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Abstract. In this work, we study a new type of set-valued vector F -variational inequalities and
a new kind of set valued vector F -complementarity problem in Hausdorff topological vector
spaces. We establish the equivalence between the set valued vector F -variational inequalities
and set valued vector F -complementarity problems under certain conditions. By considering
the existence of solutions for the vector F -variational inequalities and using the continuous
selection theorem, we obtain some new existence theorems of solutions for the set valued vector
F -variational inequalities and set valued vector F -complementarity problems, respectively.

1. Introduction

Let X ,Y be two real Hausdorff topological vector spaces. A nonempty subset P
of X is called convex cone if λP ⊆ P for all λ � 0 and P+P = P . A cone P is called
pointed cone if P is a cone and P∩ {−P} = {0} where 0 denotes the zero vector,
also a cone P is called pointed if it is properly contained in X . Let L(X ,Y ) be the
space of all continuous linear mappings from X to Y , denoted by 〈t,x〉 the values of
a linear operator t ∈ L(X ,Y ) at x ∈ X and K be a nonempty closed and convex cone
of X . Let T : X → 2Y be a multifunction, the graph of T denoted by G (T ) is the set
{(x,z) ∈ X ×Y | x ∈ X , z ∈ T (x)} . Let C : K → 2Y be a set valued mapping such that
for each x ∈ K , C(x) is a pointed closed convex cone in Y with apex at the origin and
intC(x) �= /0 . Assume that T : K → 2L(X ,Y ) , F : K → Y and A : K×L(X ,Y ) → L(X ,Y )
are the mappings. A function f is called a selection of T on K if f (x) ∈ T (x) for all
x ∈ K and it is also continuous on K . Furthermore a function f is called a continuous
selection of T on K if f is a selection of T on K .

In this paper, we consider the set valued vector F -variational inequality (SVVF-
VI) problem of finding x∗ ∈ K , p∗ ∈ T (x∗) such that

〈A(x∗, p∗),y− x∗〉+F(y)−F(x∗) �∈ −intC(x∗) ∀ y ∈ K. (1.1)

We say that (x∗, p∗) is a solution of (SVVF-VI).

Mathematics subject classification (2010): 47H40, 49J40, 90H30.
Keywords and phrases: Set-valued vector F -variational inequalities, set valued vector F -complemen-

tarity problems, selection theorem, topological vector spaces, equivalence relation.

c© � � , Zagreb
Paper MIA-16-44

587

http://dx.doi.org/10.7153/mia-16-44


588 SALAHUDDIN, M. K. AHMAD AND RAVI P. AGARWAL

Now we define the following setvalued vector F -complementarity problem (SVVF-
CP) which consists of finding x∗ ∈ K , p∗ ∈ T (x∗) such that

〈A(x∗, p∗),x∗〉+F(x∗) �∈ intC(x∗) and 〈A(x∗, p∗),y〉+F(y) �∈ −intC(x∗) ∀ y ∈ K.
(1.2)

We say that (x∗, p∗) is a solution of (SVVF-CP).
In this paper, we study a new type of setvalued vector F -variational inequality and

setvalued vector F -complementarity problem in Hausdorff topological vector spaces.
We establish an equivalence between SVVF-VI and SVVF-CP under certain conditions.
We consider the concept of weak C -pseudo-monotonicity to prove the existence of
solutions for setvalued vector F -variational inequality using the continuous selection
theorem due to Ding, Kim and Tan [4]. We obtain some new existence theorems of
solutions for SVVF-VI and SVVF-CP respectively.

The vector variational inequality theory initiated by Giannessi [7] has emerged as
a powerful tool for a wide class of vector optimization problems and vector equilibrium
problems, see [2, 7, 8, 12].

In 2000, Chen and Hou [3] summarized existence results of solutions for vector
variational inequalities and pointed out that most of the existence results in this area
touch upon a weak version of vector variational inequality and its generalizations. The
existence of solutions for strong vector variational inequality is still an open problem.
Recently, by using the combination of demicontinuity and pseudomonotonicity, Fang
and Huang [6, 9] initiated a new class of vector F -complementarity problem with demi-
pseudomonotone mappings in Banach spaces. They also presented the solvability of
this class of vector F -complementarity problems and demi-pseudomonotonemappings
and finite dimensional continuous mappings in reflexive Banach spaces, see [4, 8, 11,
13, 14].

Special Cases

(i) If we take A(x∗, p∗) = A(p∗) , then (1.1) is one of the variant form of the problem
considered by Y. C. Lin [16] for finding x∗ ∈ K , p∗ ∈ T (x∗) such that

〈A(p∗),y− x∗〉+F(y)−F(x∗) �∈ −intC(x∗) ∀ y ∈ K. (1.3)

(ii) If F = 0, then SVVF-VI (1.1) reduces to the generalized vector variational in-
equality of finding x∗ ∈ K , p∗ ∈ T (x∗) such that

〈A(x∗, p∗),y− x∗〉 �∈ −intC(x∗) ∀ y ∈ K. (1.4)

(iii) Again if A(x∗, p∗) = p∗ , then (1.4) collapses to the problem of finding x∗ ∈ K
and p∗ ∈ T (x∗) such that

〈p∗,y− x∗〉 �∈ −intC(x∗) ∀ y ∈ K, (1.5)

which was studied by Yang and Yao [18].
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(iv) If T is a single valued mapping, then (1.5) reduces to the problem of finding
x∗ ∈ K such that

〈T (x∗),y− x∗〉 �∈ −intC(x∗) ∀ y ∈ K, (1.6)

which was studied by Chen [1], Yu and Yao [20].

Furthermore if X = R
n , L(X ,Y ) = X∗ and C(x) = R+ = [0,+∞) for all x ∈ K ,

then (1.6) reduces to the classical variational inequalities: Find x∗ ∈ K such that

〈T (x∗),y− x∗〉 � 0 ∀ y ∈ K, (1.7)

considered and studied by Stampacchia [17].

(v) If A is a single valued mapping, then (1.1) reduces to the problem of finding
x∗ ∈ K , p∗ ∈ T (x∗) such that

〈p∗,y− x∗〉+F(y)−F(x∗) �∈ −intC(x∗) ∀ y ∈ K, (1.8)

considered by Huang et al. [12].

(vi) If T is a single valued mapping, then (1.8) reduces to the vector F -variational
inequality: Finding x∗ ∈ K such that

〈T (x∗),y− x∗〉+F(y)−F(x∗) �∈ −intC(x∗) ∀ y ∈ K, (1.9)

which was considered by Li and Huang [15] with C(x) =C for all x ∈ K , where
C is a pointed closed and convex cone in Y .

(vii) We remark that if F = 0, then (1.2) SVVF-CP collapses to the (GVCP) gener-
alized vector complementarity problems of finding x∗ ∈ K and p∗ ∈ T (x∗) such
that

〈A(x∗, p∗),x∗〉 �∈ intC(x∗) and 〈A(x∗, p∗),y〉 �∈ −intC(x∗) ∀ y ∈ K. (1.10)

(viii) We note that if A(x∗, p∗) = p∗ , then problem (1.10) collapses to the problem of
finding x∗ ∈ K and p∗ ∈ T (x∗) such that

〈p∗,x∗〉 �∈ intC(x∗) and 〈p∗,y〉 �∈ −intC(x∗) ∀ y ∈ K, (1.11)

considered by Huang and Guo [10].

(ix) Let X be a real Banach space, L(X ,Y ) = X∗ and C(x) = R+ = [0,+∞) for all x∈
K , then the generalized vector complementarity problem reduces to a problem of
finding x∗ ∈ K and p∗ ∈ T (x∗) such that

〈A(x∗, p∗),x∗〉+F(x∗) = 0 and 〈A(x∗, p∗),y〉+F(y) � 0 ∀ y ∈ K, (1.12)

is a variant form considered and studied by Lee et al. [14].
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(x) If A(x∗, p∗) = p∗ then (1.12) reduces to a problem of finding x∗ ∈ K and p∗ ∈
T (x∗) such that

〈p∗,x∗〉+F(x∗) = 0 and 〈p∗,y〉+F(y) � 0 ∀ y ∈ K, (1.13)

is a variant form of L.C. Zeng, Y.C. Lin and J.C. Yao [21].

(xi) If T is a single valued mapping, then (1.13) reduces to the problem of finding
x∗ ∈ K such that

〈T (x∗),x∗〉+F(x∗) = 0 and 〈T (x∗),y〉+F(y) � 0 ∀ y ∈ K, (1.14)

which was the problem introduced by Yin, Xu and Zhang [19].

(xii) We note that if F = 0, then (1.14) collapses to the classical complementarity
problem of finding x∗ ∈ K such that

〈T (x∗),x∗〉 = 0 and 〈T (x∗),y〉 � 0 ∀ y ∈ K. (1.15)

2. Preliminaries

LEMMA 2.1. [12] If F is a selection of T on K , then every solution of VF-
CP (vector F -complementarity problem) is a solution of GVF-CP (generalized vec-
tor F -complementarity problem) (respectively, every solutions of VF-VI (vector F -
variational inequality) is a solution of GVF-VI (generalized vector F -variational in-
equality)).

DEFINITION 2.1. T is said to be

(i) weakly C -pseudomonotone on K with respect to F , if for every pair of points
x,y ∈ K and for all u ∈ T (x) , v ∈ T (y) such that

〈A(x,u),y− x〉+F(y)−F(x) ∈ −intC(x)

implies that
〈A(y,v),x− y〉+F(x)−F(y) �∈ intC(y);

(ii) C -pseudomonotone on K with respect to F , if for every pair of points x,y ∈ K
and for all u ∈ T (x) , v ∈ T (y)

〈A(x,u),y− x〉+F(y)−F(x) �∈ −intC(x)

implies that
〈A(y,v),x− y〉+F(x)−F(y) ∈ −C(y);

(iii) strictly C -pseudomonotone on K with respect to F , if for every pair of points
x,y ∈ K and for all u ∈ T (x) , v ∈ T (y) such that

〈A(x,u),y− x〉+F(y)−F(x) �∈ −intC(x)

implies that
〈A(y,v),x− y〉+F(x)−F(y) ∈−intC(y).
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REMARK 2.1. We remark that the strict C -pseudomonotonicity implies C -pseudo-
monotonicity and C -pseudomonotonicity implies the weak C -pseudomonotonicity. But
the converse is not necessarily true.

LEMMA 2.2. Let f be a selection of T on K . If T is weakly C-pseudomonotone
(respectively C-pseudomonotone and strictly C-pseudomonotone) on K with respect
to F , then f is also weakly C-pseudomonotone (respectively C-pseudomonotone and
strictly C-pseudomonotone) on K with respect to F .

DEFINITION 2.2. Let K be a nonempty subset of topological vector space X .
A setvalued mapping T : K → 2X is called KKM-mapping if for every finite subset

{x1,x2, · · · ,xn} of K co{x1,x2, · · · ,xn} is contained in
n⋃

i=1
T (xi) , where co denotes the

convex hull.

LEMMA 2.3. [5] Let K be a nonempty subset of Hausdorff topological vector
space X . Let G : K → 2X be a KKM-mapping such that for any y ∈ K , G(y) is closed
and G(y∗) is compact for some y∗ ∈ K . Then there exists x∗ ∈ K such that x∗ ∈ G(y)
for all y ∈ K , i.e., ⋂

y∈K

G(y) �= /0.

LEMMA 2.4. Let Y be a topological vector space with a pointed closed and con-
vex cone C such that intC �= /0 . Then for all x,y ∈Y

(i) x− y ∈−C and x �∈ −intC ⇒ y �∈ −intC;

(ii) x ∈ −intC and y �∈ intC ⇒ x+ y �∈C.

Proof. (i) If y∈−intC , then x = x−y+y∈−C− intC⊆−intC which contradicts
the assumption x �∈ −intC .

(ii) If x+y∈C . Then y = x+y−x∈C+ intC⊆ intC , which contradicts the assumption
y �∈ intC . �

DEFINITION 2.3. We say that

(i) F is C -convex if

F(αx1 +(1−α)x2) ∈ αF(x1)+ (1−α)F(x2)−C ∀ x1,x2 ∈ K, α ∈ [0,1]

where C is a closed and convex cone of Y with intC �= /0 ;

(ii) F is sublinear if

(a) (positive homogenity) F(αx) = αF(x) for all α � 0 and x ∈ K ,

(b) (subadditivity) F(x1 + x2) ∈ {F(x1)+F(x2)}−C for all x1,x2 ∈ K , where
C is a closed and convex cone of Y with intC �= /0 ;
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(iii) F is hemicontinuous on K if for all x,y ∈ K , the function

Ω(α) = 〈F(x+ α(y− x)), y− x〉

is continuous on [0,1] .

REMARK 2.2. We note that F is C -convex if and only if

F
( n

∑
i=1

αixi

)
∈

n

∑
i=1

αiF(xi)−C

for all xi ∈ K and αi ∈ [0,1] , ( i = 1,2, · · · ,n) with ∑n
i=1 αi = 1. If F is positive

homogeneous then F is C -convex if and only if F is subadditive. In fact if F is
positive homogeneous and C -convex, then we have

F(x1 + x2) = F
(1

2
(2x1)+

1
2
(2x2)

)

∈ 1
2
F(2x1)+

1
2
F(2x2)−C

= F(x1)+F(x2)−C for all x1,x2 ∈ K.

This means that if F is subadditive, then it follows that

F(αx1 +(1−α)x2) ∈ F(αx1)+F((1−α)x2)−C

= αF(x1)+ (1−α)F(x2)−C

for all x1,x2 ∈ K and α ∈ [0,1] . Thus F is convex.

3. Main results

THEOREM 3.1. Let
⋂

x∈K
C(x) = C with intC �= /0 .

(i) If (x∗, p∗) solves SVVF-CP and there exists z0 ∈ K such that

〈A(x∗, p∗), z0 + x∗〉+F(z0 + x∗) ∈ −C

and
F(z0 + y) = F(z0)+F(y) ∀ y ∈ K,

then (x∗, p∗) solves SVVF-VI;

(ii) Let F be sublinear. If (x∗, p∗) solves SVVF-VI, then (x∗, p∗) solves SVVF-CP.

Proof. (i) Let (x∗, p∗) be a solution of SVVF-CP. Then x∗ ∈ K and p∗ ∈ T (x∗)
such that

〈A(x∗, p∗), y〉+F(y) �∈ −intC(x∗) ∀ y ∈ K.
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From the assumptions, we have

{〈A(x∗, p∗), y+ z0〉+F(y+ z0)}−{〈A(x∗, p∗),y− x∗〉+F(y)−F(x∗)}

= 〈A(x∗, p∗), z0 + x∗〉+F(z0 + x∗) ∈ −C ⊆−C(x∗) ∀ y ∈ K.

By Lemma 2.4(i), we get

〈A(x∗, p∗), y− x∗〉+F(y)−F(x∗) �∈ −intC(x∗) ∀ y ∈ K.

Thus (x∗, p∗) is a solution of SVVF-VI.

(ii) Let (x∗, p∗) be a solution of SVVF-VI, then x∗ ∈ K and p∗ ∈ T (x∗) such that

〈A(x∗, p∗), y− x∗〉+F(y)−F(x∗) �∈ −intC(x∗) ∀ y ∈ K. (3.1)

Since F : K →Y is positively homogeneous and K a convex cone, letting y = 1
2x∗

in (3.1), we have
〈A(x∗, p∗), x∗〉+F(x∗) �∈ intC(x∗).

Given that F is subadditive, we get

{〈A(x∗, p∗), y+ x∗− x∗〉+F(y+ x∗)−F(x∗)}−{〈A(x∗, p∗), y〉+F(y)}

= F(y+ x∗)+F(x∗)−F(y) ∈−C ⊆−C(x∗) ∀ y ∈ K. (3.2)

By Lemma 2.4(i) it follows from (3.1) and (3.2),

〈A(x∗, p∗), y〉+F(y) �∈ −intC(x∗) ∀ y ∈ K

which shows that (x∗, p∗) solves SVVF-CP. This completes the proof. �

If T is a single valued mapping and A(x∗,T (x∗)) = T (x∗) , then from Theorem
3.1, we obtain the following:

COROLLARY 3.1. [12] Let
⋂

x∈K
C(x) = C with intC �= /0 .

(i) If x∗ solves SVVF-CP and there exists z0 ∈ K such that

〈T (x∗), z0 + x∗〉+F(z0 + x∗) ∈ −C(x∗)

and
F(y+ z0) = F(y)+F(z0) ∀ y ∈ K

then x∗ solves SVVF-VI.

(ii) Let F be sublinear. If x∗ solves SVVF-VI, then x∗ solves SVVF-CP.
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THEOREM 3.2. Let T be strictly C-pseudomonotone on K with respect to F . If
SVVF-VI is solvable, then the solution of SVVF-VI is unique.

Proof. Suppose that SVVF-VI has two distinct solution x∗1 and x∗2 . Then x∗1,x
∗
2 ∈

K , p∗1 ∈ T (x∗1) and p∗2 ∈ T (x∗2) such that

〈A(x∗1, p
∗
1), x∗2 − x∗1〉+F(x∗2)−F(x∗1) �∈ −intC(x∗1) (3.3)

and
〈A(x∗2, p

∗
2), x∗1− x∗2〉+F(x∗1)−F(x∗2) �∈ −intC(x∗2). (3.4)

Since T is strictly C -pseudomonotone on K with respect to F , then from (3.3)
that

〈A(x∗2, p
∗
2), x∗1− x∗2〉+F(x∗1)−F(x∗2) ∈ −intC(x∗2),

which contradicts (3.4), completing the proof. �

THEOREM 3.3. Let K be a nonempty weakly compact and convex subset of X
and

⋂
x∈K

C(x) = C with intC �= /0 .

Assume that the following conditions hold:

(i) F is C-convex and continuous;

(ii) T is hemicontinuous and weakly C-pseudo monotone on K with respect to F ;

(iii) the graph W of W : K → 2Y weakly closed in K×Y , where W (x)=Y\(−intC(x))
for all x ∈ K ;

(iv) A is continuous and affine.

Then SVVF-VI (1.1) has a solution. Further if F is positive homogeneous, then
SVVF-CP (1.2) has a solution.

In order to prove Theorem 3.3, we first show the following lemma.

LEMMA 3.1. If all assumptions in Theorem 3.3 hold, then SVVF-VI (1.1) is equiv-
alent to the following problem: Find x∗ ∈ K , q ∈ T (y) such that

〈A(y,q), x∗ − y〉+F(x∗)−F(y) �∈ −intC(y), ∀ y ∈ K. (3.5)

Proof. Since T is C -pseudomonotone, it is easy to see that every solutions of
SVVF-VI (1.1) is also a solution of problem (3.5). Conversely, let x∗ ∈ K be a solution
of problem (3.5). Then

〈A(y,q), x∗ − y〉+F(x∗)−F(y) �∈ intC(y), ∀ y ∈ K, q ∈ T (y).

Since y ∈ K , q ∈ T (y) and α ∈ (0,1) set yα = (1−α)x∗+ αy . We have

〈A(yα ,qα), x∗ − yα〉+F(x∗)−F(yα) �∈ intC(yα). (3.6)
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We now prove that

〈A(yα ,qα), y− yα〉+F(y)−F(yα) �∈ −intC(yα). (3.7)

Suppose (3.7) is not true. Then

〈A(yα ,qα), y− yα〉+F(y)−F(yα) ∈ intC(yα). (3.8)

Since F is convex and C ⊆C(x) for all x ∈ K ,

0 = 〈A(yα ,qα), yα − yα〉+F(yα )−F(yα)
∈ α{〈A(y,qα), y− yα〉+F(y)−F(yα)}

+(1−α){〈A(x∗,qα), x∗ − yα〉+F(x∗)−F(yα)}−C

⊆ α{〈A(y,qα), y− yα〉+F(y)−F(yα)}
+(1−α){〈A(x∗,qα),x∗ − yα)〉+F(x∗)−F(yα)}−C(yα)

that is

α{〈A(y,qα), y− yα〉+F(y)−F(yα)}
+(1−α){〈A(x∗,qα), x∗ − yα〉+F(x∗)−F(yα)} ∈C(yα). (3.9)

Since C(yα) is a convex cone, from Lemma 2.4 (ii), (3.6) and (3.8), we have

α{〈A(y,qα), y− yα〉+F(y)−F(yα)}
+(1−α){〈A(x∗,qα), x∗ − yα〉+F(x∗)−F(yα)} �∈C(yα),

which is a contradiction with (3.9). Therefore (3.7) is true. Then

〈A(y,qα), y− yα〉+F(y)−F(yα )} ∈W (yα). (3.10)

Since F is continuous, T is hemicontinuous on K and W is weakly closed in
K×Y , from (3.10), we obtain

(yα ,〈A(y,qα), y− yα〉+F(y)−F(yα)) →
(x∗,〈A(x∗, p), y− x∗〉+F(y)−F(x∗)), as α → 0,

and
(x∗,〈A(x∗, p∗), y− x∗〉+F(y)−F(x∗)) ∈ Graph(W ).

This shows that

〈A(x∗, p∗), y− x∗〉+F(y)−F(x∗) �∈ −intC(x∗), p∗ ∈ T (x∗)

and so x∗ is a solution of SVVF-VI (1.1), this completes the proof. �

Proof of Theorem 3.3. Define the mapping P , Pc : K → 2Y by

P(y) = {x ∈ K, p ∈ T (x)| 〈A(x, p), y− x〉+F(y)−F(x) �∈ −intC(x)}
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and

Pc(y) = {x ∈ K, q ∈ T (y)| 〈A(y,q), x− y〉+F(x)−F(y) �∈ −intC(y)}
for each y ∈ K .

The proof is divided in four steps.

Step 1. We prove that P is a KKM-mapping. For this consider P(y) �= /0 for each
y ∈ K , since y ∈ P(y) . Let z be in the convex hull of any finite subset {y1,y2, · · · ,yn}
of K . Then z =

n
∑
i=1

λi yi ∈ K for some nonnegative λi , 1 � i � n , with
n
∑
i=1

λi = 1.

Suppose that z �∈
n⋂

i=1
P(yi) . Then z �∈ P(yi) for all i = 1,2, · · · ,n and thus

〈A(z, p′), yi− z〉+F(yi)−F(z) ∈ −intC(z), p′ ∈ T (z) ∀ i = 1,2, · · · ,n .

Since C(z) is a convex cone, we obtain

n

∑
i=1

λi{〈A(z, p′), yi − z〉+F(yi)−F(z)} ∈ −intC(z).

Since F is C -convex, we have

0 = 〈A(z, p′), z− z〉+F(z)−F(z)

= 〈A(z, p′),
n

∑
i=1

λiyi− z〉+F(
n

∑
i=1

λiyi)−F(z)

∈
n

∑
i=1

λi〈A(z, p′), yi − z〉+
n

∑
i=1

λiF(yi)−F(z)−C

=
n

∑
i=1

λi{〈A(z, p′), yi − z〉+F(yi)−F(z)}−C

⊆−intC(z)−C(z)
⊆−intC(z).

Thus 0 ∈ −intC(z) , which is a contradiction. Therefore, P is a KKM mapping.

Step 2. Since T is C -pseudomonotone on K with respect to F , it follows that
P(y) ⊆ Pc(y) for all y ∈ K and hence Pc is also a KKM-mapping.

Step 3. We show that Pc(y) is a weakly closed and weakly compact for all y ∈ K⋂
y∈K

Pc(y) �= /0 . In fact, let {xα} be a net of Pc(y) such that xα converges weakly to

x0 ∈ K . For each α , since xα ∈ Pc(y) , we obtain

〈A(y,q), xα − y〉+F(xα)−F(y) �∈ −intC(y)

and so
〈A(y,q), xα − y〉+F(xα)−F(y) ∈Y\intC(y).
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Suppose that q∈ T (y) = 2L(X ,Y ) is a continuous. Since F is a continuous we have

〈A(y,q), xα − y〉+F(xα)−F(y) → 〈A(y,q), x0− y〉+F(x0)−F(y).

Since Y\intC(y) is closed , we have

〈A(y,q), x0− y〉+F(x0)−F(y) ∈ Y\intC(y).

Hence
〈A(y,q), x0− y〉+F(x0)−F(y) �∈ Y\intC(y)

and Pc(y) is weakly closed.
Since K is weakly compact, Pc(y) is also weakly compact for all y ∈ K . By Step

2, we know that Pc is a KKM-mapping. Therefore from Lemma 2.3, we have
⋂
y∈K

Pc(y) �= /0.

Step 4. We prove that SVVF-VI has a solution. From Lemma 3.1, we have⋂
y∈K

Pc(y) �= /0 and by Step 3, we obtain
⋂

y∈K
Pc(y) �= /0 . Then

⋂
y∈K

P(y) �= /0 and so

SVVF-VI (1.1) has a solution. Furthermore, if F is positive homogeneous, then from
Remark 2.2 and Corollary 3.1, SVVF-CP (1.2) has a solution. This completes the
proof. �

THEOREM 3.4. Let K be a nonempty closed and convex subset of X and
⋂

x∈K
C(x)=

C with intC �= /0 . Assume that conditions (i)-(iv) in Theorem 3.3 hold. If the following
coercive condition on K is satisfied, then there exists a weakly compact subset D of X
and y0 ∈ D∩K such that for all x ∈ K\D

〈A(y0,q0), y0− x〉+F(y0)−F(x) ∈ −intC(y0).

Then SVVF-VI (1.1) has a solution. Furthermore if F is positive homogeneous,
then SVVF-CP (1.2) has a solution.

Proof. As the proof in Theorem 3.3, we only need to prove that Pc(y0) is weakly
compact. From the coercive condition, it is clear that Pc(y0) ⊆ D . Consider Step 3 in
the proof of Theorem 3.3, Pc(y0) is weakly closed. Since D is weakly compact, Pc(y0)
is also weakly compact. This completes the proof. �

THEOREM 3.5. Let K be a nonempty weakly compact convex subset of X and⋂
x∈K

C(x) =C with intC �= /0 . Assume that assumptions (i)-(iv) in Theorem 3.3 hold and

the following conditions are satisfied:

(i) T is weakly C-pseudomonotone on K with respect to F ;

(ii) there is a continuous selection f of T on K .
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Then SVVF-VI (1.1) has a solution. Furthermore if F is positive homogeneous,
then SVVF-CP (1.2) has a solution.

Proof. By the assumption, there is a continuous selection f : K → 2L(X ,Y ) such
that

f (x) ∈ T (x) = 2L(X ,Y ) ∀ x ∈ K.

It follows from Lemma 2.2, that F is also weakly C -pseudomonotone. Then all
conditions in Theorem 3.3 are satisfied. Thus there exists a solution (x∗, p∗) of SVVF-
VI (1.1). By Lemma 2.1, (x∗, p∗) solves SVVF-VI (1.1).

Furthermore, if F is positive homogeneous, then it follows from Remark 2.2 and
Theorem 3.1 that SVVF-CP (1.2) has a solution. This completes the proof. �

THEOREM 3.6. Let K be a nonempty closed convex subset of X and
⋂

x∈K
C(x) =C

with intC �= /0 . Assume that all conditions in Theorem 3.5 hold and the continuous
selection f of T satisfies the coercive condition on K defined in Theorem 3.4. Then
SVVF-VI (1.1) has a solution.

Furthermore, if F is positive homogeneous, then SVVF-CP (1.2) has a solution.

Proof. It follows from Theorems 3.4 and 3.5, that the condition holds. This com-
pletes the proof. �
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