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ON A HALF-DISCRETE MULHOLLAND-TYPE INEQUALITY

BICHENG YANG AND WING-SUM CHEUNG

(Communicated by J. Pecaric)

Abstract. By means of weight functions and Hadamard’s inequality, a half-discrete Mulholland-
type inequality with a best constant factor is given. A best extension with multi-parameters,
some equivalent forms as well as the operator expressions are also considered.

1. Introduction

Assuming that f,g € L*(R.), ||f]| = {fowfz(x)dx}% >0, ||g|| > 0, we have the
following Hilbert’s integral inequality (cf. [1]):

= f(x)g(y)
/0 /O TR0 dvay < el M

where the constant factor 7 is best possible. If a = {a,}_,, b= {b,}:_, €%, ||a|]| =

T a,%}% > 0, ||b|| > 0, then we have the following analogous discrete Hilbert’s
inequality

amby,
<rm b||, 2
n |lal[|b]| 2)

m=1n=1 m-n

with the same best constant factor 7. Inequalities (1) and (2) are important in anal-
ysis and its applications (cf. [2], [3], [4]). On the other-hand, we have the following
Mulholland’s inequality with the same best constant factor (cf. [1], [5]):

1

= = b, oo oo 2
Y o nl Y ma, S nbl (3)
m=2n=2 Inmn m=2 n=2

In 1998, by introducing an independent parameter A € (0,1], Yang [6] gave an
extension of (1). By generalizing the results from [6], Yang [7] gave some best exten-
sions of (1) and (2): If p > 1, %4—% =1, 4 +4 =24, kj(x,y) is a non-negative ho-
mogeneous function of degree —A satisfying k(A;) = [ kx (¢, DM~ldreRy, ¢(x) =

Mathematics subject classification (2010): 26D15, 47A07.

Keywords and phrases: Mulholland-type inequality, weight function, equivalent form.
This work is supported by Guangdong Natural Science Foundation (No. 7004344).

© IV, Zagreb 327

Paper MIA-16-38


http://dx.doi.org/10.7153/mia-16-38

528 B. YANG AND W.-S. CHEUNG

P I=A=1 yr(r) = xR =L £ 0) € Ly (Ry) = Lf1I1f11pp = LJ5 () F ()|} 7
<oo} ¢(>0) € Lyy(R,), and |[fl[pg. |[g]lg.y >0, then

“4)

/ON /ON K (x,) [ (x)g(v)dxdy < k(%1)

where the constant factor k(A;) is best possible. Moreover if k; (x,y) is finite and
ke, (3¢, )M 1 (&, (x, y)y*2 1) s decreasing for x > 0 (y > 0), then for @, b, >0, a=

{an¥1 € Lo = {alllallpo = (S5 0lanl?}7 < o}, and b = {ba}ir.; € Loy
lallpo 11Ellqy > 0, we have

o oo

Y. 2 ka(m,n)ambn < k(A1)llallpollbllg.y, (5)

m=1n=1

where the constant k(A;) is still best value. Clearly, for p =g =2, A =1, ki (x,y) =
gl M=A= %, (4) reduces to (1), while (5) reduces to (2).

Some other results about Hilbert-type inequalities can be found in [8]-[16]. On
half-discrete Hilbert-type inequalities with the general non-homogeneous kernels, Har-
dy et al. provided a few results in Theorem 351 of [1]. But they did not prove that
the constant factors are best possible. In 2005, Yang [17] gave a result with the kernel
m by introducing a variable and proved that the constant factor is best possible.
Very recently, Yang [ 18] gave the following half-discrete Hilbert’s inequality with best
constant factor:

[ 70 % s <llllal. ©)

In this paper, by means of welght functions and Hadamard’s inequality, a half-
discrete Mulholland-type inequality similar to (3) and (6) with a best constant factor is
given as follows:

1

|t 2 dx<7t|f|{2na}§. )

Moreover, a best extension of (7) with multi-parameters, some equivalent forms as well
as the operator expressions are considered.

2. Some lemmas

LEMMA 1. If0<A <2, a>2, and o(n) and @(x) are weight functions given
by

o[ 1 A
o) = (Inon 7/ — x> ldx,n eN, 8
() := (nom)* | mae(an)x ®)

A
= x2

(Inom) 2! x € (0,00), 9)
“ nin*e (xn)

Ms
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then we have '

Proof. Substituting t = xInon in (8), and by simple calculation, we have

Ay (A A
Cl)(l’l)—/o mtz dt—B(E,E)

For fixed x > 0, in view of the conditions, it is easy to see that

(noy)s ! 1
yIn* e(ay)* y(1—|—x1n(xy)l(ln(xy)1_%

h(x7y) =

is decreasing and strictly convex for y € (%700). Hence by Hadamard’s inequality, we
find

L 1
O (x) < x2 / —dy
3 y(1+xInoy)*(Iney)' =2

e [ a(2)
ein(e2) (L2 =7\ 272)7

and (10) follows. [

LEMMA 2. Let the assumptions of Lemma 1 be fulfilled and additionally, let p >
Li+l=1 4,20 ne N, f(x) is a non-negative measurable function in (0,00).
Then we have the following inequalities:

; e s
J = {Z %(h’lan)%_l [/0 %d}(} }

n=1

[B (%%ﬂ % {/Owas(x)xl’“%)lfl’(x)dx}%, (11)

o I o q a
X2 a
Ly = d
! {A[ﬂqugmnmwlx}
1
AAVS o (=410 L
< {B<272>n§1nq (Inon)1~2 az} . (12)

Proof. By Holder’s inequality (cf. [19]) and (10), it follows

lwfwM]”

N

0 In*e(an)*

/m 1 =8 o] [(nom)1-5)/p o . b
= nr X
0 In*e(on)® | (nom)1=3)/P s x(1-%)/a
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o (1=%)(p-1) pp o pa-l (1-%)(q-1)
</ . 1 X2 fl(x)dx / An (Inan) i
0 In*e(on)* n(lnon)' =2 0 In*e(on)* =3

—1 pee (1=%)(p=1) fp
= {a)(n)nq_l(lnan)q(l_%)_l}p / - 2 ) — lfl(x)dx
0 In"e(an)* n(]n(xn) -2

p-1 o (1=%)(p-1) pp
= [B (i,&)] n(ln(xn)l_%/ . ! r fl(x)dx.
272 0 In*e(on)* n(lnon)'=2

Then by Lebesgue term by term integration theorem (cf. [20]), we have

- 11 A »
AN 1 x(1=2)(p=1) g
J< B<5,5> Z/ x _ 7 (x)dx
L 1 =170 In*e(on)* n(lnan)' =3
1
[ (A AN] 2 1 +(1=5)(p-1) g
=|B|=,= / P(x)dx
i (2 2)_ { 0 ,Z’llnle(om) n(ln(xn)l*%f ) }

3 ) { e

hence, (11) follows. By Holder’s inequality again, we have
q

Q=

By Lebesgue term by term integration theorem, we have

w o -1
/ Z)anix%_l(lnan)(l_%)(q_l)ade
0 —1In*e(an)*

oo A1
2 (Inon)2 / de nq’l(lnan)q(“%)*laz
- 0 In*e(an)*

L

N

{Zw )n? (In on) 101~ %)laZ} ,

and in view of (10), inequality (12) follows. O
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3. Main results
‘We introduce the functions
®(x) 1= 2?19~ (x > 0), and ¥(n) := n9 (Inom)?1= 2~ (n € N).

Observe that [@(x)]' ¢ —x% 1 and W(n))' 7= %(lnan)%’l.

THEOREM 1. If 0 <A <2, a>2, p>1, %+5=1, f(x), an >0, f€
Lpo(Ry),a={a,}y | €lyw, ||fllpo >0 and ||a||qw > 0, then we have the following
equivalent inequalities:

— a"f anfx ;L 7L
= z’/0 In* e(an)* / St e(om) B<2 2>|f|p7
= - ok A A
J = {Z[lp(”)}lp [/0 %dx] } <B<§a§)|f|p,¢; (14)

s e W 17 A A
L= {/0 @) q[z 7lnle(om)"] dx} <5(5.5)lla

where the constant B(%, %) is the best possible in the above inequalities.

lallgw, (13)

¥ 15)

Proof. The two expressions for I in (13) follow from Lebesgue’s term by term
integration theorem. By (11) and (10), we have (14). By Holder’s inequality, we have
oo 1 oo 1 1
1= ‘PTn/i x)dx| W (n)a,| < J||a||,v. (16)
2[ 0 ]} et ][ (m)an] <kl

n=1

Then by (14), we have (13). On the other-hand, assume that (13) is valid. Setting

oo p-t
an = ¥(n)] " [ / mf(wdx] neN,

where JP~! = ||al|gw- By (11), we find J < eo. If J =0, then (14) is trivially valid; if
J > 0, then by (13), we have

A
2

N>

HaHZ)I’ —gap=1) — gp —p < B( )Hf”l%‘b

lallg.w,

therefore HaH; F =T < B(%, %)Hpr@, that is, (14) is equivalent to (13). On the

other-hand, by (10) we have [@(x)]! 79 > [B(%, %)}1*’1. Then in view of (12), we have
(15). By Holder’s inequality, we find

1= [ 108 ()]

—1In"e(on

=1 ad 1
7 )Y — ( )xa” dx <||f]|p.oL- A7)
n=1



532 B. YANG AND W.-S. CHEUNG

Then by (15), we have (13). On the other-hand, assume that (13) is valid. Setting

ﬂw:@wrﬂi 1

g—1
—a ,x € (0,00),
= In* e(an)* n] (0.22)

then L9~ ! = || f]|p.®- By (12), we find L < eo. If L =0, then (15) is trivially valid; if
L > 0, then by (13), we have

A A
W1lh o =11 =1 < B, S)IIfllpolla

4%

therefore Hpr '—L< B(% %)Hqu’\p, that is, (15) is equivalent to (13). Hence, (13),
(14) and (15) are equivalent.

771 x€(0,1); f(x) =0, x € [1,%), and
dn=L(Inan)? &_s_l n € N, if there exists a positive number k(< B(%, %)), such that
(13) is valid as we replace B( 7 2) with k, then in particular, it follows that

For 0 < e < %, setting f(x )—x2+

q,¥Y

1 1
L dx 7 1 > 1 4
= k _—
{/0 et } { (no)er! +n§2n(lnan)8+1 }
1\ 7 1 | 7
P A q
= d
< (g) {(lna)£+1+/1 Mnox)erT x}

he nztl/o In* e( anf( x)dx < k|| f|]p.ollal

k € 1 g
_ Kk 18
s{(1na)e+1+(1na)s} ’ (18)
~ o 1 i_e_q (1 1
I = Y —(nan)? "« 1/ 7y x2 Ty
n=1" 0 In*e(on)*

o i Inan A
tfxglom 2 1 / 1 t7+%7ldt

n=1
A gL e\ 1
- B(E P2 E) “ n(lnan)+! Ae)
A e AL & o 1
g B<5 P2 5)/1 Yot ~AE)
B 1 & 3 A € _Ae)
e(lna)e " \2 p'2 p ’

hnd 1 oo 1 &+§,1
A = t? dt. 19
(&) 2 n(ln Om)‘?“ /lnan (r+ 1))L ! (19)
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We find
0<A(e) < i;/m L heso1g
= n(Inon)e ! Jiman t4
1 - 1
= T 2 5 oo,
55t (lnocn)f’frl

and so A(g) = O(1)(e — 0™). Hence by (18) and (19), it follows that

1
1 A e A ¢ e 1 q
<1na>83<5+5’5‘5>"“’O(”<k{<lna>€+l +<1noz>€} ’

and B(z, 2) < k(e —07). Hence k = B(;L ,%) is the best value of(13)

By the equivalence of the inequalities, the constant factor B( 13 ) in (14) and (15)
is the best possible. [J

REMARK 1. (i) Define the first type half-discrete Hilbert-type operator 7; : L, & (R+)
— 1, y1-p as follows: For f € L, o(Ry), we define T f € l,w1-» by

Tif(n) :/Ow ﬁf(x)dxm eN.

(an)

Then by (14), [|Tif|[,w1-» < B(27 2)\|f|\pq> and so 7 is a bounded operator with

[|T1]] < (2 , 2) Since by Theorem 1, the constant factor in (14) is best possible, we
have ||71|| = B(5,%).

(i1) Define the second type half-discrete Hilbert-type operator 15 : [y w — L, p1-4 (Ry)
as follows: For a € Iy w, we define Tra € L ¢1-4(R+) by

=

Ta(x) =Y

n=1 IIIA

Then by (15), [|T2all, g4 < B(%,%)Hqu\y and so 7, is a bounded operator with

[| 12| < (2 , 2) Since by Theorem 1, the constant factor in (15) is best possible, we
have ||T2|| = B(.,%).

REMARK 2. For p=¢g=2,A=1, oo =2 in (13), (14) and (15), we have (7) and
the following equivalent inequalities:

(S e} <ain 0

2
“ < n I 2
/0 L; lne(2n)x] dx<m 3, nay @h

n=1
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