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WILKER AND HUYGENS TYPE INEQUALITIES

FOR THE LEMNISCATE FUNCTIONS, II

CHAO-PING CHEN

(Communicated by I. Franjić)

Abstract. In this paper, we establish new Wilker and Huygens type inequalities for the Lemnis-
cate functions.

1. Introduction and Definitions

It is known in the literature that for 0 < |x| < π
2 ,

(
sinx
x

)2

+
tanx

x
> 2 (1.1)

and

2

(
sinx
x

)
+

tanx
x

> 3. (1.2)

Inequality (1.1) was presented without proof by Wilker [15]. Wilker inequality (1.1)
has attracted much interest of many mathematicians and have motivated a large number
of research papers involving different proofs and various generalizations and improve-
ments (cf. [4, 6, 8, 10, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23] and the references cited
therein). Inequality (1.2) is due Huygens [5].

The lemniscate, also called the lemniscate of Bernoulli, is the locus of points (x,y)
in the plane satisfying the equation (x2 + y2)2 = x2 + y2 . In polar coordinates (r,θ ) ,
the equation becomes r2 = cos(2θ ) and its arc length is given by the function

arcslx =
∫ x

0

dt√
1− t4

, |x| � 1, (1.3)

where arcslx is called the arc lemniscate sine function studied by C.F. Gauss in 1797–
1798. Another lemniscate function investigated by Gauss is the hyperbolic arc lemnis-
cate sine function, defined as

arcslhx =
∫ x

0

dt√
1+ t4

, x ∈ R. (1.4)
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Functions (1.3) and (1.4) can be found (see [1, p. 259], [2, (2.5)–(2.6)], [7, 9] and [13,
Ch. 1]).

Another pair of lemniscate functions, the arc lemniscate tangent arctl and the hy-
perbolic arc lemniscate tangent arctlh, have been introduced in [7, (3.1)–(3.2)]. Therein
it has been proven that

arctlx = arcsl

(
x

4
√

1+ x4

)
, x ∈ R (1.5)

and

arctlhx = arcslh

(
x

4
√

1− x4

)
, |x| < 1 (1.6)

(see [7, Prop. 3.1]).

In [3], the author considered Wilker and Huygens type inequalities for the Lem-
niscate functions and proved the following result: for 0 < |x| < 1,

(
arcslx

x

)2

+
arctlx

x
> 2, (1.7)

2

(
arcslx

x

)
+

arctlx
x

> 3, (1.8)

arcslhx
x

+
(

arctlhx
x

)2

> 2 (1.9)

and

arcslhx
x

+2

(
arctlhx

x

)
> 3. (1.10)

Moreover, the author pointed out that inequality (1.8) is sharper than inequality (1.7),
and inequality (1.10) is sharper than inequality (1.9). Also in [3], the author proved that
for 0 < |x| < 1,

2+
1
20

x3 arctlx <

(
arcslx

x

)2

+
arctlx

x
(1.11)

with the best possible constant 1
20 .

This paper is a continuation of our earlier work [3]. We establish new Wilker and
Huygens type inequalities for the lemniscate functions. The results presented here are
sharper than those derived in earlier work [3].
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2. Lemmas

The following lemma is needed in the sequel.

LEMMA 2.1. (i) For |x| < 1 ,

arcslx =
∞

∑
n=0

Γ(n+ 1
2)√

π(4n+1) ·n!
x4n+1 = x+

1
10

x5 +
1
24

x9 + . . . . (2.12)

(ii) Let p � 0 be an integer. Then for 0 < x < 1 ,

2p−1

∑
k=0

(−1)kuk(x) < arctlx <
2p

∑
k=0

(−1)kuk(x), (2.13)

where

uk(x) =
Γ(k+ 3

4 )
Γ( 3

4 ) · (4k+1) · k!x
4k+1.

It follows from (2.12) and (2.13) that

arctlx < x < arcslx (2.14)

and

x− 3
20

x5 < arctlx < x− 3
20

x5 +
7
96

x9. (2.15)

LEMMA 2.2. (i) Let p � 0 be an integer. Then for 0 < x < 1 ,

2p−1

∑
k=0

(−1)kvk(x) < arcslhx <
2p

∑
k=0

(−1)kvk(x), (2.16)

where

vk(x) =
Γ(k+ 1

2)√
π(4k+1) ·n!

x4k+1.

(ii) For |x| < 1 ,

arctlhx =
∞

∑
n=0

Γ(n+ 3
4 )

Γ( 3
4 ) · (4n+1) ·n!

x4n+1 = x+
3
20

x5 +
7
96

x9 + · · · . (2.17)

It follows from (2.16) and (2.17) that

arcslhx < x < arctlhx (2.18)

and

x− 1
10

x5 < arcslhx < x− 1
10

x5 +
1
24

x9. (2.19)

Lemmas 2.1 and 2.2 have been proved in [3].
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3. Sharp Wilker type inequalities

Inequality (2.14) motivated us to introduce Theorem 3.1 below. Clearly, the lower
bound in (3.20) is sharer than one in (1.11).

THEOREM 3.1. For 0 < |x| < 1 ,

2+
1
20

x3 arcslx <

(
arcslx

x

)2

+
arctlx

x
(3.20)

with the best possible constant 1
20 .

Proof. By using (2.12) and (2.15), we obtain

(
arcslx

x

)2

+
arctlx

x
−
(

2+
1
20

x3 arcslx

)

=
(

arcslx
x

− 1
20

x4
)

arcslx
x

+
arctlx

x
−2

>

(
1+

1
10

x4 − 1
20

x4
)(

1+
1
10

x4
)

+
(

1− 3
20

x4
)
−2

=
1

200
x8 > 0.

Write (3.20) as

1
20

<

(
arcslx

x

)2

+
arctlx

x
−2

x3 arcslx
.

Elementary calculations show that

lim
x→0+

(
arcslx

x

)2

+
arctlx

x
−2

x3 arcslx
=

1
20

.

Hence, inequality (3.20) holds with best possible constant 1
20 . �

Theorem 3.2 solves a conjecture in [3].

THEOREM 3.2. For 0 < |x| < 1 ,

2+
1
5
x3 arctlhx <

arcslhx
x

+
(

arctlhx
x

)2

(3.21)

with the best possible constant 1
5 .
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Proof. By using (2.17) and (2.19), we obtain that 0 < x < 1,

arcslhx
x

+
(

arctlhx
x

)2

−
(

2+
1
5
x3 arctlhx

)

=
arcslhx

x
+
(

arctlhx
x

− 1
5
x4
)

arctlhx
x

−2

> 1− 1
10

x4 +
(

1+
3
20

x4 +
7
96

x8− 1
5
x4
)(

1+
3
20

x4 +
7
96

x8
)
−2

=
83
600

x8 +
7

960
x12 +

49
9216

x16 > 0.

Write (3.21) as

1
5

<

arcslhx
x

+
(

arctlhx
x

)2

−2

x3 arctlhx
.

Elementary calculations show that

lim
x→0+

arcslhx
x

+
(

arctlhx
x

)2

−2

x3 arctlhx
=

1
5
.

Hence, inequality (3.21) holds with best possible constant 1
5 . �

4. Inequalities for the arc lemniscate functions

Theorem 4.1 presents sharp inequalities.

THEOREM 4.1. For 0 < |x| < 1 ,

a

(
arcslx

x

)2

+(1−a)
(

arctlx
x

)
> 1, (4.22)

b

(
arcslx

x

)
+(1−b)

(
arctlx

x

)2

> 1 (4.23)

and

c

(
arcslx

x

)
+(1− c)

(
arctlx

x

)
> 1 (4.24)

with the possible constants

a =
3
7
, b =

3
4

and c =
3
5
. (4.25)
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In particular, we have for 0 < |x| < 1,

3
7

(
arcslx

x

)2

+
4
7

(
arctlx

x

)
> 1, (4.26)

3
4

(
arcslx

x

)
+

1
4

(
arctlx

x

)2

> 1 (4.27)

and

3
5

(
arcslx

x

)
+

2
5

(
arctlx

x

)
> 1. (4.28)

Proof of Theorem 4.1. By using (2.12), we have for 0 < |x| < 1,

(
arcslx

x

)3

=

(
∞

∑
n=0

Γ(n+ 1
2)√

π(4n+1) ·n!
x4n

)3

= 1+
3
10

x4 +
31
200

x8 + . . . . (4.29)

By using (2.15) and (4.29), we obtain for 0 < |x| < 1,(
arcslx

x

)3(arctlx
x

)2

>

(
1+

3
10

x4 +
31
200

x8
)(

1− 3
20

x4
)2

= 1+ x8
(

7
80

− 159
4000

x4 +
279

80000
x8
)

> 1. (4.30)

By using the arithmetic–geometric mean inequality together with inequality (4.30), we
obtain the inequalities (4.26)–(4.28). That is to say, when a = 3

7 , b = 3
4 , c = 3

5 , the
inequalities (4.22)–(4.24) hold.

The inequalities (4.22)–(4.24) can be written as

a >
1− (arctlx/x)

(arcslx/x)2− (arctlx/x)
, b >

1− (arctlx/x)2

(arcslx/x)− (arctlx/x)2

and

c >
x− arctlx

arcslx− arctlx
,

respectively. Elementary calculations show that

a � lim
x→0

1− (arctlx/x)
(arcslx/x)2 − (arctlx/x)

=
3
7
, b � lim

x→0

1− (arctlx/x)2

(arcslx/x)− (arctlx/x)2 =
3
4

and

c � lim
x→0

x− arctlx
arcslx− arctlx

=
3
5
.

This means that the inequalities (4.22)–(4.24) hold for 0 < |x|< 1 with the best possible
constants given in (4.25). The proof of Theorem 4.1 is complete. �
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REMARK 4.1. Noting that
arcslx

x
> 1, we have, by (2.14),

(arcslx/x)2 + arctlx/x
2

− 3(arcslx/x)2 +4(arctlx/x)
7

=
1
14

[(
arcslx

x

)2

− arctlx
x

]
>

arcslx− arctlx
14x

> 0, 0 < |x| < 1,

which shows that inequality (4.26) is sharper than inequality (1.7).
By (2.14), we have 0 < |x| < 1,

2(arcslx/x)+ arctlx/x
3

− 3(arcslx/x)+2(arctlx/x)
5

=
arcslx− arctlx

15x
> 0,

which shows that inequality (4.28) is sharper than inequality (1.8).

5. Inequalities for the hyperbolic arc lemniscate functions

Theorem 5.1 is an interesting analogue of Theorem 4.1.

THEOREM 5.1. For 0 < |x| < 1 ,

p

(
arcslhx

x

)2

+(1− p)
(

arctlhx
x

)
> 1, (5.31)

q

(
arcslhx

x

)
+(1−q)

(
arctlhx

x

)2

> 1 (5.32)

and

r

(
arcslhx

x

)
+(1− r)

(
arctlhx

x

)
> 1 (5.33)

with the possible constants

p =
3
7
, q =

3
4

and r =
3
5
. (5.34)

In particular, we have for 0 < |x| < 1,

3
7

(
arcslhx

x

)2

+
4
7

(
arctlhx

x

)
> 1, (5.35)

3
4

(
arcslhx

x

)
+

1
4

(
arctlhx

x

)2

> 1 (5.36)

and

3
5

(
arcslhx

x

)
+

2
5

(
arctlhx

x

)
> 1. (5.37)
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Proof of Theorem 5.1. By using (2.17), we have for 0 < |x| < 1,

(
arctlhx

x

)2

=

(
∞

∑
n=0

Γ(n+ 3
4)

Γ( 3
4 ) · (4n+1) ·n!

x4n

)2

= 1+
3
10

x4 +
101
600

x8 + . . . . (5.38)

By using (2.19) and (5.38), we obtain for 0 < |x| < 1,

(
arcslhx

x

)3(arctlhx
x

)2

>

(
1− 1

10
x4
)3(

1+
3
10

x4 +
101
600

x8
)

= 1+ x8
(

13
120

− 17
400

x4
)

+ x16
(

19
4000

− 101
600000

x4
)

> 1.

(5.39)

By using the arithmetic–geometric mean inequality together with inequality (5.39), we
obtain the inequalities (5.35)–(5.37). That is to say, when p = 3

7 ,q = 3
4 ,r = 3

5 , the
inequalities (5.31)–(5.33) hold.

The inequalities (5.31)–(5.33) can be written as

p <
(arctlhx/x)−1

(arctlhx/x)− (arcslhx/x)2 , q <
(arctlhx/x)2−1

(arctlhx/x)2− (arcslhx/x)

and

r <
arctlhx− x

arctlhx− arcslhx
,

respectively. Elementary calculations show that

p � lim
x→0

(arctlhx/x)−1
(arctlhx/x)− (arcslhx/x)2 =

3
7
, q � lim

x→0

(arctlhx/x)2−1
(arctlhx/x)2− (arcslhx/x)

=
3
4

and

r � lim
x→0

arctlhx− x
arctlhx− arcslhx

=
3
5
.

This means that the inequalities (5.31)–(5.33) hold for 0 < |x|< 1 with the best possible
constants given in (5.34). The proof of Theorem 5.1 is complete. �

REMARK 5.1. Noting that
arctlhx

x
> 1, we have, by (2.18),

arcslhx/x+(arctlhx/x)2

2
− 3(arcslhx/x)+ (arctlhx/x)2

4

=
1
4

[(
arctlhx

x

)2

− arcslhx
x

]
>

arctlhx− arcslhx
4x

> 0, 0 < |x| < 1,
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which shows that inequality (5.36) is sharper than inequality (1.9).
By (2.18), we have for 0 < |x| < 1,

arcslhx/x+2(arctlhx/x)
3

− 3(arcslhx/x)+2(arctlhx/x)
5

=
4(arctlhx− arcslhx)

15x
> 0,

which shows that inequality (5.37) is sharper than inequality (1.10).
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