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Abstract. In this note we study the upper bound for the ratio between the so called successive
inner and outer radii of a 0-symmetric convex body K . This problem was studied by Perel’man
and Pukhov and it is a natural generalization of the classical results of Jung and Steinhagen.

1. Introduction

Let K n be the set of all convex bodies, i.e., compact convex sets, in the n -
dimensional Euclidean space R

n . The subset of K n consisting of all 0-symmetric
convex bodies, i.e., such that if x ∈ K then −x ∈ K , is denoted by K n

0 . Let 〈 ·, ·〉 and
| · |2 be the standard inner product and Euclidean norm in R

n , respectively, and Bn the
n -dimensional Euclidean unit ball.

The set of all i-dimensional linear subspaces of R
n is denoted by L n

i . For
L ∈ L n

i , L⊥ denotes its orthogonal complement and for K ∈ K n and L ∈ L n
i the

orthogonal projection of K onto L is denoted by K|L . We use ei for i-th canonical
unit vector in R

n , and with lin{u1, . . . ,um} we represent the linear hull of the vectors
{u1, . . . ,um} . Finally, for S ⊂ R

n , we denote by convS its convex hull, and we write
relbdS to denote the relative boundary of S , i.e., the boundary of S relative to its affine
hull affS .

The width in the (unit) direction u , the diameter, the minimal width, the circumra-
dius and the inradius of a convex body K are denoted by ω(K,u) , D(K) , ω(K) , R(K)
and r(K) , respectively. For more information on these functionals and their properties
we refer to [3, pp. 56–59]. If f is a functional on K n depending on the dimension in
which a convex body K is embedded, and if K is contained in an affine subspace A ,
then we write f (K;A) to denote that f has to be evaluated with respect to the subspace
A . With this notation we define the following successive outer and inner radii.

DEFINITION 1.1. For K ∈ K n and all i = 1, . . . ,n let

Ri(K) = min
L∈L n

i

R(K|L) and r̃i(K) = max
L∈L n

i

r(K|L;L).
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If we replace in the definition of r̃i projections by sections, we obtain another serie
of successive inner radii:

DEFINITION 1.2. For K ∈ K n and all i = 1, . . . ,n let

ri(K) = max
L∈L n

i

max
x∈L⊥

r
(
K∩ (x+L);x+L

)
.

Observe that Ri(K) is the smallest radius of solid cylinder containing K with
i-dimensional spherical cross section, whereas ri(K) is the radius of the greatest i-
dimensional ball contained in K . We obviously have

Rn(K) = R(K), R1(K) =
ω(K)

2
,

rn(K) = r̃n(K) = r(K) and r1(K) = r̃1(K) =
D(K)

2
.

It is clear that the outer radii are increasing in i , whereas the inner radii are decreasing in
i . Moreover, ri(K) � r̃i(K) for all i = 1, . . . ,n and any convex body K ∈K n . The first
systematic study of the successive radii was developed in [1]. For more information on
these radii we refer to [1, 2, 4, 5, 6, 7, 8, 9] and the references inside. Here our interest
is focussed in an open problem concerning the ratio Rn−i+1(K)/ri(K) .

The well known relations between diameter and circumradius, and minimal width
and inradius, were obtained respectively by Jung and Steinhagen (see e.g. [3, pp. 84,
86]); we express them in terms of the successive radii:

Rn(K)
r1(K)

�
√

2n
n+1

and
R1(K)
rn(K)

�
{√

n for n odd,
n+1√
n+2

for n even. (1.1)

The regular n -simplex gives equality in both inequalities. These relations would appear
as particular cases of a more general formula by determining the best upper bound for
the ratio Rn−i+1/ri . Pukhov [11] and Perel’man [10] showed the following result:

THEOREM 1.1. Let K ∈ K n and 1 � i � n. Then it holds

Rn−i+1(K)
ri(K)

< i+1. (1.2)

But the optimal bound is still not known. It is conjectured that the regular n -
simplex provides the optimal upper bound (we write Sn to denote the regular simplex
with inradius 1): if i = 1,n , then Rn−i+1(Sn)/ri(Sn) takes the values of (1.1); for i = 2
and n even,

Rn−1(Sn)
r2(Sn)

=
(2n−1)

√
3√

2n(n+1)
;

in the remaining cases

Rn−i+1(Sn)
ri(Sn)

=

√
1− i

n+1

√
i(i+1) ∼ (i+1)

√
1− i

n+1
.
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The values of the successive radii of the simplex Sn can be found in [4].
In [1] the best possible lower bound for the above ratio was obtained:

Rn−i+1(K)/ri(K) � 1, with equality for the ball.
Moreover, in the particular case of n = 3 (and i = 2), Perel’man [10] improved

the result reducing the bound in (1.2) from 3 to 2.151 . . .:

R2(K)
r2(K)

< 2.151 . . . . (1.3)

On the other hand, in the case of a 0-symmetric convex body, K ∈K n
0 , Pukhov proved

in [11] that
Rn−i+1(K)

ri(K)
<
√

e min
{√

i,
√

n− i+1
}

. (1.4)

The optimal bound is also not known. It is conjectured that both, the regular cube
and the regular cross-polytope provide the optimal upper bound: Rn−i+1(K)/ri(K) �√

n− i+1
√

i/n . The values of the successive radii of the regular cube and cross-
polytope can be also found in [4].

Notice that if K ∈K 3
0 , Pukhov’s result gives R2(K)/r2(K)<

√
2e≈ 2.33 . . . Here

we get a slight better bound when n = 3, for a 0-symmetric convex body; it improves
both (1.3) and (1.4).

THEOREM 1.2. Let K ∈ K 3
0 . Then it holds

R2(K)
r2(K)

< 2.

We can also state the same problem but considering the inner radii defined via
projections. In this respect we prove the following result.

THEOREM 1.3. Let K ∈ K n
0 and 1 � i � n. Then

Rn−i+1(K)
r̃i(K)

�
√

n− i+1. (1.5)

Observe that if i = n , equality holds for all K ∈ K n
0 .

The paper is organized as follows. In Section 2 we present the proofs of the above
theorems. Section 3 is devoted to some additional remarks and properties.

2. Proofs of the main results

First we obtain the announced upper bound for the ratio R2(K)/r2(K) when K ∈
K 3

0 , by proving Theorem 1.2.

Proof of Theorem 1.2. We assume, without loss of generality, that e1 is the direc-
tion giving the diameter of K , i.e., D(K) = ω(K,e1) . For the sake of brevity we write
R := R(K) = D(K)/2.
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First we show that the diameter of the convex body K|e⊥1 is not greater than
4r2(K) . In order to do it, we suppose that R′ := D(K|e⊥1 )/2 > 2r2(K) . Since K is
0-symmetric, then the segment [−Re1,Re1] ⊂ K , and from R′ = D(K|e⊥1 )/2, we can
assure the existence of u ∈ K|e⊥1 (and its 0-symmetral) such that |u|2 = R′ . Doing a
rotation with axis lin{e1} we can assume that u ∈ lin{e1,e2} , i.e., that u = (0,R′,0) .
Since u = (0,R′,0) ∈ K|e⊥1 , there exists a point (a,R′,0) ∈ K (and its 0-symmetral),
and therefore it holds that (a,R′,0)|e⊥1 = u .

The length of [−Re1,Re1] is 2R = D(K) and since (a,R′,0) ∈ K we have that

d
(
(a,R′,0),0

)2 = a2 + (R′)2 � R2 . We can suppose without loss of generality that
a > 0; notice also that a � R. We have constructed in this way a (planar) parallelogram
P = conv{±(a,R′,0),±(R,0,0)} which, because of the convexity, is contained in K .
Its inradius, considered as a planar set, is the smallest distance from the origin 0 to the
facets, more precisely, the distance from 0 to the longest facet. It is an easy computation
to check that this distance, and thus the inradius of P , is given by

r
(
P; lin{e1,e2}

)
=

R′R√
(R+a)2 +(R′)2

.

From a2 +(R′)2 � R2 we get that√
(R+a)2 +(R′)2 �

√
2R2 +2aR �

√
2R2 +2R2 =

√
4R2 = 2R,

and thus

r
(
P; lin{e1,e2}

)
=

R′R√
(R+a)2 +(R′)2

� R′

2
.

Since we assumed that R′ > 2r2(K) , then r
(
P; lin{e1,e2}

)
> r2(K) , which is a con-

tradiction because r2(K) is the radius of the greatest circumference contained in K .
Therefore, D(K|e⊥1 ) � 4r2(K) .

Finally, since K|e⊥1 is a 0-symmetric set and it verifies moreover that D(K|e⊥1 ) �
4r2(K) , we get R(K|e⊥1 ) = D(K|e⊥1 )/2 � 2r2(K) . Now, taking into account that e⊥1 is
a 2-dimensional linear subspace, we can conclude that R2(K) � R(K|e⊥1 ) � 2r2(K) . It
finishes the proof. �

As mentioned before, the optimal bound for n = 3 is still far away, since we think
it should be 2/

√
3.

Proof of Theorem 1.3. Let L1 ∈ L n
i be an arbitrary linear subspace and we con-

sider K|L1 , which is also a 0-symmetric convex body. For the sake of brevity we write
r̃i = r̃i(K) . Then it holds ρ1 = r(K|L1;L1) � r̃i . Let u1 ∈ L1 be the unit vector such that
ω(K|L1;L1) = ω(K|L1,u1;L1) . Then,

K|L1 ⊂
{

y ∈ L1 : |〈y,u1〉| � ω(K|L1;L1)
2

}
= {y ∈ L1 : |〈y,u1〉| � ρ1}

because K|L1 is 0-symmetric, which implies that ω(K|L1;L1) = 2ρ1 . Moreover, since
we are working with the orthogonal projection onto L1 , it holds

K ⊂ {x ∈ R
n : |〈x,u1〉| � ρ1} .
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Notice that we can assume i � n−1, because for i = n the result is just Steinhagen the-
orem (see e.g. [3, p. 86]). Now we consider u⊥1 ∈L n

n−1 and let L2 be an i-dimensional
linear subspace of u⊥1 . With an analogous argument to the above one we know that
there exists a suitable u2 ∈ L2 such that

K|L2 ⊂ {y ∈ L2 : |〈y,u2〉| � ρ2} ,

with ρ2 = r(K|L2;L2) � r̃i . Again we can conclude that

K ⊂ {x ∈ R
n : |〈x,u2〉| � ρ2} .

Next, if i � n−2, we consider lin{u1,u2}⊥ ∈ L n
n−2 , and we take L3 an i-dimensional

subspace of lin{u1,u2}⊥ .
Using an iterative argument, in the (n− i+ 1)-step we obtain n− i+ 1 pairwise

orthogonal unit vectors u1, . . . ,un−i+1 (by the construction) and positive real numbers
ρ j � r̃i , for j = 1, . . . ,n− i+1, such that

K ⊂
n−i+1⋂

j=1

{
x ∈ R

n :
∣∣〈x,u j

〉∣∣ � ρ j
}

=
{

x ∈ R
n :

∣∣〈x,u j
〉∣∣ � ρ j for j = 1, . . . ,n− i+1

}
.

(2.1)

Thus writing Hn−i+1 = lin{u1, . . . ,un−i+1} and denoting by Cl1,...,ln−i+1 the 0-symmetric
orthogonal box contained in Hn−i+1 with edge lengths l1, . . . , ln−i+1 , we get as a con-
sequence of (2.1) that

K|Hn−i+1 ⊆C2ρ1,...,2ρn−i+1 ⊆C2̃ri,...,2̃ri , (2.2)

i.e., it is contained in the (n− i+1)-cube of Hn−i+1 with edge length 2̃ri . Hence

R(K|Hn−i+1) � R(C2̃ri ,...,2̃ri) =
√

n− i+1r̃i,

and therefore

Rn−i+1(K) � R(K|Hn−i+1) �
√

n− i+1r̃i =
√

n− i+1r̃i(K). �

If K ∈ K n is an arbitrary convex body (not necessarily 0-symmetric) then, a
similar argument to the above one allows to show that a suitable projection of K
onto an (n− i+ 1)-dimensional linear subspace H is contained in an orthogonal box
Cω1,...,ωn−i+1 (see (2.2)) with edge-lengths ω j := ω(K|Lj;Lj) , where Lj ∈ L n

i , j =
1, . . . ,n− i + 1, are suitably chosen. Using Steinhagen’s theorem (see (1.1)) in the
subspace Lj , namely,

ω(K|Lj;Lj) �
{

2
√

i r(K|Lj;Lj) for i odd,

2 i+1√
i+2

r(K|Lj;Lj) for i even,

and since r(K|Lj;Lj) � r̃i(K) for all 1 � j � n− i+1, we finally obtain the following
result.
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PROPOSITION 2.1. Let K ∈ K n and 1 � i � n. Then

Rn−i+1(K)
r̃i(K)

�
{√

i
√

n− i+1 for i odd,
i+1√
i+2

√
n− i+1 for i even.

Observe that in order to avoid the parity distinction for i , both bounds above
should be replaced by

√
i+1/3

√
n− i+1. We also notice that these bounds for the

ratio Rn−i+1(K)/̃ri(K) , depending on the values of n and i , can improve Pukhov’s
bound i+1.

3. Some final remarks

We notice that the problem on bounding the ratio R j/ri , 1 � i, j � n , has only
interest when j = n− i+1:

PROPOSITION 3.1. If j > n− i+1 there is no upper bound for R j(K)/ri(K) .

Proof. Notice that since we assume j > n− i + 1 then i > 1. We are going to
find a convex body such that for j > n− i + 1, the above ratio is arbitrarily large. It
suffices to consider the (i−1)-dimensional ball Bi−1 = Bn∩L , with L ∈L n

i−1 . On one
hand, since dimBi−1 = i−1, then ri(Bi−1) = 0; on the other hand, we can assume that
Bi−1 ⊂ (RBj)× (L′)⊥ , for suitable R > 0, where Bj is the unit ball of L′ ∈ L n

j . Since

dimL+dimL′ = i−1+ j > i−1+n− i+1= n,

then L and L′ have, at least, a common straight line � . Hence

Bi−1∩ � = [−u,u] ⊂ RBj,

with |u|2 = 1, and thus R � 1. Therefore R j(Bi−1) �R � 1, and then the quotient R j/ri
is not bounded by above. It suffices to consider the convex hull of Bi−1 and suitable
sufficiently close points in order to obtain a convex body in R

n with non-empty interior
and verifying the same property. �

As it was already noticed in [10], observe that if j < n− i+ 1, since the succes-
sive outer radii form an increasing sequence, knowing the optimal bound for the ratio
Rn−i+1/ri would give immediately the required upper bound for R j/ri . Therefore,
Rn−i+1/ri is the only ratio needed to be considered.

In order to conclude this note, we briefly comment a relation between the inner
radii defined via sections and projections for 0-symmetric convex bodies. From the
definition of inner radii we trivially have ri(K) � r̃i(K) for all i = 1, . . . ,n and any
K ∈ K n . We would like to point out the existence of a reverse relation: the following
lemma provides a (not sharp) lower bound for ri(K) in terms of r̃i(K) when K is 0-
symmetric.

LEMMA 3.1. Let K ∈ K n
0 and 1 � i � n. Then r̃i(K) �

√
i ri(K) .
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Proof. Without loss of generality we assume that L = lin{e1, . . . ,ei} ∈ L n
i is the

i-dimensional linear subspace such that r̃i(K) = r(K|L;L) . The central symmetry of K
ensures that r̃i(K)Bi ⊆ K|L , where Bi = Bn ∩L denotes the i-dimensional unit ball of
L . Now let

u j = r̃i(K)e j ∈
(̃
ri(K) relbdBi

) ⊆ K|L, j = 1, . . . , i.

These points u j are projections of points of the original body K , i.e., there exist num-
bers al

k ∈ R for k = i+1, . . . ,n , l = 1, . . . , i , such that

v j := u j +
(
0, . . . ,0,a j

i+1, . . . ,a
j
n

) ∈ K, j = 1, . . . , i,

and since K is a 0-symmetric convex body, C = conv{±v1, . . . ,±vi} ⊆ K . Next we
show that r(C; linC) � r

(
conv{±u1, . . . ,±ui};L

)
.

Since C is 0-symmetric, then r(C; linC) = minx∈relbdC |x|2 and so we may choose
x ∈ relbdC such that r(C; linC) = |x|2 . Let x = ∑i

j=1(λ j − μ j)v j , with λ j,μ j � 0 for

j = i, . . . , i and ∑i
j=1(λ j + μ j) = 1. Then

|x|22 =

∣∣∣∣∣ i

∑
j=1

(λ j − μ j)u j

∣∣∣∣∣
2

2

+

∣∣∣∣∣ i

∑
j=1

(λ j − μ j)
(
0, . . . ,0,a j

i+1, . . . ,a
j
n

)∣∣∣∣∣
2

2

,

�
∣∣∣∣∣ i

∑
j=1

(λ j − μ j)u j

∣∣∣∣∣
2

2

=
∣∣x|L∣∣2

2.

(3.1)

Since x|L ∈ relbdconv{±u1, . . . ,±ui} , we get that

r(C; linC) = |x|2 �
∣∣x|L∣∣

2 � r
(
conv{±u1, . . . ,±ui};L

)
.

Thus we can conclude that

ri(K) � r(C; linC) � r
(
conv{±u1, . . . ,±ui};L

)
= r̃i(K)r

(
conv{±e1, . . . ,±ei};L

)
= r̃i(K)

1√
i
,

(3.2)

and we get the required inequality, r̃i(K) �
√

i ri(K) . �

For n = 3 and i = 2, Theorem 1.3 and Lemma 3.1 together also show Theorem
1.2:

R2(K)
r2(K)

�
√

2
R2(K)
r̃2(K)

�
√

2
√

2 = 2.
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Zametki 25, 4 (1979), 619–628, 637. English translation: Math. Notes 25, 4 (1979), 320–326.

(Received December 29, 2011) Bernardo González Merino
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