
Mathematical
Inequalities

& Applications

Volume 16, Number 2 (2013), 549–555 doi:10.7153/mia-16-40

AN APPROXIMATION PROPERTY OF POWER FUNCTIONS

SOON-MO JUNG, YANG-HI LEE AND KI SOO KIM

Abstract. We will solve the inhomogeneous linear first order differential equation of the form,
xy′(x) + λy(x) = ∑∞

m=0 am(x− c)m , and prove an approximation property of power functions.
More precisely, we prove the local Hyers-Ulam stability of linear first order differential equation,
xy′(x)+λy(x) = 0 , in a special class of analytic functions.
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