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AN APPROXIMATION PROPERTY OF POWER FUNCTIONS

SOON-MO JUNG, YANG-HI LEE AND KI SOO KIM

(Communicated by J. Pečarić)

Abstract. We will solve the inhomogeneous linear first order differential equation of the form,
xy′(x) + λy(x) = ∑∞

m=0 am(x− c)m , and prove an approximation property of power functions.
More precisely, we prove the local Hyers-Ulam stability of linear first order differential equation,
xy′(x)+λy(x) = 0 , in a special class of analytic functions.

1. Introduction

Let Y and I be a normed space and an open subinterval of R , respectively. If for
any function f : I → Y satisfying the differential inequality∥∥an(x)y(n)(x)+an−1(x)y(n−1)(x)+ · · ·+a1(x)y′(x)+a0(x)y(x)+h(x)

∥∥ � ε

for all x ∈ I and for some ε � 0, there exists a solution f0 : I → Y of the differential
equation

an(x)y(n)(x)+an−1(x)y(n−1)(x)+ · · ·+a1(x)y′(x)+a0(x)y(x)+h(x) = 0

such that ‖ f (x)− f0(x)‖ � K(ε) for any x ∈ I , where K(ε) depends on ε only, then
we say that the above differential equation satisfies the Hyers-Ulam stability (or the
local Hyers-Ulam stability if the domain I is not the whole space R). We may apply
these terminologies for other differential equations. For more detailed definition of the
Hyers-Ulam stability, refer to [2, 4, 8].

Obłoza seems to be the first author who investigated the Hyers-Ulam stability of
linear differential equations (see [11, 12]). Here, we introduce a result of Alsina and Ger
(see [1]): If a differentiable function f : I →R is a solution of the differential inequality
|y′(x)− y(x)| � ε , where I is an open subinterval of R , then there exists a solution
f0 : I → R of the differential equation y′(x) = y(x) such that | f (x)− f0(x)| � 3ε for
any x ∈ I .

This result of Alsina and Ger was generalized by Takahasi, Miura and Miyajima:
They proved in [14] that the Hyers-Ulam stability holds for the Banach space valued
differential equation y′(x) = λy(x) (see also [10]). For a recent result on the Hyers-
Ulam stability for second-order linear differential equations, we refer to [3].
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Using the conventional power series method, the author investigated the general
solution of the inhomogeneous Hermite differential equation of the form

y′′(x)−2xy′(x)+2λy(x) =
∞

∑
m=0

amxm

under some specific condition, where λ is a real number and the convergence radius
of the power series is positive. This result was applied for proving that every analytic
function can be approximated in a neighborhood of 0 by a Hermite function with an
error bound expressed by Cx2ex2

(see [5, 6]).
In §2 of this paper, using an idea from [7], we will investigate the general solution

of the inhomogeneous linear differential equation of the first order,

xy′(x)+ λy(x) =
∞

∑
m=0

am(x− c)m, (1.1)

under the conditions that λ is a complex number with n−1 < |λ | � n , the coefficients
am of the power series are given such that the radius of convergence is at least ρ > 0,
and c is a real number satisfying |c| � max

{
ρ , 1

2(n + 1)
}

. Moreover, we prove the
local Hyers-Ulam stability of linear first order differential equation in a class of special
analytic functions (see the class CK in §3).

2. General solution of Eq. (1.1)

The linear first order differential equation

xy′(x)+ λy(x) = 0 (2.1)

is one of the most famous differential equations and frequently appears in applications.
As we know, every solution of Eq. (2.1) is called a power function and it has the
form y(x) = αx−λ (for x �= 0). We note that x = 0 is a regular singular point of the
differential equation (2.1).

THEOREM 2.1. Let c, n , and λ be a real number, a positive integer, and a com-
plex number, respectively. Assume that |c| � 1

2(n+ 1) , n− 1 < |λ | � n, and that the
radius of convergence of power series ∑∞

m=0 am(x− c)m is at least ρ > 0 . Let us define

I =

⎧⎪⎨
⎪⎩

(c−ρ ,c+ ρ) (for c+ ρ � 0 or c−ρ � 0),
(2c,0) (for c < 0 and c+ ρ > 0),
(0,2c) (for c > 0 and c−ρ < 0).

Every solution y : I → C of the inhomogeneous differential equation (1.1) can be ex-
pressed by

y(x) = yh(x)+
∞

∑
m=1

bm(x− c)m, (2.2)
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where the coefficients bm’s are defined by

bm =
m−1

∑
i=0

(−1)m−i−1i!
m!cm−i ai

m−i−1

∏
j=1

(m− j + λ ) (2.3)

for every m ∈ N and yh(x) is a solution of the corresponding homogeneous differential
equation (2.1) .

Proof. Since each solution of Eq. (1.1) can be expressed as a power series in x−c ,
we may define yp(x) = y(x)− yh(x) = ∑∞

m=1 bm(x− c)m and prove that the function
yp(x) satisfies the inhomogeneous equation (1.1). Indeed, it follows from (2.3) that

xy′p(x)+ λyp(x) = (x− c)y′p(x)+ cy′p(x)+ λyp(x)

=
∞

∑
m=1

[
(m+ λ )bm + c(m+1)bm+1

]
(x− c)m + cb1

=
∞

∑
m=0

am(x− c)m

for all x ∈ I , since the relations

cb1 = a0 and (m+ λ )bm + c(m+1)bm+1 = am

hold for all m ∈ N . (It is not difficult to prove the last relations by using (2.3).) This
implies that yp(x) is a particular solution of the inhomogeneous equation (1.1). Since
every solution of Eq. (1.1) is a sum of a solution yh(x) of the corresponding homoge-
neous equation and a particular solution yp(x) of the inhomogeneous equation, it can
be obtained by (2.2).

Since |c| � 1
2(n+1) , it holds that

m+n− k−1
|c|(m− k)

� 2
n+1

(
1+

n−1
m− k

)
� 2

n+1

(
1+

n−1
2

)
= 1

for each k ∈ {0,1,2, . . . ,m−2} . Furthermore, since |λ | � n , we have

i!
m!|c|m−i

m−i−1

∏
j=1

|m− j + λ | =
|m−1+ λ |

|c|m · |m−2+ λ |
|c|(m−1)

· · · |i+1+ λ |
|c|(i+2)

· 1
|c|(i+1)

� 1
|c|(i+1)

m−i−2

∏
k=0

m+n− k−1
|c|(m− k)

(2.4)

� 1

for any i ∈ {0,1,2, . . . ,m−1} . Thus, we get

|bm| �
m−1

∑
i=0

|ai| i!
m!|c|m−i

m−i−1

∏
j=1

|m− j + λ |�
m−1

∑
i=0

|ai| (2.5)
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for all m ∈ N .
Finally, it follows from (2.5) and [9, Problem 8.8.1 (p)] that

limsup
m→∞

m
√
|bm| = limsup

m→∞

m

√
1
m
|bm|

� limsup
m→∞

m

√
1
m

m−1

∑
i=0

|ai|

� limsup
m→∞

m
√
|am|.

By use of the Cauchy-Hadamard theorem (see [9, Theorem 8.8.2]), the radius of con-
vergence of the power series for yp(x) is at least ρ . Therefore, y(x) in Eq. (2.2) is well
defined on I . �

3. Local Hyers-Ulam stability of Eq. (2.1)

In this section, let c and λ be a fixed nonzero real number and a nonzero complex
number, respectively. Assume that ρ , ρ1 , and ρ2 are given constants satisfying 0 <
ρ1 < ρ and ρ2 = min{ρ1,1} . For a given K � 0, we denote by CK the set of all
functions f : I → C with the properties (a) and (b):

(a) f (x) is expressible by a power series ∑∞
m=0 bm(x− c)m whose radius of conver-

gence is at least ρ ;

(b) ∑∞
m=0 |amρm

1 |� K|∑∞
m=0 amρm

1 | , where am = (m+λ )bm +c(m+1)bm+1 for any
m ∈ {0,1,2, . . .} .

Now we investigate an approximation property of power functions. More pre-
cisely, we prove the local Hyers-Ulam stability of the linear first order differential
equation (2.1) for the functions in CK .

THEOREM 3.1. Given a positive integer n, let c and λ be a real number and a
complex number with |c| � max

{
ρ , 1

2(n+ 1)
}

and n− 1 < |λ | � n, respectively. Let
us define I = (c−ρ ,c+ρ) and I2 = (c−ρ2,c+ρ2) . If a function y ∈ CK satisfies the
differential inequality ∣∣xy′(x)+ λy(x)

∣∣ � ε (3.1)

for all x ∈ I and for some ε � 0 , then there exists a unique solution yh : I → C of the
differential equation (2.1) such that

∣∣y(x)− yh(x)
∣∣ � Kε

ρ2|x− c|
ρ2−|x− c|

for any x ∈ I2 . In particular, it holds that yh ∈ CK .
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Proof. Since y belongs to CK , it follows from (a) and (b) that

xy′(x)+ λy(x) = (x− c)y′(x)+ cy′(x)+ λy(x)

=
∞

∑
m=0

[
(m+ λ )bm + c(m+1)bm+1

]
(x− c)m (3.2)

=
∞

∑
m=0

am(x− c)m

for all x ∈ I . By considering (3.1) and (3.2), we have∣∣∣∣∣
∞

∑
m=0

am(x− c)m

∣∣∣∣∣ � ε

for any x ∈ I . If we substitute c+ ρ1 for x in the last inequality, then we obtain∣∣∣∣∣
∞

∑
m=0

amρm
1

∣∣∣∣∣ � ε.

This inequality, together with (b), yields that

∞

∑
m=0

∣∣amρm
1

∣∣ � K

∣∣∣∣∣
∞

∑
m=0

amρm
1

∣∣∣∣∣ � Kε. (3.3)

Obviously, it follows from (3.3) that

m−1

∑
i=0

|ai| =
m−1

∑
i=0

∣∣aiρ i
1

∣∣ 1

ρ i
1

�

⎧⎨
⎩

Kε
1

ρm−1
1

(for ρ1 � 1),

Kε (for ρ1 > 1).
(3.4)

Now, it follows from Theorem 2.1, (2.4), (3.2), and (3.4) that there exists a solution
yh : I → C of the differential equation (2.1) such that

∣∣y(x)− yh(x)
∣∣ =

∣∣∣∣∣
∞

∑
m=1

(−1)m(x− c)m
m−1

∑
i=0

(−1)i+1i!
m!cm−i ai

m−i−1

∏
j=1

(m− j + λ )

∣∣∣∣∣
�

∞

∑
m=1

|x− c|m
m−1

∑
i=0

|ai|

�

⎧⎪⎪⎨
⎪⎪⎩

Kε
ρ1|x− c|

ρ1−|x− c| (for ρ1 � 1),

Kε
|x− c|

1−|x− c| (for ρ1 > 1)

= Kε
ρ2|x− c|

ρ2−|x− c|
for all x ∈ I2 .
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Since there exists a complex number α with yh(x) = αx−λ , we can find the Taylor
series of yh(x) with center at c :

yh(x) =
∞

∑
m=0

bm(x− c)m

with

bm =
(−1)mαλ (λ +1)(λ +2) · · ·(λ +m−1)

m!cλ+m

for each m ∈ {0,1,2, . . .} . Then, we can estimate

lim
m→∞

∣∣∣∣∣ bm

bm+1

∣∣∣∣∣ = lim
m→∞

|c|(m+1)
|m+ λ | = |c| � ρ ,

which implies that the radius of convergence of the Taylor series of yh(x) is at least ρ .
Moreover, we have

am = (m+ λ )bm + c(m+1)bm+1 = 0

for any m ∈ {0,1,2, . . .} , i.e., (b) is true for the sequence {am} . Consequently, we
conclude that yh ∈ CK .

It only remains to prove the uniqueness of yh . Assume that y1,y2 : I → C are
solutions of the homogeneous differential equation (2.1) satisfying

∣∣y(x)− yi(x)
∣∣ � Kε

ρ2|x− c|
ρ2−|x− c| (i ∈ {1,2})

for all x∈ I2 . Then, for each i∈ {1,2} , there exists a complex number αi with yi(x) =
αix−λ . Hence, we obtain

∣∣α1x
−λ −α2x

−λ ∣∣ =
∣∣y1(x)− y2(x)

∣∣ � 2Kε
ρ2|x− c|

ρ2−|x− c|
for any x ∈ I2 . If we put x = c in the last inequality, then we get

|α1 −α2|
|c|λ = 0,

i.e., α1 = α2 , and hence we conclude that y1 ≡ y2 . �
In Theorem 3.1, |c| should be large when |λ | is large . It is an open problem

whether |c| can be chosen as small as we wish, even if |λ | is large.

COROLLARY 3.2. Given an n ∈ N , let c , λ , and ρ be a real number, a complex
number, and a positive constant with |c|� 1

2 (n+1) , n−1< |λ |� n, and ρ � 1
2(n+1) ,

respectively. If a function y ∈ CK satisfies the differential inequality (3.1) for all x ∈ I
and for some ε � 0 , where I = (c− ρ ,c + ρ) , then there exists a unique complex
number α such that ∣∣y(x)−αx−λ ∣∣ = O

(|x− c|)
as x → c.
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