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A NEW PROOF OF SHAPIRO INEQUALITY

TETSUYA ANDO

(Communicated by I. Franjić)

Abstract. We present a new proof of Shapiro cyclic inequality. Especially, we treat the case
n = 23 precisely.

1. Introduction

Let n � 3 be an integer, x1 , x2 , . . . , xn be positive real numbers, and let

En(x1, . . . ,xn) :=
n

∑
i=1

xi

xi+1 + xi+2
,

here we regard xi+n = xi for i ∈Z . In this article, we present a new proof of the
following theorem:

THEOREM 1.1.
(1) If n is an odd integer with 3 � n � 23 , then

En(x1, . . . ,xn) � n/2. (Pn)

Moreover, En(x1 , . . . , xn) = n/2 holds only if x1 = x2 = · · · = xn .
(2) If n is an even integer with 4 � n � 12 , then (Pn) holds. Moreover, the

equality holds only if (x1 , . . . , xn) = (a, b, a , b , . . . , a , b) (∃a > 0 , ∃b > 0 ).
(3) If n is an even integer with n � 14 or an odd integer with n � 25 , then there

exists x1 > 0 , . . . , xn > 0 such that En(x1 , . . . , xn) < n/2 .

(3) was proved by [4] in 1979. It is said that (1) was proved by [6] in 1989. (2)
was proved by [2] in 2002. Note that [2] treats (1) to be an open problem. The author
also thinks we should give a more agreeable proof of (1). In this article, we give more
precise proof of (1) than [6].
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2. Basic Facts

Throughout this article, we use the following notations:

∂iEn(x) :=
∂

∂xi
En(x) =

1
xi+1 + xi+2

− xi−2

(xi−1 + xi)2 −
xi−1

(xi + xi+1)2

Kn :=
{
(x1, . . . ,xn) ∈R

n
∣∣ x1 � 0, . . . , xn � 0

}
K◦

n :=
{
(x1, . . . ,xn) ∈R

n
∣∣ x1 > 0, . . . , xn > 0

}
K

�

n :=
{

(x1, . . . ,xn) ∈ Kn

∣∣∣∣ (x1, . . . ,xn) /∈ K◦
n ,

(xi,xi+1) �= (0,0) for any i ∈Z .

}
Kn := K◦

n ∪K
�

n

It is easy to see that there exists a ∈ K �

n such that

inf
x∈K◦

n
En(x) = En(a).

Thus, we consider En(x) to be a continious function on K
�

n .

PROPOSITION 2.1. ([3])
(1) If (Pn) is false, then (Pn+2) is also false.
(2) If (Pn) is false for an odd integer n � 3 , then (Pn+1) is also false.

Proof. Assume that there exists positive real numbers a1 , . . . , an such that
En(a1 , . . . , an) < n/2.

(1) Since, En+2(a1, . . . ,an,a1,a2) = 1+En(a1, . . . ,an) <
n+2

2
, (Pn+2) is false.

(2) Note that

En+1(a1, . . . ,ar−1,ar,ar,ar+1, . . . ,an)−En(a1, . . . ,an)− 1
2

=
ar−1

ar +ar
+

ar

ar +ar+1
− ar−1

ar +ar+1
− 1

2

=
(ar −ar−1)(ar −ar+1)

2ar(ar +ar+1)

for 1 � r � n . Thus, it is sufficient to show that there exists r such that (ar − ar−1)
(ar −ar+1) � 0.

Assume that (ar −ar−1)(ar −ar+1) > 0 for all 1 � r � n . Since n is odd,

n

∏
r=1

(ar −ar+1)2 =
n

∏
r=1

(ar−1−ar)(ar −ar+1) < 0.

This is a contradiction. �
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PROPOSITION 2.2. ([4])
(1) E14(42 , 2 , 42 , 4 , 41 , 5 , 39 , 4 , 38 , 2 , 38 , 0 , 40 , 0) < 7 . Thus (P14) is

false.
(2) E25(34 , 5 , 35 , 13 , 30 , 17 , 24 , 18 , 18 , 17 , 13 , 16 , 9 , 16 , 5 , 16 , 2 , 18 , 0 ,

21 , 0 , 25 , 0 , 29 , 0) < 25/2 . Thus (P25) is false.

Thus, Theorem 1.1 (3) is proved by Proposition 2.1 and 2.2. It is essential to show
(P12) and (P23) for a proof of Theorem 1.1 (2) and (3).

DEFINITION 2.3. We say that x = (x1 , . . . , xn) ∈ Kn and y = (y1 , . . . , yn) ∈ Kn

belong to the same component if “xi = 0 ⇐⇒ yi = 0” for all i = 1, . . . , n .
Let x = (x1 , . . . , xn)∈ K

�

n . If xi−1 = 0, xi �= 0, xi+1 �= 0, . . . , x j �= 0, and x j+1 = 0
for i < j ∈Z , then we call (xi , . . . , x j) to be a segment of x , and we define j− i+1 to
be the length of this segment. A segment of length l is called l -semgent.

For a segment s := (xi , . . . , x j) of x , we denote

S(s) :=
j−1

∑
k=i

xk

xk+1 + xk+2
, Head(s) := xi, Tail(s) := x j.

Here we define S(s) = 0, if the length of s is 1.
Let s1 , . . . , sr be all the segments of x in this order. Let lk be the length of sk .

Then (l1 , . . . , lr) is called the index of x . Note that

En(x) =
r

∑
k=1

S(sk)+
r

∑
k=1

Tail(sk−1)
Head(sk)

.

Here we regard sk+r = sk for k ∈Z .

THEOREM 2.4. Assume that min
x∈K �

n

En(x) = En(a) at a = (a1 , . . . , an) ∈ K �

n . Let

s1 , . . . , sr be all the segments of a in this order, and let lk be the length of sk . Then the
followings hold.

(1)
Tail(s1)
Head(s2)

=
Tail(s2)
Head(s3)

= · · · = Tail(sr−1)
Head(sr)

=
Tail(sr)
Head(s1)

.

(2) Assume that a = (s1 , 0 , s2 , 0 , . . . , sr , 0) , and let σ be a permutation of {1 ,
2 , . . . , r} . Then there exist real numbers t1 > 0 , t2 > 0 , . . . , tr > 0 such that

b :=
(
t1sσ(1), 0, t2sσ(2), 0, . . . , trsσ(r), 0

)
satisfies En(b) = En(a) .

Proof. (1) Since En(a1+k,a2+k, . . . ,an+k) = En(a1,a2, . . . ,an) , we may assume
a = (s1 , 0 , s2 , 0 , . . . , sr , 0) . Let xi := Head(si) , yi := Tail(si) . Define t1 , . . . , tr
by t1 := 1 and

t j :=
y1y2 · · ·y j−1

x2x3 · · ·x j
·
(

x1x2 · · ·xr

y1y2 · · ·yr

) j−1
r

for j = 2, 3, . . . , r . It is easy to see that

t j−1y j−1

t jx j
= r

√
y1 · · ·yr

x1 · · ·xr
=

tryr

t1x1
.
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Let

c = (t1s1, 0, t2s2, 0, . . . , trsr, 0).

Note that S(tisi) = S(si) . By AM-GM inequality,

En(a) =
r

∑
i=1

S(si)+
r

∑
i=1

yi−1

xi

�
r

∑
i=1

S(si)+ r · r

√
y1 · · ·yr

x1 · · ·xr

=
r

∑
i=1

S(tisi)+
r

∑
i=1

ti−1yi−1

tixi
= En(c).

Since En(a) is the minimum, we have En(a) = En(c) . By the equality condition of
AM-GM inequality, we have t1 = t2 = · · · = tr = 1. Thus

y j−1

x j
= r

√
y1 · · ·yr

x1 · · ·xr
,

and we have (1).

(2) By the same argument as (1), we conclude that there exists positive integers
t ′1 , . . . , t ′r such that

b := (t ′1sσ(1), 0, t ′2sσ(2), 0, . . . , t ′rsσ(r), 0)

satisfies

En(b) =
r

∑
i=1

S(si)+ r · r

√
y1 · · ·yr

x1 · · ·xr
.

Thus En(b) = En(a) . �

REMARK 2.5. By the above theorem, we may assume that the index (l1 , . . . , lr)
of a satisfies l1 � l2 � · · ·� lr , if min

x∈K �

n

En(x) = En(a) . Thus, we always write the index

of such a in descending order.

DEFINITION 2.6. Assume that a ∈ K �

n satisfies the condition of the above theo-
rem. Then we define U(a) to be

U(a) :=
Tail(s1)
Head(s2)

=
Tail(s2)
Head(s3)

= · · · = Tail(sr−1)
Head(sr)

=
Tail(sr)
Head(s1)

.

Note that En(a) = rU(a)+
r

∑
k=1

S(sk) , for a = (s1 , 0 , s2 , 0 , . . . , sr , 0) .
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3. Bushell Theorem

We survey and improve the results of [1]. In this section, we denote

Ai(x) :=
xi

xi+1 + xi+2

B(x) :=
(
x2 + x3, x3 + x4, . . . , xn + x1, x1 + x2

)
R(x) :=

(
1
xn

,
1

xn−1
,

1
xn−2

, . . . ,
1
x1

)

T (x) =
(

xn

(x1 + x2)2 , . . . ,
xn+1−i

(xn+2−i + xn+3−i)2 , . . . ,
x1

(x2 + x3)2

)

for x = (x1 , . . . , xn) . We also denote the i-th element of B(x) by B(x)i = xi+1 + xi+2 .
R(x)i and T (x)i are also defined similarly. The symbol T (x) are used throughout this
article.

LEMMA 3.1. ([1] Lemma 3.2, 4.2) The above functions satisfy the followings.
(1) ∂iEn(x) = (R(B(x))n+1−i− (B(T (x)))n+1−i .

(2) (T 2(x))i =
xi(

1− (B(x))i∂iEn(x)
)2 .

(3) En(T (x))−En(x) =
n

∑
i=1

xi
(
∂iEn(x)

)2
(B(T (x)))n+1−i

.

(4) En(x)+En(y)
= En(x+y)+En(T (x)+T(y))

−
n

∑
i=1

(T (x)+T(y))n+1−i
(
∂iEn(x)+ ∂iEn(y)

)(
R(B(x))+R(B(y))

)
n+1−i · (B(T (x)+T(y)))n+1−i

.

Proof. (1) ∂iEn(x) =
1

xi+1 + xi+2
−
(

xi−2

(xi−1 + xi)2 +
xi−1

(xi + xi+1)2

)

= (R(B(x))n+1−i− (B(T (x)))n+1−i .

(2) (T (x))i =
xn+1−i

(B(x))2
n+1−i

. Combine this with (1), we obtain

(T 2(x))i =
(T (x))n+1−i

(B(T (x)))2
n+1−i

=
xi/(B(x))2

i(
(R(B(x)))n+1−i− ∂iEn(x)

)2 . (3.1.1)

Since (B(x))i · (R(B(x)))n+1−i = 1, we obtain (2).

(3) By the similar calculation as above, we obtain

En(T (x))−En(x) =
n

∑
i=1

(T (x))i

(B(T (x)))i
−

n

∑
i=1

xi

(B(x))i

=
n

∑
i=1

(
(T (x))n+1−i

(B(T (x)))n+1−i
− xi

(B(x))i

)
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=
n

∑
i=1

(
xi

(B(x))i
(
1− (B(x))i∂iEn(x)

) − xi

(B(x))i

)

=
n

∑
i=1

xi∂iEn(x)
1− (B(x))i∂iEn(x)

.

Since,

n

∑
i=1

xi∂iEn(x) =
n

∑
i=1

xi

xi+1 + xi+2
−

n

∑
i=1

xi−2xi

(xi−1 + xi)2 −
n

∑
i=1

xi−1xi

(xi + xi+1)2

=
n

∑
i=1

xi−1(xi + xi+1)
(xi + xi+1)2 −

n

∑
i=1

xi−1xi+1

(xi + xi+1)2 −
n

∑
i=1

xi−1xi

(xi + xi+1)2 = 0,

we obtain

En(T (x))−En(x) =
n

∑
i=1

xi∂iEn(x)
(

1
1− (B(x))i∂iEn(x)

−1

)

=
n

∑
i=1

xi
(
∂iEn(x)

)2
(B(T (x)))n+1−i

.

(4) Let a := xi , b := xi+1 + xi+2 = (B(x))i , c := yi , d := (B(y))i .

xi + yi

(B(x+y))i
+

(T (x)+T(y))n+1−i(
R(B(x))+R(B(y))

)
n+1−i

(3.1.2)

=
a+ c
b+d

+
a/b2 + c/d2

1/b+1/d
=

a
b

+
c
d

= Ai(x)+Ai(y)

By (1), we have

(T (x)+T (y))n+1−i

(B(T (x)+T(y)))n+1−i
− (T (x)+T(y))n+1−i(

R(B(x))+R(B(y))
)
n+1−i

=
(T (x)+T(y))n+1−i

(
∂iEn(x)+ ∂iEn(y)

)(
R(B(x))+R(B(y))

)
n+1−i · (B(T (x)+T(y)))n+1−i

. (3.1.3)

Take
n

∑
i=1

of (3.1.2) and (3.1.3), we obtain (4). �

THEOREM 3.2. ([1] Theorem 3.3)
(1) En(T (x)) � En(x) holds for x ∈ Kn . Moreover, if En(T (x)) = En(x) , then

T 2(x) = x holds.
(2) If min

x∈K �

n

En(x) = En(a) at a ∈ Kn , then the following holds.

T 2(a) = a, En(T (a)) = En(a).
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Proof. (1) En(T (x))� En(x) follows from Lemma 3.1 (3). Assume that En(T (x))
= En(x) . Then xi

(
∂iEn(x)

)2 = 0 (∀i = 1, . . . , n ), by Lemma 3.1 (3). Thus xi = 0 or
∂iEn(x) = 0. By Lemma 3.1 (2), we obtain (T 2(x))i = xi .

(2) If En is minimum at a , then ai = 0 or ∂iEn(a) = 0. By Lemma 3.1 (2), we
have (T 2(a))i = ai . We also have En(T (a)) = En(a) by Lemma 3.1 (3). �

LEMMA 3.3. ([1] Lemma 4.3) Let a, b , c , d , e be positive real numbers, and
p, q be real numbers. Assume that

p
1+ λa

(1+ λc)2 +q
1+ λb

(1+ λd)2 =
1

1+ λe
(3.3.1)

for all real numbers λ � 0 . Then the followings hold.
(1) If p = 0 , then q = 1 and b = d = e.
(2) If q = 0 , then p = 1 and a = c = e.
(3) If p �= 0 and q �= 0 , then c = d = e.

Proof. (1) Substitute λ = 0, p = 0 for (3.3.1), we have q = 1. In this case, (3.3.1)
is equivalent to

(1+ λb)(1+ λe) = (1+ λd)2.

As an equality of a polynomial in λ , we have b = d = e .

(2) can be proved similarly as (1).

(3) Let

g(λ ) := p(1+ λa)(1+ λd)2(1+ λe)
+q(1+ λb)(1+ λc)2(1+ λe)− (1+ λc)2(1+ λd)2. (3.3.2)

g(λ ) = 0 as a polynomial in λ . Thus

0 = g

(
−1

e

)
= −

(
1− c

e

)2
(

1− d
e

)2

,

and we have c = e or d = e .
Assume that d �= e . Then c = e . From (3.3.2), we obtain

p(1+ λa)(1+ λd)2+q(1+ λb)(1+ λe)2− (1+ λe)(1+ λd)2 = 0. (3.3.3)

Substitute λ = −1/e for (3.3.3), we obtain p(1− a/e)(1− d/e)2 = 0. Thus a = e .
Then

p(1+ λd)2 +q(1+ λb)(1+ λe)− (1+λd)2 = 0. (3.3.4)

Substitute λ = −1/e for (3.3.4), we have d = e . A contradiction. Thus d = e .
Similarly, we have c = e . �
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THEOREM 3.4.
(1) Assume that min

x∈Kn
En(x)= En(a)= En(b) at a , b∈K �

n and that a and b belong

to the same component. Then, there exists a real number μ > 0 such that a = μb .
(2) Assume that min

x∈Kn
En(x) = En(a) at a ∈ K◦

n . Then En(a) = n/2 . Moreover

a = (a, a, a , . . . , a) (∃a > 0 ), or a = (a, b, a , b , . . . , a , b) (∃a > 0 , b > 0 ).

Proof. Assume that min
x∈Kn

En(x) = En(a) = En(b) for a , b ∈ Kn , and that a and b

belong to the same component. Let λ > 0 be any real number.
If ai �= 0, then ∂iEn(a) = ∂iEn(λb) = 0. If ai = 0, then bi = 0 and (T (a))n+1−i =

0, (T (λb))n+1−i = 0. Thus we have

(T (a)+T(λb))n+1−i ·
(
∂iEn(a)+ ∂iEn(λb)

)
= 0

(∀i ∈Z). We use the Lemma 3.1 (4) with x = T (a) , y = λb . Since the numerators of
the fractions in ∑ in Lemma 3.1 (4) are zero, we have

En(a)+En(λb) = En(a+ λb)+En(T (a)+T(λb)).

Since En(λb) = En(b) = En(a) is minimum, we have

En(a+ λb) = En(T (a)+T(λb)) = En(a).

Since En(x) is minimum at x = a+ λb for any λ > 0, we have

0 = ∂iEn(a+ λb) =
1

(B(a+ λb))i
− ai−2 + λbi−2

(B(a+ λb))2
i−2

− ai−1 + λbi−1

(B(a+ λb))2
i−1

(3.4.1)

when ai �= 0. Let

a :=
bi−2

ai−2
, b :=

bi−1

ai−1
, c :=

(B(b))i−2

(B(a))i−2
, d :=

(B(b))i−1

(B(a))i−1
,

e :=
(B(b))i

(B(a))i
, p :=

ai−2(B(a))i

(B(a))2
i−2

, q :=
ai−1(B(a))i

(B(a))2
i−1

.

Then, (3.4.1) become (3.3.1). It is easy to see that the cases (1) and (2) of Lemma 3.3
do not occur. Lemma 3.3 (3) implies

(B(b))i−2

(B(a))i−2
=

(B(b))i−1

(B(a))i−1
=

(B(b))i

(B(a))i
=:

1
μ

> 0.

Thus
ai+1 +ai+2 = B(u) = μB(v) = μ(bi+1 +bi+2) (3.4.2)

(∀i ∈Z). If n is odd, then ai = μbi (∀i ∈Z) from (3.4.2). Thus a = μb .
We treat the case n is even. Let w = (1, −1, 1, −1, . . . , −1)∈R

n . By elementary
linear algebra, we conclude that the solutions of the system of equations (3.4.2) is of
the form

a− μb = νw (∃ν ∈R).
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If a ∈ K �

n , then a and b have zeros at the same places. Thus, ν must be zero. Thus we
obtain (1).

We shall prove (2). Apply above argument to b = (a2 , a3 , . . . , an , a1) . If n is
odd, then a = μb . Thus μ = 1, and a1 = a2 = · · · = an . In this case, En(a) = n/2.

If n is even, a−μb = νw . Thus a = (a1 , a2 , a1 , a2 , . . . , a1 , a2) . Then En(a) =
n/2. �

COROLLARY 3.5. Assume that min
x∈Kn

En(x) = En(a) at a ∈ K �

n . Let s and t be

segments of a with the same length l . Then, there exists a real number c > 0 such that
s = ct .

Proof. We construct a vector b as in the proof of Theorem 2.4 (2), where σ is the
transposition of s and t . Then En(a) = En(b) . By Theorem 3.4, a = μb (∃μ > 0).
Thus s = ct (∃c > 0). �

COROLLARY 3.6. Assume that min
x∈Kn

En(x) = En(a) at a ∈ K �

n . Let s = (a1 , . . . ,

al) be a l -segment of a with l � 2 . Let U := U(a) . Then there exists a real number
μ > 0 such that(

U2

al
,
al−1

a2
l

,
al−2

(al−1 +al)2 ,
al−3

(al−2 +al−1)2 , · · · , a2

(a3 +a4)2 ,
a1

(a2 +a3)2

)
= μ(a1,a2,a3,a4, . . . ,al−1,al). (3.6.1)

Proof. We may assume that a = (s , 0 , . . .) . Rotate the elements of T (a) so that
the segment corresponding to s comes to be the same place with s , and we denote this
vector by b . Then the top segment of b is(

al

a2
l+2

,
al−1

a2
l

,
al−2

(al−1 +al)2 ,
al−3

(al−2 +al−1)2 , · · · , a2

(a3 +a4)2 ,
a1

(a2 +a3)2

)
.

By Theorem 3.2 (2), En(b) = En(T (a)) = En(a) . By Theorem 3.4, b = μa (∃μ > 0).
Since U = al/al+2 , al/a2

l+2 = U2/al . Thus, we have (3.6.1). �

4. Bushell-McLead Theorem

The aim of this section is to explain Theorem 4.3, according to [2]. In This section,
we denote

K�
n :=

{
(x1, . . . ,xn) ∈ K

�

n

∣∣ xn−1 = 1, xn = 0
}

yi :=
xi

xi+1 + xi+2
= Ai(x).

Note that yn = 0, yn−1 = xn−1/x1 , and yn−2 = xn−2 for x = (x1 , . . . , xn) ∈ K�
n . The

map Φ : K�
n → Φ(K�

n ) defined by Φ(x1 , . . . , xn) = (y1 , . . . , yn) is bijective. The in-
verse map Φ−1 is obtained as the solution of the system of equations yi(xi+1 + xi+2)−
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xi = 0 ( i = 1, . . . , n−2). Let

Pk(z1,z2, . . . ,zk) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z1 z1

−1 z2 z2

−1 z3 z3
. . .

. . .
. . .

. . .
. . .

. . .
−1 zk−2 zk−2

−1 zk−1 zk−1

−1 zk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Inductively, we can prove that xi = Pn−i−1(yi , yi+1 , . . . , yn−2) . By the properties of
determinant, we can prove the following lemma.

LEMMA 4.1. ([2] Lemma 3.1) The followings hold. Here we put P0 := 1 and
P−1 = 1 .
(1) Pk(z1 , . . . , zk) = zkPk−1(z1 , . . . , zk−1)+ zk−1Pk−2(z1 , . . . , zk−2) .
(2) For 1 � j < k ,

Pk(z1, . . . ,zk) = Pj(z1, . . . ,z j)Pk− j(z j+1, . . . ,zk)
+ z jPj−1(z1, . . . ,z j−1)Pk− j−1(z j+2, . . . ,zk).

LEMMA 4.2. ([2] Lemma 3.2) Let x = (x1 , . . . , xn) ∈ K�
n , and (y1 , . . . , yn) =

Φ(x1 , . . . , xn) . Assume that xi∂iEn(x) = 0 for all i = 1 , 2 , . . . , n . Then the followings
hold.
(1) yi = y2

1Pi−1(y1 , . . . , yi−1)Pn−i−1(yi , . . . , yn−2)
(2) y1− yi = y2

1yi−1Pi−2(y1 , . . . , yi−2)Pn−i−2(yi+1 , . . . , yn−2)

Proof. Put pi := Pi(y1 , . . . , yi) . Then (1), (2) can be written as (1) yi = y2
1pi−1xi ,

and (2) y1 − yi = y2
1yi−1pi−2xi+1 .

(1) As a formal rational function

xi∂iEn(x) =
xi

xi+1 + xi+2
− xi−2xi

(xi−1 + xi)2 − xi−1xi

(xi + xi+1)2

= yi−
y2
i−2xi

xi−2
− y2

i−1xi

xi−1
.

So, the condition xi∂iEn(x) = 0 can be represented as

yi

xi
=

y2
i−2

xi−2
+

y2
i−1

xi−1
(4.2.1)

as an equation in the field R (x1 , . . . , xn−2) . Here, we regard x0 = xn = 0, x−1 =
xn−1 = 1, y0 = yn = 0, and y−1 = yn−1 = 1/x1 . It is enough to show

yi

xi
= y2

1pi−1 (4.2.2)
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in R (x1 , . . . , xn−2) .
Consider the case i = 1. Then, p0 = 1. (4.2.1) can be written as y1/x1 = 1/x2

1 .
Multiply x2

1y1 , then we have (4.2.2).
Consider the case i = 2. By (4.2.1) and x1y1 = 1, y1 = P1(y1) = p1 , we have

y2

x2
=

y2
1

x1
= y3

1 = y2
1p1.

Thus we obtain (4.2.2).
Consider the case i � 3. We shall prove (4.2.2) by induction on i . By the induction

assumption, y j/x j = y2
1p j−1 for 1 � j < i . By Lemma 4.1 (1), pi−1 = yi−1pi−2 +

yi−2pi−3 . Thus

yi

xi
=

y2
i−2

xi−2
+

y2
i−1

xi−1
= y2

1(yi−2pi−3 + yi−1pi−2) = y2
1pi−1.

(2) Apply Lemma 4.1 (5) with k = n−2, j = i−1, then we obtain x1 = pi−1xi +
yi−1pi−2xi+1 . Since x1 = 1/y1 , after multiplying y2

1 to the both hand sides, we obtain
y1 = y2

1pi−1xi + y2
1yi−1pi−2xi+1 . By (1),

y1− yi = y1− y2
1pi−1xi = y2

1yi−1pi−2xi+1.

Thus we obtain (2). �

THEOREM 4.3. ([2] Proposition 3.3) If min
x∈Kn

En(x) = En(a) at a ∈ K �

n , then

U(a) � 1/2 .

Proof. We may assume a = (x1 , . . . , xn) ∈ K�
n . By Lemma 4.2 (1), (2), we have

0 � xi/(xi+1 +xi+2) = yi � y1 = 1/x1 =U(a) ( i = 1, . . . , n ). Assume that U(a) < 1/2.
Then x1 > 2, and 2xi � xi+1 + xi+2 . Take ∑ , we obtain

2
n

∑
i=1

xi <
n

∑
i=1

(xi+1 + xi+2) = 2
n

∑
i=1

xi.

A contradiction. �

5. Short segments

The following Theorem is an extenstion of [2] Lemma 4.1, [5] §4, §5 and [6] §5.

THEOREM 5.1. Assume that min
x∈Kn

En(x) = En(a) at a ∈ K �

n . Then a does not

contain segments of length 2 , 3 , 4 , 5 , 7 , or 9 .

Proof. Let s = (a1 , . . . , al) be a l -segment of a ( l � 2). Put U := U(a) , V :=
al−1 +al

al
> 1. Note that al+1 = 0, al+2 = al/U by Theorem 2.4 (1). By Theorem 4.3,

U � 1/2.
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Since al+2 +al+3 � al+2 = al/U , we have

0 � ∂l+1En(a) =
1

al+2 +al+3
− al−1

a2
l

− al

a2
l+2

� 1
al

(
U − (V −1)−U2).

Thus, we have V � 1 +U −U2 . Since 1 < V � 1 +U −U2 , we have U < 1 and

1 < V � 5
4
−
(

U − 1
2

)2

� 5
4

. Thus (U , V ) is included in the set

D :=
{
(u,v) ∈R

2
∣∣ 1/2 � u < 1, 1 < v � 1+u−u2

}
.

By (3.6.1),
a1al

U2 =
1
μ

=
a2a2

l

al−1
. Thus we have

a2 =
a1al−1

alU2 =
V −1
U2 a1.

Since ∂i−2En(a) = 0 ( i = 3, 4, . . . , l +2), we have

ai =
1

ai−4

(ai−3 +ai−2)2 +
ai−3

(ai−2 +ai−1)2

−ai−1.

Here a−1 = an−1 = Ua1 and a0 = an = 0. Inductively, we obtain

a3 =
1

an−1/a2
1

−a2 =
U −V +1

U2 a1 (if l � 3)

a4 =
V −U

U2 a1 (if l � 4)

a5 =
1+UV −V 2

U2V
a1 (if l � 5).

Thus, we define a series of rational functions by

f1(u,v) := 1, f2(u,v) :=
v−1
u2 , f3(u,v) :=

u− v+1
u2 , f4(u,v) :=

v−u
u2

fi(u,v) :=
1

fi−4(u,v)
( fi−3(u,v)+ fi−2(u,v))2 +

fi−3(u,v)
( fi−2(u,v)+ fi−1(u,v))2

− fi−1(u,v)

( i � 5). Then, ai = fi(U , V )a1 for 1 � i � l +2. Especially, fl+1(U , V ) = al+1/a1 =
0.

Since u− v + 1 > 0, v− u > 0, 1 + uv− v2 > 0 on D , we obtain fi(u , v) > 0
on D for i = 3, 4, 5 . Thus al+1 �= 0 for l = 2, 3, 4 . Therefore, a does not contain
segments of length 2, 3 , or 4.

Similarly, fi(u , v) > 0 on D for i = 6, 8, 10. We need numerical analysis to
prove this. If you have ‘Mathematica’, execute the following.
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<< Graphics‘ImplicitPlot‘;

fi[i_, u_, v_] := (a = 1; b = (v-1)/u^2;

c = (1+u-v)/u^2; d = (v-u)/u^2;

Do[(e=1/(a/(b+c)^2 + b/(c+d)^2) - d; a=b; b=c; c=d; d = e),

{k, 5, i, 1}]; e)

G1[i_]:=(Plot3D[fi[i, u, v], {u, 1/2, 1}, {v, 1, 1 + u - u^2}])

G2[i_]:=(ImplicitPlot[(u^2 - u + v - 1) fi[i, u, v] == 0,

{u, 1/2, 1}, {v, 1, 5/4}])

For example, you can observe the graph of f10(u , v) by G1[10]. You can also
draw the graph of f10(u , v) = 0 by G2[10].

(1/2, 1) (1, 1)

(1/2, 5/4)
f10 = 0

D

f10(u , 1+u−u2) have a zero of the order 2 at u = 1. Thus, as the above figure,
the graph of f10(u , v) = 0 tangents to the parabola v = 1+u−u2 at (1, 1) , but have
no common point with D . Thus we know that f10(u , v) > 0 on D .

We know also f8(u , v) > 0 on D similarly.
It is possible to prove f6(u , v) > 0 on D directly. f6(u , v) can be written as

f6(u,v) =
f6,1(u,v) f6,2(u,v)

u2v f6,3(u,v)
, here

f6,1(u,v) := 1− v+ v3−uv2

f6,2(u,v) := (1+ v− v2)+uv

f6,3(u,v) := −1+ v+ v3− v3 +uv2.

It is easy too see that f6,1(u , v) > 0, f6,2(u , v) > 0, f6,3(u , v) > 0 on D . Thus f6(u ,
v) > 0 on D . Since f6(u , v) > 0, f8(u , v) > 0 and f10(u , v) > 0 on D , we conclude
that a does not contain segments of length 5, 7 , or 9. �

COROLLARY 5.2. Assume that min
x∈Kn

En(x) = En(a) at a ∈ K �

n .

(1) If n = 12 , then the index of a must be (11) .
(2) If n = 23 , then the index of a must be one of the following 17 indexes: (22) , (20 ,

1) , (18 , 1 , 1) , (16 , 1 , 1 , 1) , (15 , 6) , (14 , 1 , 1 , 1 , 1) , (13 , 8) , (13 , 6 , 1) ,
(12 , 1 , 1 , 1 , 1 , 1) , (11 , 10) , (11 , 8 , 1) , (11 , 6 , 1 , 1) , (10 , 1 , 1 , 1 , 1 , 1 , 1) ,
(8 , 6 , 6) , (8 , 1 , 1 ,1 , 1 , 1 , 1 , 1) , (6 , 6 , 6 , 1) , (6 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1) .
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DEFINITION 5.3. Assume that min
x∈Kn

En(x) = En(a) at a ∈ K �

n , and that s = (s1 ,

s2 , . . . , sl) is a l -segment of a with l � 2. Then, we define

Vl(a) := 1+
sl−1

sl
,

Rl(a) :=
s1

sl
=

Head(s)
Tail(s)

.

If there are no segment of length l in a , we define Rl(a) := 1. Moreover we define
R1(a) := 1. By Corollary 3.5, Vl(a) and Rl(a) do not depend the choice of s .

THEOREM 5.4. Assume that min
x∈Kn

En(x) = En(a) at a ∈ K �

n .

(1) If a contains segment of length 6 , then the following holds.

1/2 � U(a) < 0.63894, R6(a) < 1/2

(2) If a contains a segment of length 8 , then the following holds.

1/2 � U(a) < 0.73254, R8(a) < 0.65994

(3) If a contains a segment of length 10 , then the following holds.

0.63893 < U(a) < 0.78332, R10(a) < 0.90213

(4) If a contains a segment of length 11 , then the following holds.

0.94197 <U(a) < 1

(5) If a contains a segment of length 12 , then the following holds.

0.73253 < U(a) < 0.81295, R12(a) < 1.20768

(6) If a contains a segment of length 13 , then the following holds.

0.90868 <U(a) < 1

(7) If a contains a segment of length 14 , then the following holds.

0.78331 < U(a) < 0.83098, R14(a) < 1.61530

(8) If a contains a segment of length 15 , then the following holds.

1/2 � U(a) < 0.63894 or 0.88942 < U(a) < 0.94198

(9) If a contains a segment of length 16 , then the following holds.

0.81294 < U(a) < 0.84220, R16(a) < 2.20409
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Proof. We use the same notation with the proof of Theorem 5.1. Moreover put
U := U(a) , V := Vl(a) , and

D′
i :=

{
(u,v) ∈ D

∣∣ fi(u,v) > 0
}
,

Di := D′
2∩D′

3∩D′
4∩·· ·∩D′

i.

Note that D′
2 = D′

3 = D′
4 = D′

5 = D′
6 = D′

8 = D′
10 = D .

(1) Consider the case l = 6. The graph Γ7 of f7(u ,v) = 0 on D is as following.

(1/2, 1) (1, 1)

(1/2, 5/4)

(0.5, 1.15239)

(0.63894, 1.23070)

D+

f7 = 0

−

This curve Γ7 is the hyper elliptic curve defined by

(2v−2v2− v3 + v4)+u(−1+2v+ v2−2v3)+u2v2 = 0.

Thus, we put

f7,1(v) :=
(v2 −1)(2v−1)+

√
(v−1)(v3 + v2 +3v−1)
2v2 .

We obtain the intersection of Γ7 and the parabola v = 1 + u− u2 on D by solving
f7(u , 1 + u− u2) = 0. This root is u ∼ 0.6389355101 (rounded up). If a has a 6-
segment, then f7(U , V ) = 0. Thus 1/2 � U < 0.6389355101. Since f6( f7,1(v) , v) is
monotonically increasing on 1.15239 < v < 1.23070, we have

R6(a) � 1/ f6( f7,1(1.23070),1.23070)< 0.42657 < 1/2

(2) Consider the case l = 8. The graph Γ9 of f9(u ,v) = 0 on D is as following.

(1/2, 1) (1, 1)(0.63894, 1)

(1/2, 5/4)

(0.5, 1.03252)

(0.63894, 1.23070)
(0.73254, 1.19593)

D

f9 = 0

f9 = 0
+

−

−

+
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We can calculate the root of f9(u , 1+u−u2) = 0 with 1/2 � u < 1 by

FindRoot[fi[9, u, 1+u-u^2] == 0, {u, 0.7}]

and we have u ∼ 0.7325361425 (rounded up). Thus 1/2 � U < 0.7325361425. Exe-
cute

Plot3D[1/fi[8, u, v], {u, 1/2, 0.7325361425}, {v, 1, 1 + u - u^2}]

Maximize[{1/fi[8, 0.7325361425, v], 1<v <= 5/4}, v] // N

and we conclude that

1
f8(u,v)

<
1

f8(0.73254,1.10735)
< 0.65994

on Γ9∩D . Thus R8(a) < 0.65994.
(3) Consider the case l = 10. The graph Γ11 of f11(u ,v) = 0 on D is as following.

(1/2, 1)
(1, 1)

(1/2, 5/4)

(0.63894, 1) (0.73254, 1)

(0.73254, 1.19593)
(0.78332, 1.16973)

+ +

f11 = 0 −

−

Thus 0.6389355100 < U < 0.7833151924. Since 1/ f10 < 1/ f10(0.78332,
1.09863) < 0.90213 on Γ11∩D , we have R10(a) < 0.90213.

(4) Consider the case l = 11. The graph of f12(u ,v) = 0 on D is a curve connect-
ing (1, 1) and (0.94197, 1.05466) as following.

(1/2, 1) (1, 1)

(1/2, 5/4)

(0.94197, 1.05466)
+

f12 = 0 −

Thus, 0.9419748741< U < 1.
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(5) Consider the case l = 12. The graph Γ13 of f13(u ,v) = 0 on D is as following.

(1/2, 1) (1, 1)(0.73256, 1) (0.78332, 1)

(1/2, 5/4)

(0.81295, 1.15207)
(0.78332, 1.16973)

+
+

f13 = 0

−

−

Thus, 0.7325361424<U < 0.8129451277. Since 1/ f13(u , v) < 1/ f13(0.81295,
1.08843) < 1.20768 on Γ13∩D , we have R12(a) < 1.20768.

(6) Consider the case l = 13. The graph of f14(u ,v) = 0 on D is as following. But
the curve connecting (1/2, 1.19728) and (0.55413, 1.24707) is included in D−D′

6
on which a6 < 0. Thus, we omit this curve.

(1/2, 1) (1, 1)

(1/2, 1.19728)

(0.55413, 1.24707)
(1/2, 5/4)

(0.94197, 1)

(0.94197, 1.05466)
(0.90869, 1.08297)

f14 = 0

+

+

−

−
−

Thus we have 0.9086897811< U < 1.

(7) Consider the case l = 14. The graph Γ15 of f15(u ,v) = 0 on D is as following.

(1/2, 1) (1, 1)(0.78332, 1) (0.81295, 1)

(1/2, 5/4)

(0.81295, 1.15207)
(0.83098, 1.14045)

+

+
f15 = 0

−

−

Thus, 0.7833151923<U < 0.8309779815. Since 1/ f14(u , v) < 1/ f14(0.83098,
1.08039) < 1.61530, we have R14(a) < 1.61530.
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(8) Consider the case l = 15. The graph Γ16 of f16(u ,v) = 0 on D is as following.

(1/2, 1) (1, 1)

(1/2, 1.19728)

(0.55413, 1) (0.90869, 1) (0.94197, 1)

(0.55413, 1.24707)
(0.63894, 1.23070)(1/2, 5/4)

(1/2, 0.08015) (0.90869, 1.08297)
(0.88943, 1.09835)

f16 = 0

+

+

+

−

−

−

−

Thus, 1/2 � U < 0.6389355101 or 0.8894259160 < U < 0.9419748742.
(9) Consider the case l = 16. The graph Γ17 of f17(u ,v) = 0 on D is as following.

(1/2, 1)
(1, 1)

(0.81295, 1) (0.83098, 1)

(1/2, 5/4)

(0.83098, 1.14045)
(0.84220, 1.13290)

+

+
f17 = 0

−

−

Thus, 0.8129451276<U < 0.8421985095. Since 1/ f16(u , v) < 1/ f16(0.84220,
1.07460) < 2.20409 on Γ17∩D , we have R16(a) < 2.20409. �

6. Proof of Theorem 1.1

THEOREM 6.1. Assume that min
x∈K23

E23(x) = E23(a) at a ∈ K �

23 . Then the index of

a can not be any of the following values.
(1) (6 , 6 , 6 , 1) , (6 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1) .
(2) (8 , 6 , 6) , (8 , 1 , 1 ,1 , 1 , 1 , 1 , 1) .
(3) (10 , 1 , 1 , 1 , 1 , 1 , 1) .
(4) (11 , 10) , (11 , 8 , 1) , (11 , 6 , 1 , 1) .
(5) (13 , 8) , (13 , 6 , 1) .
(6) (15 , 6) .
(7) (12 , 1 , 1 , 1 , 1 , 1) .
(8) (14 , 1 , 1 , 1 , 1) .
(9) (16 , 1 , 1 , 1) .

Proof. We use the same notation with the proof of Theorem 5.1. Let U := U(a) ,
Rl := Rl(a) , and let mi be the number of li -segments in a ( i = 1, . . . , q ), and let
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r := m1 +m2 + · · ·+mq be the number of segments in a . Then,

UrRm1
l1

· · ·Rmq
lq

= 1. (6.1.1)

(1) In these cases, U < 1, R6 < 1 by Theorem 5.4 (1). Thus (6.1.1) can not hold.
(2) In these cases, U < 1, R6 < 1, R8 < 1 by Theorem 5.4 (1), (2). Thus (6.1.1)

can not hold.
(3) In this case, U < 1, R10 < 1 by Theorem 5.4 (3). Thus (6.1.1) can not hold.
(4) In these cases, 0.94197 <U < 1 by Theorem 5.4 (4). But if a have a segment

of length 10, 8 or 6, then 0.63893 < U < 0.78332, 1/2 � U < 0.73254, 1/2 � U <
0.63894 respectively. There exists no such U .

(5) is similar to (4).
(6) Consider the case (15, 6) . 1/2 �U < 0.63894 and R6(a) < 1/2 by Theorem

5.4 (1), (8). Execute

Plot3D[Ri[15, u, v], {u, 1/2, 0.6389355101}, {v, 1, 1 + u - u^2}]

Maximize[{Ri[15, 0.6389355101, V], 1 <= V <= 5/4}, V] // N

Thus we have 1/ f15(u , v) < 1/ f15(0.63894, 1.09583) < 0.08952 on the set Γ16 ∩{
(u,v) ∈ D

∣∣ 1/2 � u � 0.63894
}
. Thus R15 < 0.08952 and (6.1.1) can not hold.

(7) In this case, 1 = U6R12 < 0.812956×1.20768 < 1. A contradiction.
(8) In this case, 1 = U5R14 < 0.830985×1.61530 < 1. A contradiction.
(9) In this case, 1 = U4R16 < 0.842204×2.20409 < 1. A contradiction. �

The left cases are (11) when n = 12, and (22) , (20, 1) , (18, 1, 1) when n = 23.

THEOREM 6.2.
(1) Assume that min

x∈K12
E12(x) = E12(a) at a ∈ K

�

12 . Then the index of a can not be

(11) . Thus, Theorem 1.1 (2) holds.

(2) Assume that min
x∈K23

E23(x) = E23(a) at a ∈ K �

23 . Then the index of a can not be

(22) .

Proof. We use the same notation with the proof of Theorem 6.1.
(1) We may assume a = (1, a2 , . . . , a11 , 0) . Note that a11 = Ua1 = U . We draw

the graph of f11(u , v)−u = 0 on D . Execute

Plot3D[Ai[11,u,v]-u, {u, 0.5, 1}, {v, 1, 1.25}]

ImplicitPlot[(u^2-u+v-1) (Ai[11,u,v]-u)==0, {u, 0.5, 1}, {v, 1, 1.25}]

We obtain the following.
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(1/2, 1) (1, 1)

(1/2, 5/4)

(0.60824, 1)

(0.68938, 1.21414)

f11 − u = 0

−

+

Thus 0.6082388995<U < 0.6893774937. But 0.94197 <U < 1 by Theorem 5.4 (4).
Thus the index (11) can not occur.

(2) We may assume a = (1, a2 , . . . , a21 , 0) , here a21 = U . The graph of f23(u ,
v) = 0 and the graph of f22(u , v)−u = 0 on D are as following.

(1/2, 1)
(1, 1)

(1/2, 5/4)

(1/2, 1.02526)

(1/2, 1.12731)

(1/2, 1.20417)

(0.51615, 1)

(0.51615, 1.24974)
(0.58706, 1.24242)

(0.68507, 1)

(0.72164, 1.20088)

(0.75947, 1)
(0.84484, 1) (0.84925, 1)

(0.85369, 1)

(0.81969, 1.14780)
(0.83898, 1.13510)

(0.85369, 1.12491)
(0.85648, 1.12292)

The graph Γ23 of f23(u , v) = 0 consists of five parts. The first is the curve con-
necting (1/2, 1.20417) and (0.51615, 1.24974) , the second is (1/2, 1.12731) –
(0.58706,1.24242) , the third is (1/2, 1.02526) – (0.51615, 1) , the fourth is (0.84925,
1) – (0.85648, 1.12292) , and the fifth is (0.85369, 1) – (0.85369,1.12491) . The
graph Γ′

22 of f22(u , v)− u = 0 consists of three parts. The first is (0.68507, 1) –
(0.72164, 1.20088) , the second is (0.75947, 1) – (0.81969, 1.14780) , and the third
is (0.84484, 1) – (0.83898, 1.13510) . As the above figure, Γ23∩Γ′

22 ∩D = /0 . Thus,
(U , V23) can not exists if the index of a is (23) . �

THEOREM 6.3. Assume that min
x∈K23

E23(x) = E23(a) at a ∈ K �

23 . Then, the index

of a can not be any of the following values. Thus, Theorem 1.1 (1) holds.
(1) (18 , 1 , 1) .
(2) (20 , 1) .

Proof. (1) We may assume that a = (1, a2 , . . . , a18 , 0 , a20 , 0 , a22 , 0) . Let
U :=U(a) and V :=V18(a) . Then, a22 =U , a20 =U2 , a18 =U3 , f19(U , V ) = 0 and
f18(U , V ) = U3 .
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The graph of f19(u , v) = 0 and the graph of f18(u , v)− u3 = 0 on D are as
following.

(1/2, 1)
(1, 1)

(1/2, 5/4)

(0.55362, 1) (0.64255, 1) (0.83098, 1)
(0.84220, 1) (0.84496, 1)

(0.63606, 1.23149)

(0.70658, 1.20733)
(0.84220, 1.13290)

(0.84454, 1.13129)

(0.84925, 1.12803)

The graph Γ19 of f19(u , v) = 0 consists of two parts. The first is the curve
C1 connecting (0.83098, 1) and (0.84925, 1.12803) , and the second is (0.84220,
1) – (0.84220, 1.13290) . The graph Γ′

18 of f18(u , v)− u3 = 0 consists of three
parts. The first is (0.55362, 1) – (0.63606, 1.23149) , the second is (0.64255, 1)
– (0.70658, 1.20733) , and the third is the curve C2 connecting (0.84496, 1) and
(0.84454, 1.13129) . As the above figure, Γ19 ∩Γ′

18 ∩D = C1 ∩C2 ∼ (0.8391429974,
1.0981287467) . Thus U ∼ 0.8391429974 and V ∼ 1.0981287467. In this case E23(a)
> 11.511 > 23/2 = E23(1, 1, . . . , 1) . So, E23(a) can not be minimum.

(2) We may assume a = (1, a2 , . . . , a20 , 0 , a22 , 0) . Let U := U(a) and V :=
V18(a) . Then a22 = U , a20 = U2 , f21(U , V ) = 0 and f20(U , V ) = U3 .

The graph of f21(u , v) = 0 and the graph of f20(u , v)− u2 = 0 on D are as
following.

(1/2, 1)
(1, 1)

(1/2, 5/4)
(1/2, 0.23198)

(0.51615, 0.24974)

(0.63606, 1)

(0.68507, 1.21575)

(0.70658, 1)

(0.75947, 1.18268)

(0.84220, 1) (0.84454, 1)

(0.84925, 1)

(0.84925, 1.12803)
(0.85369, 1.12491)

(0.84484, 1.13108)

The graph Γ21 of f21(u , v) = 0 consists of three parts. The first is (1/2, 1.23198)
– (0.51615, 1.24974) , the second is the curve C3 connecting (0.84220, 1) and (0.85369,
1.12491) , and the third is (0.84925, 1) – (0.84925, 1.12803) . The graph Γ′

20 of
f20(u , v)− u2 = 0 consists of three parts. The first is (0.63606, 1) – (0.68507,



632 TETSUYA ANDO

1.21575) , the second is (0.70658, 1) – (0.75947, 1.18268) , and the third is the
curve C4 connecting (0.84454, 1) and (0.84484, 1.13108) . As the above figure,
Γ21∩Γ′

20∩D =C3∩C4 ∼ (0.8388196493, 1.0346467269) . Thus U ∼ 0.8388196493,
and V ∼ 1.0346467269. Then E23(a) > 11.512 > 23/2 = E23(1, . . . , 1) . Thus E23(a)
can not be minimum. �
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