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POLAROID AND p−∗−PARANORMAL OPERATORS

S. MECHERI AND N. L. BRAHA

(Communicated by J. Pečarić)

Abstract. In this paper we define the p−∗−paranormal operators and we show some properties
of this class of operators. We also prove that a p−∗−paranormal operator is polaroid and
we show a necessary and sufficient condition for the Riesz idempotent associated to a non-zero
isolated point of the spectrum of a p−∗−paranormal operator to be self-adjoint. Finally, we
show that generalized a-Weyl’s theorem holds for p−∗− paranormal operators and we present
some finite operators.

1. Introduction and preliminaries

Let us denote by H the complex Hilbert space and with B(H) the space of all
bounded linear operators defined in Hilbert space H. In the following we will mention
some known classes of operators defined in Hilbert space H . Let T be an operator in
B(H) . An operator is said to be positive (denoted T � 0) if (Tx,x) � 0 for all x ∈ H .
The operator T is said to be a p -hyponormal operator if and only if (T ∗T )p � (TT ∗)p

for a positive number p . In [31] is defined the class of log-hyponormal operators as fol-
lows: T is a log-hyponormal operator if it is invertible and satisfies the following rela-
tion logT ∗T � logTT ∗ . Class of p -hyponormal operators and class of log-hyponormal
operators were defined as extension class of hyponormal operators, i.e, T ∗T � TT ∗.
An operator T is said to be M -paranormal if M||T 2x|| � ||Tx||2, for every unit vector
x ∈ H (see [7]). An operator T is called M -hyponormal if it satisfies the following
relation: ||T ∗(x)|| � M||Tx|| (see [8]). An operator T belong to the class (M,k) (see
[16]) if it satisfies the following relation: T ∗kT k � (T ∗T )k, for k � 2 and T ∈ (M,k)∗
if T ∗kT k � (TT ∗)k, for k � 1. It is well known that every p -hyponormal operator is
a q - hyponormal operator for p � q > 0, by the Löwner-Heinz theorem “A � B � 0
ensures Aα � Bα for any α ∈ [0,1]”, and every invertible p -hyponormal operator is a
log-hyponormal operator since log is an operator monotone function. An operator T
is paranormal if ||T 2x|| � ||Tx||2. It is also well known that there exists a hyponormal
operator T such that T 2 is not a hyponormal operator (see [22]). In [18] authors, Fu-
ruta, Ito and Yamazaki introduced the A class of operators, respectively A(k) class of
operators defined as follows: for each k > 0, an operator T is A(k) class operator if

(
T ∗|T |2kT

) 1
k+1 � |T |2, (1)
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(for k = 1 it defines the A class operators) which includes the class of log-hyponormal
operators (see Theorem 2, in [18]) and is included in the class of paranormal operators,
in case where k = 1 (see Theorem 1 in [18]). In the same paper were introduced the
absolute-k-paranormal operators as follows: for each k > 0, an operator T is absolute-
k -paranormal operator if ∥∥∥|T |kTx

∥∥∥ � ||Tx||k+1, (2)

for every unit vector x ∈ H.
The A(k) class of operators is included in the absolute-k-paranormal operators for

any k > 0 (see Theorem 2 in [18]).

(
T ∗|T |2kT

) 1
k+1 � |T ∗|2, (3)

In case when k = 1 it defines the A∗ class operators. In paper [30] were introduced the
absolute-k∗ -paranormal class of operators as follows:

A(k∗)P = {T ∈ H : |||T |kTx|| � ||T ∗x||k+1,x ∈ H, ||x|| = 1}

for any k > 0. We will also show the behavior of the M −A(k∗)-class of operators
which is defined as follows: for each k > 0,M > 0 an operator T is M−A(k∗) class
operator if (

T ∗|T |2kT
) 1

k+1 � M|T ∗|2,
and absolute-k∗ -M -paranormal operators, if for each k > 0, M > 0

∥∥∥|T |kTx
∥∥∥ � M||T ∗x||k+1,

for every unit vector x ∈ H.
an operator T is said to be p−∗−paranormal if,

|||T |pU |T |px|| · ||x|| � |||T |pU∗x||2, (4)

for every vector x ∈ H, where T = U |T | is polar decomposition of the operator T .
It easy to see that by relation (4) is defined a class of operators which is extension of
the ∗− paranormal operators (for p = 1) (see [6], [5]). If T ∈ B(H ) , we shall write
N(T ) and R(T ) for the null space and the range of T , respectively. Also, let σ(T ) and
σa(T ) denote the spectrum and the approximate point spectrum of T , respectively. An
operator T is called Fredholm if R(T ) is closed, α(T ) = dimN(T ) < ∞ and β (T ) =
dimH /R(T ) < ∞ . Moreover if i(T ) = α(T )−β (T ) = 0, then T is called Weyl. The
essential spectrum σe(T ) and the Weyl spectrum σW (T ) are defined by

σe(T ) = {λ ∈ C : T −λ is not Fredholm}

and
σW (A) = {λ ∈ C : A−λ is not Weyl},
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respectively. It is known that σe(T ) ⊂ σW (T ) ⊂ σe(T )∪ acc σ(T ) where we write
acc K for the set of all accumulation points of K ⊂ C . If we write iso K = K \ acc K ,
then we let

π00(T ) = {λ ∈ iso σ(T ) : 0 < α(T −λ ) < ∞}.
We say that Weyl’s theorem holds for T if

σ(T )\σW (T ) = π00(T ).

The operator T is called Browder if is Fredholm of finite ascent and descent. The
Browder spectrum of T is given by σb(T ) = {λ ∈ C : T −λ is notBrowder} . We say
that Browder’s theorem holds for T if

σ(T )\w(T ) = p00(T ).

In [35], H. Weyl proved that Weyl’s theorem holds for hermitian operators. Weyl’s
theorem has been extended from hermitian operators to hyponormal operators [15],
algebraically hyponormal operators [23], p -hyponormal operators [14]and quasi-∗ -
class A [38].

More generally, M. Berkani investigated generalized Weyl’s theorem which ex-
tends Weyl’s theorem, and proved that generalized Weyl’s theorem holds for hyponor-
mal operators ([10, 11, 12]). In a recent paper [25] the author showed that generalized
Weyl’s theorem holds for (p,k)-quasi-hyponormal operators. Recently, X. Cao, M.
Guo and B. Meng [13] proved Weyl type theorems for p -hyponormal operators. M.
Berkani investigated B-Fredholm theory as follows (see [1, 10, 11, 12]). An operator
T is called B-Fredholm if there exists n∈ N such that R(Tn) is closed and the induced
operator

T[n] : R(Tn) � x → Tx ∈ R(Tn)

is Fredholm, i.e., R(T[n]) = R(Tn+1) is closed, α(T[n]) = dimN(T[n]) < ∞ and β (T[n]) =
dimR(Tn)/R(T[n]) < ∞ . Similarly, a B-Fredholm operator T is called B-Weyl if
i(T[n]) = 0. The following results is due to M. Berkani and M. Sarih [12].

PROPOSITION 1.1. Let T ∈ B(H ) .
(1) If R(Tn) is closed and T[n] is Fredholm, then R(Tm) is closed and T[m] is

Fredholm for every m � n. Moreover, ind T[m] = ind T[n](= ind T ) .
(2) An operator T is B-Fredholm (B-Weyl) if and only if there exist T -invariant

subspaces M and N such that T = T |M ⊕T |N where T |M is Fredholm (Weyl)
and T |N is nilpotent.

The B-Weyl spectrum σBW (T ) are defined by

σBW (T ) = {λ ∈ C : T −λ is not B-Weyl} ⊂ σW (T ).

We say that generalized Weyl’s theorem holds for T if

σ(T )\σBW (T ) = E(T )
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where E(T ) denotes the set of all isolated points of the spectrum which are eigenvalues
(no restriction on multiplicity). Note that, if the generalized Weyl’s theorem holds for
T , then so does Weyl’s theorem [11]. Recently in [10] M. Berkani and A. Arroud
showed that if T is hyponormal, then generalized Weyl’s theorem holds for T .

We define T ∈ SF−
+ if R(T ) is closed, dimN(T ) < ∞ and ind T � 0. Let πa

00(T )
denote the set of all isolated points λ of σa(T ) with 0 < dimker(T − λ ) < ∞ . Let
σSF−

+
(T ) = {λ | T −λ 	∈ SF−

+ } ⊂ σW (T ) . We say that a-Weyl’s theorem holds for T if

σa(T )\σSF−
+

(T ) = πa
00(T ).

V. Rakočević [32, Corollary 2.5] proved that if a-Weyl’s theorem holds for T , then
Weyl’s theorem holds for T .

It is easily seen that quasi-nilpotent operators do not satisfy a-Weyl’s theorem, in
general. For instance, if

T (x1,x2, · · ·) = (0,
x2

2
,
x3

3
, · · ·), (xn) ∈ l2(N ).

then T is quasi-nilpotent but a-Weyl’s theorem fails for T , since σ(T ) = σa(T ) =
σSF+− (T ) = {0} = πa

00(T ) .
We define T ∈ SBF−

+ if there exists a positive integer n such that R(Tn) is closed,
T[n] : R(Tn) � x → Tx ∈ R(Tn) is upper semi-Fredholm (i.e., R(T[n]) = R(Tn+1) is
closed, dimN(T[n]) = dimN(T )∩R(Tn) < ∞) and 0 � ind T[n](= ind T ) ([12]). We
define σSBF−

+
(T ) = {λ | T −λ 	∈ SBF−

+ } ⊂ σSF−
+

(T ) . Let Ea(T ) denote the set of all

isolated points λ of σa(T ) with 0 < dimker(T −λ ) . We say that generalized a-Weyl’s
theorem holds for T if

σa(T )\σSBF−
+

(T ) = Ea(T ).

M. Berkani and J.J. Koliha [11] proved that if generalized a-Weyl’s theorem holds for
T , then a-Weyl’s theorem holds for T .

Let μ be an isolated point of the spectrum of T . Then the Riesz idempotent E of
T with respect to μ is defined by

E :=
1

2π i

∫
∂D

(μI−T )−1dμ ,

where D is a closed disk centered at μ which contains no other points of the spectrum
of T . In [33], Stampfli showed that if T satisfies the growth condition G1 , then E is
self-adjoint and E(H) = N(T − μ) . Recently, Jeon and Kim [24] and A. Uchiyama
[34] obtained Stampfli’s result for quasi-class A operators and paranormal operators.
In general even though T is a paranormal operator, the Riesz idempotent E of T with
respect to μ ∈ isoσ(T ) is not necessary self-adjoint.

In this paper we show some properties of p−∗−paranormal operators. We also
prove that a p−∗−paranormal operator is polaroid and we show a necessary and suf-
ficient condition for the Riesz idempotent associated to a non-zero isolated point of the
spectrum of a p−∗−paranormal operator to be self-adjoint. Finally, We show that
generalized a-Weyl’s theorem holds for p−∗− paranormal operators and we present
some finite operators.
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2. p−∗− paranormal operators

In this section we will show the behavior of the class p−∗− paranormal operators.

LEMMA 2.1. Every 1−∗−paranormal operator is ∗−paranormal operator.

Proof. Let us consider operator T which is p−∗−paranormal operator, for every
p � 1. Let p = 1, then it follows that the following relation is valid:

|||T |U |T |x|| � |||T |U∗x||2, (5)

for every unit vector x ∈ H. The left hand side of the relation (5) is exactly ||T 2x||,
really

|||T |U |T |x||2 = (|T |U |T |x, |T |U |T |x) = (|T |2U |T |x,Tx)

= (T ∗TTx,Tx) = (T 2x,T 2x) = ||T 2x||2.
And from the right side of the relation (5) we get the following relation:

|||T |U∗x||2 � ||U |T |U∗x||2 = ||T ∗x||2,
from which follows that T is ∗−paranormal operator. �

In what follows we will give a necessary and sufficient condition under which an
operator T ∈ B(H) is p−∗−paranormal operator.

LEMMA 2.2. [30] Let T be an operator with polar decomposition T = U |T |.
Then T is p−∗− paranormal operator if and only if

|T |pU∗|T |2pU |T |p +2λ |T |2p + λ 2 � 0,

for all real λ ∈ R.

THEOREM 2.3. If ∗− paranormal operator T double commutes with operator S
from class (M,2)∗, then the product TS is ∗−paranormal operator.

Proof. Let us denote by {E(t)} the resolution of the identity for the self-adjoint
operator SS∗ (see [21]). By hypothesis T ∗T and T ∗2T 2 both commutes with every
element of the {E(t)}. Since S is from class (M,2)∗, it follows that the following
relation

S∗2S2 � (SS∗)2,

holds. On the other hand for every λ > 0 we get this estimation:

(TS)∗2(TS)2−2λ (TS)(TS)∗+ λ 2 = (T ∗2T 2)(S∗2S2)−2λ (TT ∗)(SS∗)+ λ 2 �

(T ∗2T 2)(SS∗)2 −2λ (TT ∗)(SS∗)+ λ 2 =
∫ ∞

0
(t2T ∗2T 2−2λ tTT ∗ + λ 2)dE(t) � 0,

from fact that T is ∗−paranormal operator. Hence TS is ∗−paranormal operator. �
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LEMMA 2.4. [17] If T ∈ B(H) satisfies relation |T 2| � |T ∗|2, (or if T belongs
to class A(1∗)) then it is ∗−paranormal operator.

COROLLARY 2.5. If T is operator from (M,2)∗ which double commutes with
operator S from class (M,2)∗, then the product TS is ∗−paranormal operator.

Proof. From Proposition 4.5 in [8], it follows that T is ∗− paranormal operator.
Then proof of the corollary follows directly from Theorem 2.3. �

3. Riesz idempotent for p−∗−paranormal operators

In [27] the author introduced the class of quasi-∗ -paranormal operator.

DEFINITION 3.1. An operator T is called quasi ∗ - paranormal if it satisfies the
following inequality:

||T ∗Tx||2 � ||T 3x|||Tx||
for all unit vector x ∈ H .

It is well known that for any operators A,B and C ,

A∗A−2λB∗B+ λ 2C∗C � 0for allλ > 0 ⇔ ||Bx||2 � ||Ax||||Cx|| for allx ∈ H.

Thus we have. An operator T ∈ B(H) is quasi ∗ -paranormal if and only if

T ∗(T ∗2T 2−2λTT ∗ + λ 2)T � 0, for all λ > 0.

It is well known that T is ∗ -paranormal if and only if

T ∗2T 2 −2λTT ∗ + λ 2 � 0, for allλ > 0.

Thus every ∗ -paranormal operator is quasi-∗ -paranormal and we have the following
implications:

Hyponormal⇒∗-paranormal⇒ quasi∗ -paranormal.

The following proposition is proved in [27]. For the convenience of the reader I will
give the proof.

PROPOSITION 3.2. A quasi ∗ -paranormal operator T is normaloid.

Proof. It suffices to show

||T 2m|| = ||T ||2m (∗)
for m = 1,2,3, ... . We use the induction argument in the proof. First we prove (*) for
m = 1. Since T is quasi ∗ -paranormal,

||T ||4 = ||T ∗T ||2 � ||T 3||||T || � ||T 2||||T ||2 � ||T ||4.
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Hence ||T ||2 = ||T 2|| . Now assume that (*) is true for m = k . Since

||T 3x||2 + λ 2||Tx||2 � 2λ ||T ∗Tx||2,
we have

||T 2(k+1)x||+ λ 2||T 2kx|| � 2λ ||T ∗T 2kx||2

⇒ ||T 2(k+1)||2 + λ 2||T 2k||2 � 2λ ||T ∗T 2k||2

⇒ ||T ||2(2k−1)[||T 2(k+1)||2 + λ 2||T 2k||2] � 2λ ||T ||2(2k−1)||T ∗T 2k||2 � 2λ ||T ∗2kT 2k||2

⇒ ||T ||2(2k−1)[||T 2(k+1)||2 + λ 2||T 2k||2] � 2λ ||T 2k||4.
Since (*) is true for m = k , we find

[||T 2(k+1)||2 + λ 2||T ||4k] � 2λ ||T ||4k+2.

Let λ = ||T ||2 . Then the last inequality gives

||T 2(k+1)||2 + ||T ||4||T ||4k � 2||T ||4k+4

Hence
2||T ||4k+4 � ||T 2(k+1)||2 + ||T ||4k+4 � 2||T ||4k+4.

Clearly ||T ||2(k+1) = ||T 2(k+1)|| .This proves the result. �

PROPOSITION 3.3. Every p−∗−paranormal operator T is normaloid.

Proof. Let T be p−∗−paranormal with T = U |T | the polar decomposition of
the operator T . Let Tp = U |T |p . Then Tp is ∗ -paranormal [5], and hence is nor-
maloid. It is shown [19, Lemma 4.3] that if Tp is normaloid for p > 1, then T = U |T |
is normaloid . Now assume that p = 1, then T is a ∗ -paranormal operator. Hence
Proposition 3.2 implies that T is normaloid. �

PROPOSITION 3.4. [30] If T is an invertible p−∗−paranormal operator, then
T−1 is a p−∗−paranormal operator.

PROPOSITION 3.5. if T is a p−∗−paranormal operator on H and σ(T ) lies
on the unit circle, then T is an invertible isometry.

Proof. T being invertible, both T and T−1 are normaloid, being p−∗ - paranor-
mal. Hence ||T || = ||T−1|| = 1 and ||x|| = ||T−1Tx|| � ||Tx|| � ||x|| , for all x ∈ H .
This shows that T is an invertible isometry. �

Recall that an operator T ∈ B(H) is called isoloid if every isolated point of the
spectrum of T is an eigenvalue of T . An operator T is said to be polaroid if points
in isoσ(T ) are poles of the resolvent of T . It is clear that if T is polaroid, then T is
isoloid. Let PT{λ} denote the algebraic eigenprojection associated with {λ} whenever
λ ∈ C is an isolated point of σ(T ) .
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THEOREM 3.6. Let T ∈ B(H) be p−∗−paranormal. Then every isolated point
of the spectrum of T is a simple pole of the resolvent, Rλ (T ) of T ,i.e., T is polaroid.

Proof. Assume that μ is an isolated point of σ(T ) . We consider two case:
Case 1. If μ = 0, consider the p−∗−paranormal operator T/R(PT (0)) . Since

σ(T/R(PT (0))) = 0, T/R(PT (0)) = 0. Thus 0 is a simple pole of the resolvent of T [4,
p. 306].

Case 2. If μ 	= 0, consider T1 = 1
μ (T/R(PT (μ))) . Then T1 is ∗ -paranormal

with σ(T1) = {1} . Hence T1 and T−1
1 both are isometries and ||Tn

1 || = 1 for n =
±1,±2,±3, ... . Moreover,we have T = I +Q , where Q is some quasinilpotent oper-
ator. It follows from [20, Theorem 3] that T1 = I . Therefore (T1 − μ)R(PT (μ)) = 0
and μ is a simple pole of the resolvent of T . Hence T is polaroid. �

COROLLARY 3.7. Let T ∈ B(H) be p−∗−paranormal. Then T is isoloid.

THEOREM 3.8. Let T ∈ B(H) be p−∗−paranormal. Assume 0 	= μ ∈ isoσ(T )
and E is the Riesz idempotent of T with respect to μ . Then E is self-adjoint.

Proof. Since E is the Riesz idempotent of T with respect to μ and T is p−
∗−paranormal, it results from Proposition 3.6 that

R(E) = N(T − μ)andN(E) = R(T − μ).

Since
N(T − μ) ⊆ N(T ∗ − μ),

we have N(T − μ) and R(T − μ) are orthogonal. Hence R(E)⊥ = N(E) , and so E is
self-adjoint. �

4. Finite operators

Let A,B ∈ B(H) . We define the generalized derivation δA,B : B(H) �→ B(H) by
δA,B(X) = AX −XB, we note δA,A = δA . If the inequality ||T − (AX −XA)|| � ||T ||
holds for all X ∈ B(H) and for all T ∈ kerδA , then we say that the range of δA is
orthogonal to the kernel of δA in the sense of Birkhoff. The operator A ∈ B(H) is said
to be finite [36] if

||I− (AX −XA)||� 1 (6)

for all X ∈ B(H) , where I is the identity operator. J.P.Williams [36] has shown that
the class of finite operators contains every normal, hyponormal operators. In [25],
J.P.Williams results are generalized to a more classes of operators containing the classes
of normal and hyponormal operators. The well-known inequality (6), due to J.P. Williams
[36] is the starting point of the topic of commutator approximation (a Topic which has
its roots in quantum theory [37]).
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Let A∈B(H) , the approximate reduced spectrum of A, σra(A) , is the set of scalars
λ for which there exists a normed sequence {xn} in H satisfying

(A−λ I)xn → 0, (A−λ I)∗xn → 0.

In this section we present some new classes of finite operators containing the
classes of normal and hyponormal operators. Recall that an operator A ∈ B(H) is said
to be spectraloid if ω(A) = r(A) , where r(A) (resp. ω(A)) is the spectral radius (resp.
numerical radius) of A. We have

hyponormal ⊂ p−hyponormal ⊂ paranormal ⊂ normaloid⊂ spectraloid.

LEMMA 4.1. [25] Let A ∈ L (H) . Then ∂W (A)∩σ(A) ⊂ σar(A) , where W (A)
is the numerical range of the operator A.

LEMMA 4.2. [25] If σar(A) 	= φ , then A is finite.

THEOREM 4.3. Let A ∈ L (H) be spectraloid. Then A is finite.

Proof. Since A is spectraloid, we have ω(A) = r(A) . Then there exists λ ∈
σ(A) ⊂W (A) such that |λ | = ω(A) , where W (A) is the numerical range of A . Thus
λ ∈ ∂W (A) . This implies that ∂W (A)∩σ(A) 	= /0 . Now by applying Lemma 4.2, we
get the result. �

COROLLARY 4.4. Let A ∈ B(H) . If A is p−∗− paranormal then A is finite.

Proof. Since A is p−∗− paranormal, it is normaloid and a normaloid operator is
spectraloid, it suffices to apply Theorem 4.3. �

COROLLARY 4.5. The following operators are finite:
1. Paranormal operators
2. Quasi-∗ -paranormal operators
3. p−∗− paranormal operators

Theorem 4.3 extends the results showed by S.Mecheri [26] and P. J. Maher [28]
for finite paranormal operators and prove the finiteness of p−∗−paranormal operators.

5. Weyl type Theorems

An operator T ∈ B(H) satisfies a-Browder’s theorem if σea(T ) = σab(T ) (where
σab(T ) = {σa(T +K) : TK = KT andK is a compact operator}) and T satisfies gen-
eralized a-Browder’s theorem if σSBF−

+
(T ) = σap(T )\πa(T ) . Let T ∈ B(X) , where X

is an infinite dimensional complex Banach space. The operator T is said to have the
single-valued extension property (or SVEP) if for every open subset G of C and any
analytic function f : G → X such that (T − z) f (z) ≡ 0 on G , we have f (z) ≡ 0 on
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G . If a Banach space operator T has SVEP (everywhere), the single-valued extension
property, then T and T ∗ satisfy Browder’s (equivalently, generalized Browder’s) the-
orem and a-Browder’s (equivalently, generalized a- Browder’s) theorem. A sufficient
condition for an operator T satisfying Browder’s (generalized Browder’s) theorem to
satisfy Weyl’s (resp., generalized Weyl’s) theorem is that T is polaroid. Observe that
if T ∈ B(H) has SVEP, then σ(T ) = σa(T ∗) . Hence, if T has SVEP and is polaroid,
then T ∗ satisfies generalized a-Weyl’s (so also, a-Weyl’s) theorem [2, Theorem 2.14,
Theorem 2.6].

THEOREM 5.1. Let T ∈ B(H) .
i) If T ∗ is a p−∗−paranormal operator, then generalized a-Weyl’s theorem holds

for T .
ii) If T is a p−∗−paranormal operator, then generalized a-Weyl’s theorem holds

for T ∗ .

Proof. (i) It is well known that T is polaroid if and only if T ∗ is polaroid [2,
Theorem 2.11]. Now since a p−∗−paranormal operator is polaroid by Theorem 3.6
and has SVEP [9], [2, Theorem 3.10] gives us the result of the theorem. For (ii) we can
also apply [2, Theorem 3.10]. �

Since the polaroid condition entails E(T ) = π(T ) and the SVEP for T entails
that generalized Browder’s theorem holds for T [3, Theorem 3.2], i.e. σBW (T ) =
σD(T ) , where σD(T ) denotes the Drazin spectrum. Therefore, E(T ) = π(T ) = σ(T )\
σD(T ) = σ(T )\σBW (T ) . Thus we have the following corollary.

COROLLARY 5.2. If T is p−∗−paranormal, then also T satisfies generalized
Weyl’s theorem.

REMARK 5.3. 1. Recall [2] that if T is polaroid, then T satisfies generalized
Weyl’s theorem (resp. generalized a-Weyl’s) theorem if and only if T satisfies Weyl’s
theorem (resp. a-Weyl’s theorem). Hence if T is a p−∗−paranormal operator, the
above equivalences hold.

2. Let f (z) be an analytic function on σ(T ) . If T is polaroid, then f (T ) is
polaroid too [2].

i) If T ∗ is p−∗−paranormal, then f (T ) satisfies generalized a-Weyl’s theorem.
Indeed, since T ∗ is polaroid, the result holds by [2, Theorem 3.12]

ii) If T is p−∗−paranormal, then f (T ∗) satisfies generalized a-Weyl’s theorem.
Indeed, since T is polaroid, the result holds by [2, Theorem 3.12].
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