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NORM INEQUALITIES FOR SOME ONE–SIDED OPERATORS

DAH-CHIN LUOR

(Communicated by L. E. Persson)

Abstract. We show that the one-sided maximal operators associated with Borel measures are of
strong type (p, p) , 1 < p < ∞ , with constant p∗ , and the related one-sided geometric maximal
operators are of strong type (p, p) , 0 < p < ∞ , with constant e1/p . We also investigate norm
inequalities for integral operators with three measures on the cone of nonnegative nonincreasing
functions. Our results show that if we restrict the measures in the inequalities to some particular
classes, then a simple characterization for these inequalities to hold can be obtained.

1. Introduction

Let μ be a non-negative Borel measure on R which is finite on bounded sets. Let
φ be a nonnegative Borel function defined on D = {(x,t) :−∞ < t � x < ∞} such that
φ(x, ·) is locally μ− integrable for each x ∈ R . The one-sided maximal operator M−

φ ,μ
is defined for locally μ -integrable f by

M−
φ ,μ f (x) := sup

s<x

1∫
(s,x] φ(x,t)dμ(t)

∫
(s,x]

φ(x,t)| f (t)|dμ(t).

In the case φ ≡ 1, we write M−
μ instead of M−

φ ,μ . When μ is the usual Lebesgue
measure, it is well-known that M−

μ is of weak type (1,1) and strong type (p, p) , where
1 < p � ∞ . See for example [13], [15]. Weighted inequalities for M−

μ was established
by Sawyer [30] in the case that μ is the Lebesgue measure, and by Martı́n-Reyes et al.
[23] in the case that μ is absolutely continuous with respect to Lebesgue measure with
positive derivative. When μ is a positive Borel measure which is finite on bounded sets,
Bernal [5] showed that M−

μ is of weak type (1,1) with constant 1, and Andersen [1]
characterized weights for which M−

μ is of weak type (p, p) , 1 � p < ∞ , and of strong
type (p, p) , 1 < p < ∞ . In this paper we use the method in the proof of [1, Theorem 1]
to obtain

‖M−
φ ,μ f‖p,μ � p∗‖ f‖p,μ (1.1)
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for 1 < p < ∞ under a nondecreasing condition on φ . Here ‖ f‖p,μ = (
∫
R
| f |pdμ)1/p .

We also consider the one-sided geometric maximal operator and its related limiting
operator

G−
φ ,μ f (x) := sup

s<x
exp

(
1∫

(s,x] φ(x,t)dμ(t)

∫
(s,x]

φ(x,t) log | f (t)|dμ(t)

)
,

G−∗
φ ,μ f (x) := lim

ε↘0
sup
s<x

(
1∫

(s,x] φ(x,t)dμ(t)

∫
(s,x]

φ(x,t)| f (t)|ε dμ(t)

)1/ε

.

Weighted inequalities for geometric maximal operator have been investigated in these
papers [10], [11], [32], [36]. In [29] weighted inequalities for G−

φ ,μ with φ ≡ 1 was
established when μ is the Lebesgue measure. Here we apply (1.1) to obtain

‖T f‖p,μ � e1/p‖ f‖p,μ , T = G−
φ ,μ , G−∗

φ ,μ . (1.2)

for 0 < p < ∞ .
We also consider the integral operator Tφ ,μ which is defined as

Tφ ,μ f (x) =
1

Φ(x,x)

∫
(0,x]

φ(x,t) f (t)dμ(t), x > 0,

where Φ(x,x) =
∫
(0,x] φ(x,t)dμ(t) , and the inequality of the form

‖Tφ ,μ f‖q,η � C‖ f‖p,ν (1.3)

for all f � 0 or 0 � f ↓ , where 0 < p,q < ∞ , η and ν are Borel measures on (0,∞) .
Here we restrict the domain of the kernel φ to the set D+ = {(x,t) : 0 < t � x <
∞} . We use 0 � f ↓ as a symbol for a nonnegative and nonincreasing function f
on (0,∞) , and ‖ f‖p,ν = (

∫
(0,∞) | f |pdν)1/p . If dμ = dx , then we write Tφ instead of

Tφ ,μ , and if dν = vdx , where v is a weight, then we write ‖ f‖p,v instead of ‖ f‖p,ν .
Inequalities of the form (1.3) have been widely studied in many literatures. Consider
the case dμ = dx , dη = udx , and dν = vdx of (1.3) , where u and v are weights.
In [31] Sawyer showed that the Hardy-Littlewood maximal operator M is bounded
from classical Lorentz spaces Λp(v) to Λq(u) , 1 < p,q < ∞ , if and only if (1.3) with
φ ≡ 1 holds for all 0 � f ↓ , and a characterization was also given. In [34] Stepanov
gave an alternative proof of Sawyer’s result and established similar results for the cases
0 < q < 1 < p < ∞ , 0 < p � q < ∞ , and 0 < p < 1. See also [4], [16], [18], [27], and
references given there. Inequality (1.3) for general Borel measures were discussed in
[17], [28], and [33]. Several known results showed that, in many cases, the following
condition

‖ f‖q,η � A‖ f‖p,μ for all 0 � f ↓ (1.4)

is necessary for (1.3) to hold for all 0 � f ↓ . In particular, Persson et al. [28] con-
sidered (1.3) for 1 � p < ∞ , 0 < q < ∞ , and ν = μ . The authors [28, theorem 2.3]
showed that if φ(x, ·) is nonincreasing on (0,x] for each x > 0, then (1.3) holds for all
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f � 0 if and only if this inequality holds for all 0 � f ↓ . Moreover, by [28, Theorem
2.14] we see that if φ belongs to the Oinarov’s class and 0 � Tφ ,μ f ↓ for all 0 � f ↓ ,
and if A0 < ∞ , where A0 is given in [28, Proposition 2.10], then in the case 1 < p < ∞ ,
0 < q < ∞ , and ν = μ , inequality (1.3) holds for all f � 0 if and only if (1.4) holds.
A similar result for φ ≡ 1 can be found in [33, Theorem 4.1]. In general it is not easy
to establish inequalities of the form (1.3) for 0 � f ↓ with three measures. See [17] for
the case φ ≡ 1. Our results show that if φ can be written in the form ψh , where h(x, ·)
is nondecreasing and left continuous on (0,x] for each x > 0 and 0 � Tψ,μ f ↓ for all
0 � f ↓ , and if ‖Tψ,μ f‖p,ν � C1‖ f‖p,ν for all 0 � f ↓ or ‖Tψ,μ f‖q,η � C1‖ f‖q,η for
all 0 � f ↓ , then (1.3) holds for all 0 � f ↓ if and only if (1.4) holds. Many well
known results in [2], [3], [7], [19], and [26] can be applied with our theorems to estab-
lish (1.3) for 0 � f ↓ . Therefore if we restrict the measures in (1.3) to some particular
classes, then the problem of proving (1.3) for 0 � f ↓ is more simple.

It is of independent interest to investigate inequalities of the form

‖T1 f‖q,u � C‖T2 f‖p,v for all 0 � f ↓ (1.5)

and the condition

B = sup
r>0

‖T1χ(0,r]‖q,u

‖T2χ(0,r]‖p,v
< ∞. (1.6)

Here T1 and T2 are two operators and u , v are weights. The constant B given in (1.6)
plays an important role in many results. In the cases p = q , u = v , T1 = Tφ , and T2 = I ,
where I is the identity operator, inequality (1.5) is reduced to

‖Tφ f‖p,v � C‖ f‖p,v for all 0 � f ↓ . (1.7)

In [3] Ariño and Muckenhoupt showed that the Hardy-Littlewood maximal operator M
is bounded on classical Lorentz space Λp(v) , 1 � p < ∞ , if and only if (1.7) holds
for 1 � p < ∞ and Tφ = H , where H is the Hardy averaging operator defined by
H f (x) = x−1 ∫ x

0 f (t)dt , x > 0, and the necessary and sufficient condition is that v∈ Bp ,
that is, there exists a constant B such that∫ ∞

r
t−pv(t)dt � Br−p

∫ r

0
v(t)dt, r > 0. (1.8)

It is easy to see that v ∈ Bp is equivalent to (1.6) with p = q , u = v , T1 = H , and
T2 = I . Similar results for more general integral operators Tφ can be found in [2], [7],
[19], and [26]. We see that, in these results, inequality (1.7) holds if and only if it holds
on characteristic functions of the form χ(0,r] , r > 0. Moreover, the following results
can be found in [7], [8], [14], [18], [19], [21], [22], [24], [25], [28], [33], [34], [35], and
references given there.

THEOREM P. Inequalities (1.5) and (1.6) are equivalent in the following cases.

(i) 0 < p � 1 � q < ∞ , T1 = Tφ , and T2 = Tψ .

(ii) 0 < p � q < ∞ , 1 � q < ∞ , T1 = I , and T2 = Tψ .
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(iii) 0 < p � 1 , p � q < ∞ , T1 = Tφ , and T2 = I .

(iv) 0 < p � q < ∞ , T1 = I , and T2 = I .

(v) 0 < p � q < ∞ , T1 = H , and T2 = H .

Moreover, in these cases we have

sup
0� f↓

‖T1 f‖q,u

‖T2 f‖p,v
= sup

r>0

‖T1χ(0,r)‖q,u

‖T2χ(0,r)‖p,v
.

The result of Theorem P(iii) is not true in the case 1 < p � q < ∞ and Theorem
P(iv) does not hold if q < p . Examples can be found in [6, Remark 1.2.13]. In this paper
we extend Theorem P(v) from H to more general integral operators. As an application,
we also establish (1.5) for T1 = Tφ and T2 = Tψ .

Throughout this paper we suppose that all functions are Borel measurable. A
weight on (0,∞) is a nonnegative locally integrable function defined on (0,∞) . For
1 � z � ∞ , we define z∗ by 1/z+1/z∗ = 1. We also take exp(−∞) = 0, log0 = −∞ ,
00 = ∞0 = 1, and ∞/∞ = 0/0 = 0 ·∞ = 0.

2. Inequalities for maximal operators

We first consider M−
μ . The following Lemma 2.1 can be obtained by the method

given in the proof of [1, Theorem 1].

LEMMA 2.1. Let λ � 0 . If f is locally μ -integrable on R , then∫
{x|M−

μ f (x)>λ}
dμ � 1

λ

∫
{x|M−

μ f (x)>λ}
| f |dμ . (2.1)

Proof of Lemma 2.1. We first show that if x0 ∈ {x|M−
μ f (x) > λ} , then there exists

x1 > x0 such that [x0,x1) ⊂ {x|M−
μ f (x) > λ} . For x ∈ R , let B(x) be the set

B(x) =
{

s < x
∣∣∫

(s,x]
dμ > 0 and

∫
(s,x]

| f |dμ > λ
∫

(s,x]
dμ
}

.

Consider the case λ > 0. Since M−
μ f (x0) > λ , there exists c ∈ B(x0) . Choose ε > 0

such that
∫
(c,x0] | f |dμ > λ (

∫
(c,x0] dμ + ε) . Since μ is finite on bounded sets, we have∫

(c,z) dμ → ∫
(c,x0] dμ as z → x+

0 . Hence there exists x1 > x0 such that
∫
(c,x0] dμ �∫

(c,x1) dμ <
∫
(c,x0] dμ + ε . Then for any x ∈ (x0,x1) ,

∫
(c,x]

| f |dμ �
∫

(c,x0]
| f |dμ > λ

(∫
(c,x0]

dμ + ε
)

> λ
∫

(c,x1)
dμ � λ

∫
(c,x]

dμ .

This implies M−
μ f (x)> λ . The case λ = 0 is trivial. Thus we have [x0,x1)⊂{x|M−

μ f (x)
> λ} . The set {x|M−

μ f (x) > λ} then can be written as a countable union of disjoint
intervals {Ii} , where each Ii is of the form [a,b) for −∞ < a < b � ∞ or (a,b) for
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−∞ � a < b � ∞ , and moreover, for each Ii there is no larger interval J of the form
[a,b) or (a,b) such that Ii ⊂ J ⊆ {x|M−

μ f (x) > λ} . We claim that if I ∈ {Ii} , then∫
I
| f |dμ � λ

∫
I
dμ . (2.2)

First suppose that I = [a,b) for −∞ < a < b � ∞ . There exists an increasing
sequence {a j} such that a j → a− as j → ∞ and a j /∈ {x|M−

μ f (x) > λ} for each j .
Since M−

μ f (a j) � λ ,
∫
(c,a j ] | f |dμ � λ

∫
(c,a j ] dμ for all c < a j < a . Let a j → a− , we

have ∫
(c,a)

| f |dμ � λ
∫

(c,a)
dμ for all c < a.

On the other hand, for x ∈ [a,b) , M−
μ f (x) > λ , then B(x) �= /0 . Let c∗ = infB(x) . We

claim that c∗ < a . This is trivial for the case x = a . For a < x < b , if c∗ � a then
c∗ ∈ [a,b) , M−

μ f (c∗) > λ and so there exists c1 ∈ B(c∗) . This implies∫
(c1,x]

| f |dμ =
∫

(c1,c∗]
| f |dμ +

∫
(c∗,x]

| f |dμ > λ
∫

(c1,c∗]
dμ + λ

∫
(c∗,x]

dμ = λ
∫

(c1,x]
dμ ,

a contradiction. Therefore we may choose c < a such that c ∈ B(x) . Hence∫
[a,x]

| f |dμ =
∫

(c,x]
| f |dμ −

∫
(c,a)

| f |dμ > λ
∫

(c,x]
dμ −λ

∫
(c,a)

dμ = λ
∫

[a,x]
dμ .

Let x → b− , we have
∫
[a,b) | f |dμ � λ

∫
[a,b) dμ .

Now we consider the case I = (a,b) for −∞ � a < b � ∞ . First assume that
a > −∞ . Since M−

μ f (a) � λ , we have∫
(c,a]

| f |dμ � λ
∫

(c,a]
dμ for all c < a.

For x ∈ (a,b) , M−
μ f (x) > λ and B(x) �= /0 . It is easy to see that c∗ = infB(x) � a . If

c∗ = a , then
∫
(a,x] | f |dμ � λ

∫
(a,x] dμ . If c∗ < a , then we may choose c ∈ (c∗,a) so

that
∫
(c,x] | f |dμ > λ

∫
(c,x] dμ . Hence∫

(a,x]
| f |dμ =

∫
(c,x]

| f |dμ −
∫
(c,a]

| f |dμ > λ
∫

(a,x]
dμ .

In both cases, let x → b− , we have
∫
(a,b) | f |dμ � λ

∫
(a,b) dμ . In the case a = −∞ , for

x ∈ (−∞,b) , M−
μ f (x) > λ and B(x) �= /0 . It is easy to verify that infB(x) = −∞ and

hence
∫
(−∞,x] | f |dμ � λ

∫
(−∞,x] dμ . Let x→ b− , we have

∫
(−∞,b) | f |dμ � λ

∫
(−∞,b) dμ .

We have proved that (2.2) holds for each interval I ∈ {Ii} . Therefore∫
{x|M−

μ f (x)>λ}
| f |dμ =

∞

∑
i=1

∫
Ii
| f |dμ � λ

∞

∑
i=1

∫
Ii
dμ = λ

∫
{x|M−

μ f (x)>λ}
dμ

and we have (2.1) . �

The proof of Theorem 2.2 is standard and is similar to that given in [15, Theorem
21.76].
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THEOREM 2.2. Let 1 < p < ∞ . Then

‖M−
μ f‖p,μ � p∗‖ f‖p,μ . (2.3)

Proof of Theorem 2.2. We may assume that f is nonnegative and
∫
R

f pdμ < ∞ .
We first show that

∫
R
(M−

μ f )pdμ < ∞ . Write f = fa + f a for a � 0, where

fa(x) =

{
f (x), if 0 � f (x) � a,

a, if f (x) > a,
and f a(x) = f (x)− fa(x).

For any λ > 0, choose a = λ/2, then

M−
μ f (x) � M−

μ ( f λ/2)(x)+M−
μ ( fλ/2)(x) � M−

μ ( f λ/2)(x)+
λ
2

.

Thus by (2.1) we have∫
{x|M−

μ f (x)>λ}
dμ �

∫
{x|M−

μ ( f λ/2)(x)>λ/2}
dμ

� 2
λ

∫
{x|M−

μ ( f λ/2)(x)>λ/2}
f λ/2(x)dμ � 2

λ

∫
{x| f (x)>λ/2}

f (x)− λ
2

dμ .

This implies

∫
R

M−
μ f (x)pdμ = p

∫ ∞

0
λ p−1

(∫
{x|M−

μ f (x)>λ}
dμ

)
dλ

� p
∫ ∞

0
2λ p−2

(∫
{x| f (x)>λ/2}

f (x)− λ
2

dμ
)

dλ

�2p
∫

R

(∫ 2 f (x)

0
λ p−2dλ

)
f (x)dμ = 2pp∗

∫
R

f (x)pdμ < ∞.

Therefore by Lemma 2.1,

‖M−
μ f‖p

p,μ � p
∫ ∞

0
λ p−2

(∫
{x|M−

μ f (x)>λ}
f (x)dμ

)
dλ

= p
∫

R

(∫ M−
μ f (x)

0
λ p−2dλ

)
f (x)dμ = p∗

∫
R

M−
μ f (x)p−1 f (x)dμ

� p∗‖M−
μ f‖p/p∗

p,μ ‖ f‖p,μ

and this leads us to (2.3) . �
Let φ and ψ be nonnegative Borel functions defined on D such that φ(x, ·) and

ψ(x, ·) are locally μ− integrable for each x ∈ R . The following lemma gives a point-
wise estimate of M−

φ ,μ f (x) in terms of M−
ψ,μ f (x) .
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LEMMA 2.3. If φ = ψh, and h(x, ·) is nondecreasing and left continuous on
(−∞,x] for each x ∈ R , then

M−
φ ,μ f (x) � M−

ψ,μ f (x). (2.4)

Proof of Lemma 2.3. Let Λh(x,·) be the Lebesgue-Stieltjes measure on (−∞,x]
generated by h(x, ·) defined by Λh(x,·)([a,b)) = h(x,b)− h(x,a) for a < b � x . Let
a < x . Then h(x, t) = h(x,a)+

∫
[a,t) dΛh(x,·) for all a < t � x . By Fubini’s Theorem we

see that∫
(a,x]

φ(x, t)| f (t)|dμ(t)

=h(x,a)
∫

(a,x]
ψ(x,t)| f (t)|dμ(t)+

∫
[a,x)

(∫
(s,x]

ψ(x,t)| f (t)|dμ(t)
)

dΛh(x,·)

�
{

h(x,a)
∫

(a,x]
ψ(x,t)dμ(t)+

∫
[a,x)

(∫
(s,x]

ψ(x,t)dμ(t)
)

dΛh(x,·)

}
M−

ψ,μ f (x)

=
(∫

(a,x]
φ(x, t)dμ(t)

)
M−

ψ,μ f (x).

Therefore we have

1∫
(a,x] φ(x,t)dμ(t)

∫
(a,x]

φ(x,t)| f (t)|dμ(t) � M−
ψ,μ f (x)

and this implies (2.4) . �

The following Corollary 2.4 can be obtained by Lemma 2.3 with the case ψ ≡ 1
and Theorem 2.2.

COROLLARY 2.4. Let 1 < p < ∞ . Suppose that φ(x, ·) is nondecreasing and left
continuous on (−∞,x] for each x ∈ R . Then

‖M−
φ ,μ f‖p,μ � p∗‖ f‖p,μ . (2.5)

By a limiting process, we have Corollary 2.5.

COROLLARY 2.5. Let 0 < p < ∞ and let φ be given as in Corollary 2.4. Then

‖T f‖p,μ � e1/p‖ f‖p,μ , T = G−
φ ,μ , G−∗

φ ,μ . (2.6)

Proof of Corollary 2.5. Since for any ε > 0,

G−
φ ,μ f (x) = {G−

φ ,μ(| f |ε )(x)}1/ε � {M−
φ ,μ(| f |ε )(x)}1/ε ,

we have
‖G−

φ ,μ f‖p,μ � ‖M−
φ ,μ(| f |ε )‖1/ε

p/ε,μ � {(p/ε)∗}1/ε‖ f‖p,μ
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for any 0 < ε < p . By letting ε ↘ 0 we obtain

‖G−
φ ,μ f‖p,μ � e1/p‖ f‖p,μ .

On the other hand,
G−∗

φ ,μ f (x) = lim
ε↘0

{M−
φ ,μ(| f |ε )(x)}1/ε ,

and therefore

‖G−∗
φ ,μ f‖p,μ � liminf

ε↘0
‖M−

φ ,μ(| f |ε )‖1/ε
p/ε,μ � liminf

ε↘0
{(p/ε)∗}1/ε‖ f‖p,μ = e1/p‖ f‖p,μ . �

3. Inequalities for integral operators

In this section we consider norm inequalities for integral operators Tφ ,μ and Tψ,μ .
We restrict the domain of kernels φ and ψ to the set D+ . Since Tφ ,μ f (x) � M−

φ ,μ f (x)
for f � 0 and Corollary 2.4 still holds if we set ‖ f‖p,μ = (

∫
(0,∞) | f |pdμ)1/p , we see

that if φ(x, ·) is nondecreasing and left continuous on (0,x] for each x > 0, then for
1 < p < ∞ ,

‖Tφ ,μ f‖p,μ � p∗‖ f‖p,μ . (3.1)

In [28], Persson et al. considered the following inequality with two measures

‖Tφ ,μ f‖q,η � C‖ f‖p,μ . (3.2)

They showed that if φ(x, ·) is nonincreasing on (0,x] , then for 1 � p < ∞ and 0 < q <
∞ , inequality (3.2) holds for all f � 0 if and only if it holds for all 0 � f ↓ . Moreover,
by [28, Theorem 2.14] we see that if φ satisfies some suitable conditions, then (3.2)
holds for all f � 0 if and only if

‖ f‖q,η � A‖ f‖p,μ for all 0 � f ↓ . (3.3)

The idea of the proof of [28, Theorem 2.14] can be applied to prove inequalities of
the form (1.3) with three measures. By the proof of Lemma 2.3 we have a pointwise
estimate of Tφ ,μ f (x) for 0 � f ↓ in terms of Tψ,μ f (x) .

LEMMA 3.1. Let φ = ψh, and h(x, ·) is nondecreasing and left continuous on
(0,x] for each x > 0 . Then

Tφ ,μ f (x) � Tψ,μ f (x) for all 0 � f ↓ .

The following Theorem 3.2 shows that if we can establish one of the following
inequalities

‖Tψ,μ f‖p,ν � C1‖ f‖p,ν for all 0 � f ↓ ; (3.4)

‖Tψ,μ f‖q,η � C1‖ f‖q,η for all 0 � f ↓ , (3.5)

then we have a simple condition for (1.3) to hold for all 0 � f ↓ .



NORM INEQUALITIES FOR SOME ONE-SIDED OPERATORS 543

THEOREM 3.2. Let 0 < p,q < ∞ and let φ and ψ be given as in Lemma 3.1.
Suppose that 0 � Tψ,μ f ↓ for all 0 � f ↓ . If (3.4) or (3.5) holds, then

‖Tφ ,μ f‖q,η � C‖ f‖p,ν for all 0 � f ↓ (3.6)

if and only if
‖ f‖q,η � A‖ f‖p,ν for all 0 � f ↓ . (3.7)

Moreover, we have A � C � AC1 .

Proof of Theorem 3.2. Since Tφ ,μ f (x) � f (x) for all 0 � f ↓ , by Lemma 3.1 we
see that

‖ f‖q,η � ‖Tφ ,μ f‖q,η � ‖Tψ,μ f‖q,η , 0 � f ↓ .

If (3.6) holds then
‖ f‖q,η � C‖ f‖p,ν for all 0 � f ↓ .

Conversely, suppose that (3.7) holds. If (3.4) is satisfied, then

‖Tφ ,μ f‖q,η � A‖Tψ,μ f‖p,ν � AC1‖ f‖p,ν .

If (3.5) is satisfied, then

‖Tφ ,μ f‖q,η � C1‖ f‖q,η � AC1‖ f‖p,ν . �

In [28] Persson et al. showed that 0 � Tψ,μ f ↓ for all 0 � f ↓ if and only if
Ψ(x,r)/Ψ(x,x) is nonincreasing in x when x � r , where Ψ(x,r) =

∫
(0,r] ψ(x,t)dμ(t)

for 0 < r � x . By [33] it is known that for 0 < p � q < ∞ ,

sup
0� f↓

‖ f‖q,η

‖ f‖p,ν
= sup

r>0

‖χ(0,r]‖q,η

‖χ(0,r]‖p,ν
, (3.8)

and for 0 < q < p < ∞ and 1/r = 1/q−1/p ,

sup
0� f↓

‖ f‖q,η

‖ f‖p,ν
≈

⎧⎨
⎩
∫

(0,∞)

(∫
[x,∞)

1∫
(0,t] dν

dη

)r/q

dν

⎫⎬
⎭

1/r

. (3.9)

In general, it is not easy to prove (3.6) . Theorem 3.2 shows that if μ , ν satisfy
(3.4) or μ , η satisfy (3.5) , then we have simple characterizations (3.8)− (3.9) for
(3.6) to hold. By [33, Theorem 1.1], we see that in the case ψ ≡ 1 and 1 < p < ∞ ,
‖Tψ,μ f‖p,μ � p∗‖ f‖p,μ holds for all f � 0. This implies the following corollary.

COROLLARY 3.3. Suppose that φ(x, ·) is nondecreasing and left continuous on
(0,x] for each x > 0 . Then for 1 < p < ∞ , 0 < q < ∞ , and ν = μ , inequalities
(3.6) and (3.7) are equivalent with A � C � p∗A. Similarly, (3.6) and (3.7) are also
equivalent with A � C � q∗A in the case 0 < p < ∞ , 1 < q < ∞ , and η = μ .

By [3, Theorem (1.7)], we see that in the case ψ ≡ 1 and dμ = dx , inequality
(3.4) holds if 1 � p < ∞ and dν = vdx , where v ∈ Bp , and (3.5) holds if 1 � q < ∞
and dη = udx , where u ∈ Bq . Hence we have Corollary 3.4.
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COROLLARY 3.4. Suppose that dμ = dx and φ(x, ·) is nondecreasing and left
continuous on (0,x] for each x > 0 . Then (3.6) and (3.7) are equivalent in the fol-
lowing cases.

(i) 1 � p < ∞ , 0 < q < ∞ , dν = vdx , where v ∈ Bp .

(ii) 0 < p < ∞ , 1 � q < ∞ , dη = udx , where u ∈ Bq .

Several equivalent characterizations on Bp -weights can be found in [9] and [12].
In particular, any nonincreasing weight belongs to class Bp for 1 < p < ∞ . Several
known results (see [2], [3], [7], [19], and [26]) can also be applied to established (3.6) .

Let g be a positive function defined on (0,∞) such that 0 < G(x) =
∫ x
0 g(t)dt < ∞

for all x > 0. Define

Hg f (x) =
1

G(x)

∫ x

0
g(t) f (t)dt.

In the following corollary we consider the case that φ(x, ·)/g is nondecreasing and left
continuous on (0,x] for each x > 0. We choose ψ(x, t) = g(t) and then 0 � Tψ f =
Hg f ↓ for all 0 � f ↓ . By Theorem 3.2 and [2, Theorem 3] we have Corollary 3.5.

COROLLARY 3.5. Let 0 < p,q < ∞ . Let g be given as above and u, v be weights.
Suppose that φ(x, ·)/g is nondecreasing and left continuous on (0,x] for each x > 0 .
If

sup
r>0

‖Hgχ(0,r]‖q,u

‖χ(0,r]‖q,u
< ∞ or sup

r>0

‖Hgχ(0,r]‖p,v

‖χ(0,r]‖p,v
< ∞,

then (3.6) and (3.7) are equivalent for dμ = dx , dη = udx , and dν = vdx .

Now consider the case that ψ is homogeneous of degree −1 and
∫ 1
0 ψ(1,y)dy <

∞ . Then 0 � Tψ f ↓ for all 0 � f ↓ . By [20, Theorem 1] and Theorem 3.2, we have the
following corollary.

COROLLARY 3.6. Let 0 < p,q < ∞ and u, v be weights. Let φ and ψ be given
as in Lemma 3.1, and let ψ be homogeneous of degree −1 such that

∫ 1
0 ψ(1,y)dy < ∞ .

(i) If q � 1 , dμ = dx , dη = udx , where u satisfies u(ab) � u(a)u(b) for all a,b >

0 , and
∫ 1
0 ψ(1,y)y−1/qu(y−1)1/qdy < ∞ , then (3.6) and (3.7) are equivalent

and we have A � C � A
∫ 1
0 ψ(1,y)y−1/qu(y−1)1/qdy.

(ii) If p � 1 , dμ = dx , dν = vdx , where v satisfies v(ab)� v(a)v(b) for all a,b> 0 ,
and

∫ 1
0 ψ(1,y)y−1/pv(y−1)1/pdy < ∞ , then (3.6) and (3.7) are equivalent and

we have A � C � A
∫ 1
0 ψ(1,y)y−1/pv(y−1)1/pdy.

The following corollary considers the case that φ(x, ·) is nonincreasing for each
x > 0, and it can be obtained by Theorem 3.2 and [28, Theorem 2.3].

COROLLARY 3.7. Let 1 � p < ∞ and 0 < q < ∞ . Let φ and ψ be given as in
Lemma 3.1. Suppose that φ(x, ·) is nonincreasing for each x > 0 and 0 � Tψ,μ f ↓ for
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all 0 � f ↓ . If (3.4) for ν = μ or (3.5) is satisfied, then (3.2) holds for all f � 0 if
and only if (3.3) holds. Moreover, we have A � C � AC1 .

In the followingwe extend Theorem P(v) from H to more general integral operator
Tφ . Consider the condition:

B1Φ(x, t)Φ(t,r) � Φ(x,r) � B2Φ(x,t)Φ(t,r), 0 < r � t � x. (3.10)

Here B1 and B2 are positive constants and Φ(x,r) =
∫ r
0 φ(x,t)dt , 0 < r � x . If φ

satisfies the right-hand inequality of (3.10) and 0 � Tφ f ↓ for all 0 � f ↓ , then Lai [19,
Theorem 3.1] showed that for 1 � p < ∞ , inequality (1.5) and (1.6) are equivalent in

the cases p = q , u = v , T1 = Tφ , and T2 = I . Moreover, we have B � C � B
qBq(q−1)

2 .
The method of the proof used in [19, Theorem 3.1] can be applied to prove Theorem
3.8.

THEOREM 3.8. Let 1 � p � q < ∞ and u, v be weights. If (3.10) is satisfied
and 0 � Tφ f ↓ for all 0 � f ↓ , then

‖Tφ f‖q,u � C‖Tφ f‖p,v for all 0 � f ↓ (3.11)

if and only if

B = sup
r>0

‖Tφ χ(0,r]‖q,u

‖Tφ χ(0,r]‖p,v
< ∞. (3.12)

Moreover, we have B � C � (B2/B1)1/q∗
B .

Proof of Theorem 3.8. If (3.11) holds, then by choosing f (x) = χ(0,r](x) for r >
0, we have (3.12) with B � C . Conversely, suppose that (3.12) holds. Then

∫ r

0
Φ(x,x)qu(x)dx+

∫ ∞

r
Φ(x,r)qu(x)dx

�B
q
{∫ r

0
Φ(x,x)pv(x)dx+

∫ ∞

r
Φ(x,r)pv(x)dx

}q/p

.

Let r = g(y) , where g is a nonincreasing homeomorphism. Then

L ≡
∫ ∞

0

{∫ g(y)

0
Φ(x,x)qu(x)dx+

∫ ∞

g(y)
Φ(x,g(y))qu(x)dx

}
dy (3.13)

� B
q
∫ ∞

0

{∫ g(y)

0
Φ(x,x)pv(x)dx+

∫ ∞

g(y)
Φ(x,g(y))pv(x)dx

}q/p

dy ≡ B
qR.

Since a general monotone function can be approximated by homeomorphisms, we may
suppose that 0 � f ↓ is a homeomorphism when proving (3.11) . Note also that (3.10)
implies

B1Φ(x, t)
∫ t

0
φ(t,y) f (y)dy �

∫ t

0
φ(x,y) f (y)dy � B2Φ(x, t)

∫ t

0
φ(t,y) f (y)dy.
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Choose g so that g−1(t) = Tφ f (t)q−1 f (t) . The proof of [19, Theorem 3.1] shows that

L � B1−q
2 ‖Tφ f‖q

q,u.

On the other hand, since p � q , by Minkowski’s inequality we see that

Rp/q �
∫ ∞

0

{∫ ∞

0

(
χ(0,g(y))(x)Φ(x,x)p + χ(g(y),∞)(x)Φ(x,g(y))p)q/p

v(x)q/pdy

}p/q

dx

=
∫ ∞

0

{∫ g−1(x)

0
Φ(x,x)qdy+

∫ ∞

g−1(x)
Φ(x,g(y))qdy

}p/q

v(x)dx.

Follow the proof of [19, Theorem 3.1] we have

Rp/q �
∫ ∞

0

{
q
∫ x

0
g−1(t)Φ(x,t)q−1φ(x, t)dt

}p/q

v(x)dx.

By the choice of g−1(t) we have

Rp/q �
∫ ∞

0

{
q
∫ x

0
Tφ f (t)q−1 f (t)Φ(x,t)q−1φ(x,t)dt

}p/q

v(x)dx

� B−p/q∗
1

∫ ∞

0

{
q
∫ x

0

(∫ t

0
φ(x,y) f (y)dy

)q−1

φ(x, t) f (t)dt

}p/q

v(x)dx

= B−p/q∗
1

∫ ∞

0

(∫ x

0
φ(x,t) f (t)dt

)p

v(x)dx = B−p/q∗
1 ‖Tφ f‖p

p,v.

Hence B1−q
2 ‖Tφ f‖q

q,u � B
qB−q/q∗

1 ‖Tφ f‖q
p,v . This implies

‖Tφ f‖q,u � B−1/q∗
1 B1/q∗

2 B‖Tφ f‖p,v. �

By Theorem P(i) we see that for 0 < p � 1 � q < ∞ , inequality (3.11) and (3.12)
are equivalent and B = C . Hence by Theorem 3.8 and Theorem P(i) we have (3.11) if
and only if (3.12) holds for 0 < p � q < ∞ .

Consider the case Tφ = Hg , where φ(x,t) = g(t) . Then (3.10) is satisfied with
B1 = B2 = 1 and 0 � Hg f ↓ for all 0 � f ↓ . We have Corollary 3.9.

COROLLARY 3.9. Let 0 < p � q < ∞ . Then

sup
0� f↓

‖Hg f‖q,u

‖Hg f‖p,v
= sup

r>0

‖Hgχ(0,r]‖q,u

‖Hgχ(0,r]‖p,v
.

Corollary 3.9 extends Theorem P(v) from H to Hg . On the other hand, if φ is
homogeneous of degree −1, then 0 � Tφ f ↓ for all 0 � f ↓ and (3.10) is reduced to

B1Φ(1,s1)Φ(1,s2) � Φ(1,s1s2) � B2Φ(1,s1)Φ(1,s2), 0 < s1,s2 � 1. (3.14)

The following corollary can also be obtained by Theorem 3.8 and Theorem P(i).
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COROLLARY 3.10. Let 0 < p � q < ∞ and let φ be homogeneous of degree −1
such that 0 < Φ(1,1) < ∞ . If (3.14) is satisfied for some constants B1 and B2 , then
(3.11) and (3.12) are equivalent.

Putting Lemma 3.1 and Theorem 3.8 together yield a comparison of ‖Tφ f‖q,u and
‖Tψ f‖p,v .

COROLLARY 3.11. Let 1 � p � q < ∞ and u, v be weights. Let φ and ψ be
given as in Lemma 3.1. Suppose that ψ satisfies (3.10) , and 0 � Tψ f ↓ for all 0 � f ↓ .
If

B1 = sup
r>0

‖Tψ χ(0,r]‖q,u

‖Tψ χ(0,r]‖p,v
< ∞,

then we have

‖Tφ f‖q,u � (B2/B1)1/q∗
B1‖Tψ f‖p,v for all 0 � f ↓ . (3.15)
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