , we obtain
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∫

]μ1,1]

∫

[0,μ1]

(t ′′ − t ′)dμ(t ′)dμ(t ′′) f ((1− μ1)x+ μ1y)

�
∫

]μ1,1]

(t ′′ − μ1)dμ(t ′′)
∫

[0,μ1]

f ((1− t ′)x+ t ′y)dμ(t ′)

+
∫

[0,μ1]

(μ1− t ′)dμ(t ′)
∫

]μ1,1]

f ((1− t ′′)x+ t ′′y)dμ(t ′′)

+
∫

]μ1,1]

∫

[0,μ1]

(t ′′ − t ′)η(1−t′)x+t′y,(1−t′′)x+t′′y

(μ1− t ′

t ′′ − t ′
)
dμ(t ′)dμ(t ′′).

(2.15)

Applying Fubini’s theorem, we get that

∫

]μ1,1]

∫

[0,μ1]

(t ′′ − t ′)dμ(t ′)dμ(t ′′) = μ
(
[0,μ1]

) ∫

]μ1,1]

t ′′dμ(t ′′)− μ
(
]μ1,1]

) ∫

[0,μ1]

t ′dμ(t ′)

= S(μ).
(2.16)

Using that the support of μ is not a singleton, we can see that the left hand side of
(2.16) is positive and hence so is S(μ) .

Applying also Fubini’s theorem, it follows that

∫

]μ1,1]

(t ′′ − μ1)dμ(t ′′) = μ
(
[0,1]

) ∫

]μ1,1]

t ′′dμ(t ′′)− μ
(
]μ1,1]

) ∫

[0,1]

tdμ(t)

=
(

μ
(
[0,μ1]

)
+ μ

(
]μ1,1]

)) ∫

]μ1,1]

t ′′dμ(t ′′)

− μ
(
]μ1,1]

)( ∫

[0,μ1]

t ′dμ(t ′)+
∫

]μ1,1]

t ′′dμ(t ′′)
)

= S(μ)

(2.17)

and, similarly, ∫

[0,μ1]

(μ1− t ′)dμ(t ′) = S(μ). (2.18)

Substituting the above formulas (2.16), (2.17), and (2.18) into (2.15) and dividing the
inequality so obtained by S(μ) , we arrive at (2.13). This completes the proof. �

The following corollary is analogous to the result of [6].

COROLLARY 2.7. Assume that f : D → R a hemi-Lebesgue integrable solution
of the functional inequality (2.12), where, for all (x,y) ∈ D2∗ , ηx,y : [0,1] → R is a
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function, such that

I(x,y) :=
1∫

1
2

1
2∫

0

(t ′′ − t ′)η(1−t′)x+t′y,(1−t′′)x+t′′y

( 1
2 − t ′

t ′′ − t ′
)
dt ′dt ′′ (2.19)

exists in [−∞,∞] for all (x,y) ∈ D2∗ . Then, for all x,y ∈ D2∗ , the function f also
satisfies

f
(x+ y

2

)
�

1∫
0

f
(
(1− t)x+ ty)dt +8I(x,y). (2.20)

Proof. We apply Theorem 2.5, when A is the family of Lebesgue measurable
subsets of [0,1] , μ is the Lebesgue measure. Then μ1 = 1

2 and S(μ) = 1
8 and the

result directly follows from Theorem 2.5. �

REMARK 2.8. In what follows, we deduce the conclusion of Theorem B from
the above corollary under stronger regularity assumption on f . Let α : (D−D) → R+
be a nonnegative radially Lebesgue integrable function and assume that f : D → R is
hemi-upper bounded and approximately Jensen convex in the sense of (1.8). Then, by
[9, Thm. 8], f fulfils the following approximate convexity inequality:

f ((1− t)x+ ty) � (1− t) f (x)+ t f (y)+
∞

∑
n=0

1
2n α(2dZ(2nt)(x− y))

((x,y) ∈ D2, t ∈ [0,1]),

i.e., (2.12) holds with ηx,y defined as

ηx,y(t) :=
∞

∑
n=0

1
2n α(2dZ(2nt)(x− y)) ((x,y) ∈ D2, t ∈ [0,1]).

Thus, by Corollary 2.7, the inequality (2.20) holds with

I(x,y) =
1∫

1
2

1
2∫

0

(t ′′ − t ′)η(1−t′)x+t′y,(1−t′′)x+t′′y

( 1
2 − t ′

t ′′ − t ′
)
dt ′dt ′′

=
∞

∑
n=0

1
2n

1∫
1
2

1
2∫

0

(t ′′ − t ′)α
(
2dZ

(
2n

1
2 − t ′

t ′′ − t ′
)
(t ′′ − t ′)(x− y)

)
dt ′dt ′′

=
∞

∑
n=0

1
2n

1
2∫

0

1
2∫

0

(t + s)α
(
2dZ

( 2nt
t + s

)
(t + s)(x− y)

)
dtds

=
∞

∑
n=0

2
2n

1
2∫

0

t∫
0

(t + s)α
(
2dZ

( 2nt
t + s

)
(t + s)(x− y)

)
dsdt.
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The last equality above is the consequence of the symmetry of the integrandwith respect
to the variables s, t . For n = 0,

2
2n

1
2∫

0

t∫
0

(t + s)α
(
2dZ

( 2nt
t + s

)
(t + s)(x− y)

)
dsdt = 2

1
2∫

0

t∫
0

(t + s)α(2s(x− y))dsdt

= 2

1
2∫

0

1
2∫

s

(t + s)α(2s(x− y))dtds =

1
2∫

0

(1−2s)
(3

2
s+

1
4

)
α(2s(x− y))ds

=
1
8

1∫
0

(1−σ)(3σ +1)α(σ(x− y))dσ .

To compute the the double integral for n � 1, we will split its domain according to the
position of 2nt

t+s related to integer numbers. For all n∈N and 0 < s < t � 1
2 , there exists

a unique m ∈ {2n−1, . . . ,2n−1} (namely m :=
[

2nt
t+s

]
) such that

either m � 2nt
t + s

< m+
1
2

or m+
1
2

� 2nt
t + s

< m+1.

This, for all m∈ {2n−1, . . . ,2n−1} , in terms of t yields the following inequalities for s :

2n−m− 1
2

m+ 1
2

t < s � 2n−m
m

t and
2n−m−1

m+1
t < s �

2n−m− 1
2

m+ 1
2

t,

respectively. On these intervals, we have that

dZ

( 2nt
t + s

)
(t + s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 2nt
t+s −m)(t + s) = (2n −m)t−ms,

if
2n−m− 1

2
m+ 1

2
t < s � 2n−m

m t,

(m+1− 2nt
t+s )(t + s)=(m+1−2n)t +(m+1)s,

if 2n−m−1
m+1 t < s � 2n−m− 1

2
m+ 1

2
t.
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Thus, we get that

1
2∫

0

t∫
0

(t + s)α
(
2dZ

(
2n t

t + s

)
(t + s)(x− y)

)
dsdt

=

1
2∫

0

2n−1

∑
m=2n−1

( 2n−m
m t∫

2n−m− 1
2

m+ 1
2

t

(t + s)α
(
2((2n−m)t−ms)(x− y)

)
ds

+

2n−m− 1
2

m+ 1
2

t∫
2n−m−1

m−1 t

(t + s)α
(
2((m+1−2n)t +(m+1)s)(x− y)

)
ds

)
dt

=
2n−1

∑
m=2n−1

1
2∫

0

( 2n+1t
2m+1∫
0

α(σ(x− y))
(σ +2n+1t

(2m+2)2 +
2n+1t−σ

(2m)2

)
dσ

)
dt

=
2n−1

∑
m=2n−1

2n
2m+1∫
0

( 1
2∫

(2m+1)σ
2n+1

α(σ(x− y))
(σ +2n+1t

(2m+2)2 +
2n+1t−σ

(2m)2

)
dt

)
dσ

=
1
16

2n−1

∑
m=2n−1

2n
2m+1∫
0

α(σ(x−y))
(
1−2m+1

2n σ
)(σ(2m+3)+2n

(m+1)2 +
σ(2m−1)+2n

m2

)
dσ

=
1
16

2n−1

∑
m=2n−1

1∫
0

α(σ(x−y))
(
1−2m+1

2n σ
)+(σ(2m+3)+2n

(m+1)2 +
σ(2m−1)+2n

m2

)
dσ .

(Here x+ stands for the positive part of x .) Summarizing our computations, for 8I(x,y) ,
we get

8I(x,y) =
1∫

0

α(σ(x− y))Φ(σ)dσ ,

where

Φ(σ) : = (1−σ)(3σ+1)+
∞

∑
n=1

2n−1

∑
m=2n−1

(
1−2m+1

2n σ
)+(σ(2m+3)+2n

2n(m+1)2 +
σ(2m−1)+2n

2nm2

)

= (1−σ)(3σ+1)+
∞

∑
m=1

(
1− 2m+1

2[log2 m]+1
σ

)+

×
(σ(2m+3)+2[log2 m]+1

2[log2 m]+1(m+1)2
+

σ(2m−1)+2[log2 m]+1

2[log2 m]+1m2

)
.
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One can easily see that Φ is a continuous function over [0,1] with Φ(t) � 1 for 0 �
t � 2

3 and Φ(1) = 0. Hence the error term 8I(x,y) obtained in (2.20) is not comparable
with that in (1.9).

In what follows, we examine the case, when X is a normed space and ηx,y(t) is a
linear combination of the products of the powers of t , 1− t , and of ‖x−y‖ , i.e., for all
(x,y) ∈ D2∗ ηx,y is of the form

ηx,y(t) :=
∫

[0,∞[2

t p(1− t)q‖x− y‖p+q−1dν(p,q) ((x,y) ∈ D2∗), (2.21)

where ν is a σ -finite Borel measure on [0,∞[2 . An important particular case is when
ν is of the form ∑k

i=1 ciδ(pi,qi) , where c1, . . . ,ck > 0, (p1,q1), . . . ,(pk,qk) ∈ [0,∞[2 .

THEOREM 2.9. Let A be a sigma algebra containing the Borel subsets of [0,1]
and μ be a probability measure on the measure space ([0,1],A ) such that the support
of μ is not a singleton. Let ν be a σ -finite Borel measure on [0,∞[2 such that, for all
s ∈ {‖x− y‖ | (x,y) ∈ D2∗} ,

J(s) :=
∫

[0,∞[2

( ∫

[0,μ1]

(μ1− t ′)pdμ(t ′)
∫

]μ1,1]

(t ′′ − μ1)qdμ(t ′′)
)
sp+q−1dν(p,q)

exists in [−∞,∞] . Assume that f : D → R is a hemi-μ -integrable solution of the func-
tional inequality

f ((1− t)x+ ty) � (1− t) f (x)+ t f (y)+
∫

[0,∞[2

t p(1− t)q‖x− y‖p+q−1dν(p,q) (2.22)

for all (x,y) ∈ D2∗ and t ∈ [0,1] . Then f also fulfils the Hermite–Hadamard type
inequality

f ((1− μ1)x+ μ1y) �
∫

[0,1]

f
(
(1− t)x+ ty)dμ(t)+

1
S(μ)

J(‖x− y‖) ((x,y) ∈ D2∗).

(2.23)

REMARK 2.10. In the above theorem, the hemi-μ -integrability condition for f
can be relaxed if the measure ν is finite with compact support contained in ]0,∞[2 .
Then the function ηx,y defined by (2.21) is continuous on [x,y] and ηx,y(0) = ηx,y(1) =
0, hence (2.22) implies that t �→ f ((1− t)x+ ty) is upper bounded on [0,1] and upper
semicontinuous at the endpoint of [0,1] . Thus f is hemi-upper bounded and upper
hemicontinuous on D , which yields its hemi-μ -integrability.

Proof. We want to apply Theorem 2.5. Let (x,y) ∈ D2∗ be arbitrary. Let ηx,y :
[0,1]→ R defined by (2.21). Then, (2.22) is equivalent to (2.12). To deduce (2.23), by
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Theorem 2.5, we obtain that

I(x,y) =
∫

]μ1,1]

∫

[0,μ1]

(t ′′−t ′)
∫

[0,∞[2

( μ1−t′
t′′−t′

)p( t′′−μ1
t′′−t′

)q‖(t ′′−t ′)(x−y)‖p+q−1dν(p,q)dμ(t ′)dμ(t ′′)

=
∫

[0,∞[2

( ∫

[0,μ1]

(μ1− t ′)pdμ(t ′)
∫

]μ1,1]

(t ′′ − μ1)qdμ(t ′′)
)
‖x− y‖p+q−1dν(p,q)

= J(‖x− y‖),

which proves the statement. �

COROLLARY 2.11. Let ν be a σ -finite Borel measure on [0,∞[2 , such that for
all s ∈ {‖x− y‖ : (x,y) ∈ D2∗}

∫

[0,∞[2

sp+q−1

2p+q−1(p+1)(q+1)
dν(p,q)

exists in [−∞,∞] . Assume that f : D → R is a hemi-Lebesgue integrable solution of
the functional inequality

f
(
(1− t)x+ ty

)
� (1− t) f (x)+ t f (y)+

∫

[0,∞[2

t p(1− t)q‖x− y‖p+q−1dν(p,q), (2.24)

where (x,y) ∈ D2∗ and t ∈ [0,1] . Then, f also satisfies the Hermite–Hadamard type
inequality

f
(x+y

2

)
�

∫

[0,1]

f
(
(1−t)x+ty)dt+

∫

[0,∞[2

‖x−y‖p+q−1

2p+q−1(p+1)(q+1)
dν(p,q) ((x,y) ∈ D2∗).

(2.25)

Proof. Observe that (2.24) is equivalent to (2.12), where for all (x,y) ∈ D2∗ , ηx,y :
[0,1] → R is defined by (2.21). We have S(μ) = 1

8 and using Theorem 2.9, we obtain
that

J(s) =
∫

[0,∞[2

1
2∫

0

( 1
2 − t)pdt

1∫
1
2

(t− 1
2 )qdtsp+q−1dν(p,q)

=
∫

[0,∞[2

sp+q−1

2p+q+2(p+1)(q+1)
dν(p,q),

which yields (2.25). �
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3. From approximate (ω0,ω1)-convexity to approximate upper
Hermite–Hadamard inequality

In the first part of this section we will investigate the implication between the
(ω0,ω1)-convexity type inequality and upper Hermite–Hadamard inequality. Consider
the following assumptions.

(B1) (T,A ,μ) is a measure space.

(B2) Λ : T ×Δ◦(I) → R+ is integrable (with respect to μ ) in its first variable.

(B3) M : T ×Δ◦(I) → R is measurable in its first variable and for all t ∈ T , the map
(x,y) �→ M(t,x,y) is a two-variable mean on I . M0 : Δ◦(I) → I is a strict mean.

(B4) There exist an (ω0,ω1)-Chebyshev system on I such that ω0 is positive and
i ∈ {0,1} (2.2) holds.

THEOREM 3.12. Assume that (B1)–(B4) hold. Let f : I →R be a locally bounded
Borel measurable solution of the approximate (ω0,ω1)-convexity inequality (2.5), where
for all (x,y) ∈ Δ◦(I) , ηx,y : [x,y] → R is a bounded and Borel measurable function.
Then f also satisfies the following approximate upper Hermite–Hadamard type in-
equality

∫
T

Λ(t,x,y) f (M(t,x,y))dμ(t) � Ω(M0(x,y),y)
Ω(x,y)

f (x)+
Ω(x,M0(x,y))

Ω(x,y)
+E(x,y),

(3.1)
with E : D2∗ → R defined by

E(x,y) =
∫
T

Λ(t,x,y)εx,y(M(t,x,y))dμ(t). (3.2)

Proof. Let (x,y) ∈ Δ◦(I) be arbitrary. Substituting in (2.5) u by M(t,x,y) , we get
that

f (M(t,x,y)) � Ω(M(t,x,y),y)
Ω(x,y)

f (x)+
Ω(x,M(t,x,y))

Ω(x,y)
f (y)+ εx,y(M(t,x,y)) (t ∈ T ).

Multiplying this inequality by Λ(t,x,y) and integrating with respect to μ on T , we get
that∫

T

Λ(t,x,y) f (M(t,x,y))dμ(t)

�

∫
T

Λ(t,x,y)Ω(M(t,x,y),y)dμ(t)

Ω(x,y)
f (x)+

∫
T

Λ(t,x,y)Ω(x,M(t,x,y))dμ(t)

Ω(x,y)
f (y)

+
∫
T

Λ(t,x,y)εx,y(M(t,x,y))dμ(t).

(3.3)
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Applying (2.2), it follows that
∫
T

Λ(t,x,y)Ω(M(t,x,y),y)dμ(t) = Ω(M0(x,y),y) (3.4)

and ∫
T

Λ(t,x,y)Ω(x,M(t,x,y))dμ(t) = Ω(x,M0(x,y)). (3.5)

Substituting (3.4) and (3.5) to (3.3) we have (3.1). �

REMARK 3.13. An immediate corollary of this theorem is the second inequality
of Theorem A. Assume that the assumptions of Theorem A hold. It is easy to see
that the conditions of Theorem 3.12 are also valid. For all (x,y) ∈ Δ◦(I) let ηx,y ,μ ,
M(t,x,y) , M0(x,y) and Λ(t,x,y) be defined as in Remark 2.4. Then (2.2) holds. There-
fore, by (1.5) and using also Remark 2.4,

c1(x,y) =
1

Ω(x,y)

∣∣∣∣∣
∫ y
x ω0ρ ω0(y)∫ y
x ω1ρ ω1(y)

∣∣∣∣∣ =
1

Ω(x,y)

∣∣∣∣∣
ω0(M0(x,y)) ω0(y)

ω1(M0(x,y)) ω1(y)

∣∣∣∣∣ =
Ω(M0(x,y),y)

Ω(x,y)
.

Similarly, it can be seen, that c2(x,y) = Ω(x,M0(x,y))
Ω(x,y) . Thus, by Theorem 3.12, we get the

second inequality in Theorem A.

THEOREM 3.14. Let D be a convex set of a linear space X . Let A be a sigma
algebra containing the Borel subsets of [0,1] and μ be a probability measure on the
measure space ([0,1],A ) . Denote μ1 :=

∫
[0,1] tdμ(t) . Assume that f : D → R is

a hemi-μ -integrable solution of the approximate convexity inequality (2.12), where,
for all (x,y) ∈ D2∗ , ηx,y : [0,1] → R is a bounded and Borel measurable function.
Then, for all (x,y) ∈D2∗ , the function f also satisfies the approximate upper Hermite–
Hadamard inequality

∫

[0,1]

f
(
(1− t)x+ ty)dμ(t)� (1− μ1) f (x)+ μ1 f (y)+

∫

[0,1]

ηx,y(t)dμ(t). (3.6)

REMARK 3.15. In the above theorem, the regularity condition for f can be re-
laxed if the error function ηx,y enjoys boundedness and continuity properties. For in-
stance, if ηx,y is upper bounded on [x,y] for some (x,y) ∈ D2∗ , then (2.5) implies that
f ((1− t)x+ ty) is upper bounded for t ∈ [0,1] . Similarly, if limsupt→0+0 ηx,y(t) = 0
for some (x,y) ∈ D2∗ , then (2.5) implies that f ((1− t)x+ ty) is an upper semicontinu-
ous function of t at zero from the right.

Proof. Let (x,y) ∈ D2∗ be fixed. Integrating (2.12) with respect to the variable t
and the measure μ on [0,1] we get (3.6). �

REMARK 3.16. Assume that the conditions of Theorem C hold. To prove a sim-
ilar result as in Theorem C, we have to assume that also α : (D−D) → R is radially
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bounded and radially continuous at 0 . By [14] and [9], we can get that f is approxi-
mately convex in the following sense

f ((1−t)x+ty) � (1−t) f (x)+t f (y)+
∞

∑
n=0

1
2n α(2dZ(2nt)(x−y)) (x,y ∈ D, t ∈ [0,1]).

Let ηx,y(t) := ∑∞
n=0

1
2n α(2dZ(2nt)(x− y)) for t ∈ [0,1] and x,y ∈ D . Let A be the

class of Lebesgue measurable subsets of [0,1] and let the measure μ be defined by
dμ(t) = ρ(t)dt . Then μ1 =

∫ 1
0 tρ(t)dt = λ . Thus applying Theorem 3.14 and the

Fubini’s theorem, we get (1.10), which completes the proof of Theorem C.

In what follows, we examine the case, when X is a normed space and ηx,y(t) is a
linear combination of the products of the powers of t , 1− t , and of ‖x−y‖ , i.e., for all
(x,y) ∈ D2∗ ηx,y is of the form

ηx,y(t) :=
∫

[0,∞[3

t p(1− t)q‖x− y‖rdν(p,q,r) ((x,y) ∈ D2∗), (3.7)

where ν is a σ -finite Borel measure on [0,∞[3 . An important particular case is when
ν is of the form ∑k

i=1 ciδ(pi,qi,ri) , where c1, . . . ,ck > 0 and (p1,q1,r1), . . . ,(pk,qk,rk) ∈
[0,∞[3 .

COROLLARY 3.17. Let μ be a Borel probability measure on [0,1] , denote μ1 :=∫
[0,1] tdμ(t) . Let ν be a σ -finite Borel measure on [0,∞[3 such that, for all s ∈ {‖x−

y‖ | (x,y) ∈ D2∗} , ∫

[0,∞[3

∫

[0,1]

t p(1− t)qsrdμ(t)dν(p,q,r)

exists in [−∞,∞] . Assume that f : D → R is and hemi-μ -integrable solution of the
functional inequality

f ((1− t)x+ ty) � (1− t) f (x)+ t f (y)+
∫

[0,∞[3

t p(1− t)q‖x− y‖rdν(p,q,r) (3.8)

for all (x,y) ∈ D2∗ and t ∈ [0,1] . Then f also fulfills the following approximate upper
Hermite–Hadamard inequality,

∫

[0,1]

f
(
(1− t)x+ ty)dμ(t)

� (1− μ1) f (x)+ μ1 f (y)+
∫

[0,∞[3

∫

[0,1]

t p(1− t)q‖x− y‖rdμ(t)dν(p,q,r).
(3.9)

Proof. We apply Theorem 3.14. For all x,y ∈ D2∗ , let ηx,y : [0,1] → R defined by
(3.7). Then it is easy to see that (3.8) is equivalent to (2.12). Hence, by Theorem 3.14
we get (3.9). �
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Denote by B the so-called beta-function, defined by

B(p1, p2) =
1∫

0

t p1−1(1− t)p2−1dt (p1, p2 > 0).

COROLLARY 3.18. Let ν be a σ -finite Borel measure on [0,∞[3 such that, for
all s ∈ {‖x− y‖ | (x,y) ∈ D2∗} ,

∫

[0,∞[3

B(p+1,q+1)srdν(p,q,r)

exists in [−∞,∞] . Assume that f : D → R is a hemi-Lebesgue integrable solution of
the functional inequality

f ((1− t)x+ ty) � (1− t) f (x)+ t f (y)+
∫

[0,∞[3

t p(1− t)q‖x− y‖rdν(p,q,r)

for all (x,y) ∈ D2∗ and t ∈ [0,1] . Then f also fulfills the approximate upper Hermite–
Hadamard inequality

f
(x+ y

2

)
� f (x)+ f (y)

2
+

∫

[0,∞[3

B(p+1,q+1)‖x− y‖rdν(p,q,r) ((x,y) ∈ D2∗).

(3.10)

Proof. We apply Corollary 3.17 when μ is the Lebesgue measure. Then, for all
(x,y) ∈ D2∗ ,

E(x,y) =
∫

[0,∞[3

∫

[0,1]

t p(1− t)q‖x− y‖rdμ(t)dν(p,q,r)

=
∫

[0,∞[3

B(p+1,q+1)‖x− y‖rdν(p,q,r).

Thus, the result directly follows from Corollary 3.17. �
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