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A NEW PROOF OF SHAPIRO INEQUALITY

TETSUYA ANDO

(Communicated by 1. Franjic)

Abstract. We present a new proof of Shapiro cyclic inequality. Especially, we treat the case
n =23 precisely.

1. Introduction

Let n > 3 be an integer, x1, x3,..., X, be positive real numbers, and let

n
E xl, Z

1 Xi+1 +Xz+2

here we regard x;y, = x; for i €Z. In this article, we present a new proof of the
following theorem:

THEOREM 1.1.
(1) If n is an odd integer with 3 < n < 23, then

En(x1,...,xp) =2 n/2. (P)
Moreover, E,(x1, ..., Xy) =n/2 holds only if x; =xp = --- = x,,.
(2) If n is an even integer with 4 < n < 12, then (P,) holds. Moreover, the
equality holds only if (xi,..., x,) = (a, b, a, b, ..., a, b) (Ja>0, Ib > 0).
(3) If n is an even integer with n > 14 or an odd integer with n > 25, then there
exists x; > 0,..., x, >0 such that E,(x1, ..., x,) <n/2.

(3) was proved by [4] in 1979. It is said that (1) was proved by [6] in 1989. (2)
was proved by [2] in 2002. Note that [2] treats (1) to be an open problem. The author
also thinks we should give a more agreeable proof of (1). In this article, we give more
precise proof of (1) than [6].
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612 TETSUYA ANDO
2. Basic Facts

Throughout this article, we use the following notations:

P 1 Xi—2 Xi-1
E,(X) := —E,(x) = - o
iEn(X) () Xip1 +xip2 (o +x)?2 (i xi)?

8)6,‘ "
Ky o= {(x1,...,x2) ER" | x; 20,...,x, 20}
(X1,...,%,) ER" }x1>0,...,xn>0}
(X15..eyxn) € K7, }

K. = PR Y7) EE
" { (e n) (xi,xi+1) # (0,0) forany i €Z.
K

It is easy to see that there exists a € K;; such that

inf E,(x)=E,(a).
inf E,(x) = E,(a)

Thus, we consider E,(x) to be a continious function on K .

PROPOSITION 2.1. ([3])
(1) If (P,) is false, then (P,+2) is also false.
(2) If (P,) is false for an odd integer n > 3, then (P,+1) is also false.

Proof. Assume that there exists positive real numbers ap,..., a, such that
Eq(ay,.... ap) <n/2.

2
(1) Since, E,12(ay,...,ap,a1,a2) =1+ Ey(ay,...,a,) < le- , (Pyyo) is false.
(2) Note that
1
En+l(al7~~~7ar717ar7araar+la~~~7an)_En(al7~~~7an)_E

ar—1 ay ar—1

1
_ar—l-ar ar+arr1  ar+ar E
_ (ar—ar1)(ar—ary)
2a,(ay+ary)

for 1 < r < n. Thus, it is sufficient to show that there exists » such that (a, —a,_1)
(ar—ar+1) 0.
Assume that (@, —a,—1)(ar —a,41) >0 forall 1 <r < n. Since n is odd,
n 2 n
H(ar - ar+l) = H(ar—l - ar)(ar - ar+1) <0.

r=1 r=1

This is a contradiction. [
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PROPOSITION 2.2. ([4])

(1) E14(42, 2, 42, 4, 41, 5, 39, 4, 38, 2, 38, 0, 40, 0) <7. Thus (Pi4) is
false.

(2) E»5(34, 5, 35, 13, 30, 17, 24, 18, 18, 17, 13, 16, 9, 16, 5, 16, 2, 18, 0,
21, 0, 25, 0, 29, 0) < 25/2. Thus (P»s) is false.

Thus, Theorem 1.1 (3) is proved by Proposition 2.1 and 2.2. It is essential to show
(P12) and (P»3) for a proof of Theorem 1.1 (2) and (3).

DEFINITION 2.3. We say that x = (xj,..., x,) € K, and y = (y1,..., yu) € K,
belong to the same component if “x; =0 <= y; =0"forall i=1,..., n.

Let x= (xl,...,x,,) GK,',.Ifx,-,l =0, xi;«éo,x,-H #0,..., xj;éO,and Xj+1 =0
for i < j €Z, then we call (x;,..., x;) to be a segment of x, and we define j—i+1 to
be the length of this segment. A segment of length [ is called [ -semgent.

For a segment s := (x;,..., xj) of X, we denote

j—1
S(s) := S S— Head(s) :=x;, Tail(s) :=x;.
= ket 1 T X2
Here we define S(s) = 0, if the length of s is 1.
Let s1,..., s, be all the segments of x in this order. Let /; be the length of s;.
Then (Iy,..., I,) is called the index of x. Note that

En(x) = Z S(se) + 2 Tail(si1)
k=1

& Head(sy) -

Here we regard sy, = s for k €Z.

THEOREM 2.4. Assume that nel}(n E,(x) =E,(a) at a= (ay,..., a,) €K, . Let
X n
S1,..., Sy be all the segments of a in this order, and let 1 be the length of s;. Then the
followings hold.
(1) Tail(s;)  Tail(s;) ~ Tail(s, ;)  Tail(s,)
Head(s,) Head(s;) =~ Head(s,) Head(s;)’
(2) Assume that a= (s1, 0, sp, 0,..., s, 0), and let ¢ be a permutation of {1,

2,..., r}. Then there exist real numbers t; >0, 1t >0, ..., t, > 0 such that
b:= (tlSO'(l)v 0, Z‘25()'(2)7 0,... ) tI’SO'(r)a 0)
satisfies E,(b) = E,(a).

Proof. (1) Since E,(ajir,assks---,ank) = En(ay,az,...,a,), we may assume
a=(s;, 0, s, 0,..., s, 0). Let x; := Head(s;), y; := Tail(s;). Define #,,..., t,
by #; ;=1 and

fi= yiy2---yj-1 ] (X]Xz---xr>r
XpX3 0 Xj o\ Y12 Yr
for j=2,3,..., r. Itis easy to see that

Li_1yj—1 _ Y1 Vr Lryr

tixj X1 Xy X
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Let
c=(t151,0,052,0,...,1s,,0).

Note that S(#;s;) = S(s;). By AM-GM inequality,
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Since E,(a) is the minimum, we have E,(a) = E,(c). By the equality condition of
AM-GM inequality, we have t; =t = --- =1, = 1. Thus

yj—l ., yl...yr
xj Xy Xy

and we have (1).

(2) By the same argument as (1), we conclude that there exists positive integers
t{,..., 1. such that

b:= (t{sou), 0, tﬁsc@, 0,..., t;sg(,), 0)

satisfies

yl---yr
E,(b)= ) S(sj)+r-¢ .
()= B s(s) - 2

Thus E,(b) =E,(a). O

REMARK 2.5. By the above theorem, we may assume that the index (I;,..., I,)
of asatisfies 4 =L >--->1,,if m}(n E,(x) = E,(a). Thus, we always write the index
xeKy

of such a in descending order.

DEFINITION 2.6. Assume that a € K}, satisfies the condition of the above theo-
rem. Then we define U(a) to be

Ula) e Tail(s;)  Tail(sy) ~ Tail(s, ;)  Tail(s,)
(a) = Head(s;) Head(s;)  Head(s,) Head(s;)’

Note that E,(a) = rU(a)+ Y S(s¢), fora=(s;, 0, s, 0,..., 5., 0).
k=1
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3. Bushell Theorem
We survey and improve the results of [1]. In this section, we denote
Xi
Ai(X) = ————
i) Xit1 T Xig2

B(x) := (x2 + X3, X3+ X4, ..., Xn + X1, X +x2)
1 1 1 1

R(X) = <_7 ) 7~~~7_)
Xn Xpn—1 Xp—2 X1

Xn Xp4-1—i X1
T(x)= ey yenes
) ((X1+x2)2 (Xnt2—i+Xn43-i)? (x2 +X3)2)

..... Xn). We also denote the i-th element of B(x) by B(X); = Xj+1 + Xi12

R(x); and T (x); are also defined similarly. The symbol 7'(x) are used throughout this
article.

for x = (x;

LEMMA 3.1. ([1] Lemma 3.2, 4.2) The above functions satisfy the followings.
(1) aE( ) = (R(B(x ))n+l —i = (B(T(X)))nt1-i-

(2)
o= ( —(B(x )) En(x))* )
S X( n(x))
() EalTx = (B(T )n+1 i
(4) En(x) +En(y

)
= Ey(x+y) +E(T(x) + T(y))
i (T (%) + T(¥))nr1-i (9iEn(x) + AEn(Y))
S (RBX)) +R(BY))), 1y BT +T))ns1-i

Proof. (1) 0iE,(x) = 1 _ (( Xi—2 n Xi—1 )

Xit1 +Xit2 Xio1+x)? 0 (it xig)?

= (R0 11 (BT ()1
2) (T(x)); = Xnt1—i

W . Combine this with (1), we obtain
X) Jut1—i
2y (T _ 31/ (B(x))?
(o) BT (RBX)))ui1i— Ea(x))’ G.L1)

Since (B(x));- (R(B(X)))nt+1—-i = 1, we obtain (2).
(3) By the similar calculation as above, we obtain

n

ET(0) - E) = 3 T3

)i
(B(T(x) i=1

(T(x))

(BIT()));
& (T x
‘2( BT ()1 <B<x>>,-)

—
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i ((B(X))i(l — (B(x)idiEa(x)) (B(X))i>

Zx,a,'En(X) = 2 N — i XioXi i Xi—1Xi

= Sxivitxin A +xn)? A txi)?

:ixifl(xi‘f'xﬂrl _i Xio1Xipl  xn XiolXi
i=1 (xi+xi+l>2 i=1 (xi+xi+1>2 i=1 (xi+xi+l)

7 =0,

we obtain

n .

(B(x+y))i  (R(B(x))
_a+tc  a/b*+c/d> a
" b+d  1/b+1/d b

By (1), we have

(TX)+T(¥)nt1-i (T(x

(B(T(x)+T(y))n+1-i  (R(B(x

n

Take Z of (3.1.2) and (3.1.3), we obtain (4). [

i=1

THEOREM 3.2. ([1] Theorem 3.3)

(1) E,(T(x)) > Eu(x) holds for x € K,,. Moreover, if E,(T(x)) = E,(X), then
T?(x) = x holds.

(2)If ;IEI}(H E,(x) = E,(a) at a € K,, then the following holds.
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Proof. (1) E,(T(x)) > E,(x) follows from Lemma 3.1 (3). Assume that E,, (T (x))
— E,(x). Then x;(9E,(x))> =0 (Vi=1,..., n), by Lemma 3.1 (3). Thus x; = 0 or
dE,(x) =0. By Lemma 3.1 (2), we obtain (T2(x)); = x;.

(2) If E, is minimum at a, then a; =0 or J;E,(a) = 0. By Lemma 3.1 (2), we
have (T?(a)); = a;. We also have E,(T(a)) = E,(a) by Lemma 3.1 (3). [

LEMMA 3.3. ([1] Lemma 4.3) Let a, b, c, d, e be positive real numbers, and
P, q be real numbers. Assume that

1+ Aa 1+Ab 1

Pl T 2ar ~ 1+ 7e (3:3.1)

for all real numbers A > 0. Then the followings hold.
(1) If p=0,then gq=1and b=d =e.
(2) If q=0,then p=1and a=c=ce.
(3) If p#0 and q#0, then c=d =e.

Proof. (1) Substitute A =0, p=0 for (3.3.1), we have g = 1. In this case, (3.3.1)
is equivalent to

(1+Ab)(1+Ae) = (14 1d)%

As an equality of a polynomial in A, we have b=d =e.
(2) can be proved similarly as (1).
(3) Let

g(A) = p(1+Aa)(1+Ad)*(1+ Ae)
+q(1+Ab)(1+Ac)X(1+Ae) — (1+Ac)*(1+Ad)*. (3.3.2)

g(A) =0 as a polynomial in A. Thus

-o(D)--- (-8

and we have c=e or d =e.
Assume that d # e. Then ¢ = e. From (3.3.2), we obtain

p(14+2a)(1+Ad)*+q(1 +Ab) (14 Ae)*> — (14 Ae)(1+Ad)>=0.  (3.3.3)

Substitute A = —1/e for (3.3.3), we obtain p(1 —a/e)(1 —d/e)*> =0. Thus a = e.
Then
p(1+Ad)?> +q(14+2Ab)(1+Ae) — (1 +Ad)*=0. (3.3.4)

Substitute A = —1/e for (3.3.4), we have d = e. A contradiction. Thus d = e.
Similarly, we have c =e. U



618 TETSUYA ANDO
THEOREM 3.4.
(1) Assume that miIP E,(x) =E,(a) =E,(b) at a, b€ K}, andthat a and b belong
xek,

to the same component. Then, there exists a real number L > 0 such that a = ub.
(2) Assume that mi[? E,(x) = Ey(a) at a € K;;. Then E,(a) =n/2. Moreover
xeKy

a=(a, a, a,...,a)(3a>0),ora=(a, b,a, b, ...,a, b)(Ja>0,b>0).
Proof. Assume that m}? E,(x) = E,(a) = E,(b) for a, b € K,,, and that a and b
XEKpy

belong to the same component. Let A > 0 be any real number.
If a; #0, then J;E,(a) = d;E,(Ab) =0.If a; =0, then b; =0 and (T'(a)),+1-i =
0, (T(Ab)),4+1-; =0. Thus we have

(T(a) + T(Ab))yi1i - (AEn(a) + HE,(Ab)) =0

(Vi €Z). We use the Lemma 3.1 (4) with x = T'(a), y = Ab. Since the numerators of
the fractions in Y, in Lemma 3.1 (4) are zero, we have

E,(a)+E,(Ab) = E,(a+ Ab) + E,(T(a) + T(Ab)).
Since E,(Ab) = E,(b) = E,(a) is minimum, we have
E,(a+Ab)=E,(T(a)+T(Ab)) = E,(a).
Since E,(x) is minimum at x =a+ Ab for any A > 0, we have

1 _ ai_o+Ab; _ ai_1+Abi_y
(B(a+Ab))i  (Ba+Ab))7, (Ba+ab));,

0= E,(a+Ab) = (3.4.1)

when a; #0. Let

P R/ N (B(b))i—2 die (B(b))i—1
aia’ a4 (B(a))i2”  (B(a))i-1’

o (BD)); . ai-2(B(a))i ai-1(B(a))i
(B(a));’ (B(a)); , (B(a))7,

Then, (3.4.1) become (3.3.1). It is easy to see that the cases (1) and (2) of Lemma 3.3
do not occur. Lemma 3.3 (3) implies

(B(b))i2 _ (B(b))ix _ (B())i _ 1

2 = = =—>0
(B(a))i-2  (B(a))i-1  (B(a)); u
Thus
aiv1+aiy2 = B(a) = uB(v) = p(biv1+bit2) (34.2)
(VieZ). If n is odd, then a; = ub; (Vi €Z) from (3.4.2). Thus a = ub.
We treat the case n iseven. Let w= (1, —1, 1, —1,..., —1) € R". By elementary

linear algebra, we conclude that the solutions of the system of equations (3.4.2) is of
the form
a—ub=vw (3dveR).
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If a€ K, then a and b have zeros at the same places. Thus, v must be zero. Thus we
obtain (1).
We shall prove (2). Apply above argument to b = (a2, as,..., a,, a1). If n is

odd, then a = ub. Thus g =1, and @ =ap, =--- =a,. In this case, E,(a) =n/2.
If n iseven, a— ub=vw. Thus a= (a;, a», a1, az,..., a1, az). Then E,(a) =
n/2. O

COROLLARY 3.5. Assume that mi]PE"(X) =FE,(a) at a€K;. Let s and t be
xek,

segments of a with the same length 1. Then, there exists a real number ¢ > 0 such that
s =ct.

Proof. We construct a vector b as in the proof of Theorem 2.4 (2), where o is the
transposition of s and t. Then E,(a) = E,(b). By Theorem 3.4, a = ub (3u > 0).
Thus s =ct (dc >0). O

COROLLARY 3.6. Assume that m}? E,(x) =E,(a) ata€K,. Let s= (ay,...,
XeKy

a;) be a l-segment of a with 1 > 2. Let U := U (a). Then there exists a real number
> 0 such that

(U_2 a1 a—> a3 a a )
a’ @ (g1t a)? (qo+a)? O (az+as)? (a2 +a3)?
:,u(al,ag,a3,a4,...,al,l,al). (3.6.1)

Proof. We may assume that a = (s, 0,...). Rotate the elements of T (a) so that
the segment corresponding to s comes to be the same place with s, and we denote this
vector by b. Then the top segment of b is

a  a- () a3 a ai
al,,” al (@ ta) (@ataa)?’ 7 (a3+a)? (ar+as)?

By Theorem 3.2 (2), E,(b) = E,(T(a)) = E,(a). By Theorem 3.4, b = pa (3u > 0).
Since U =a;/aj1>, aj/al,, = U?/a;. Thus, we have (3.6.1). [

4. Bushell-McLead Theorem

The aim of this section is to explain Theorem 4.3, according to [2]. In This section,
we denote

K> ={(x1,...,%) €K, ’xn_lzl,xn:O}
Xi
= —— = Aj(X).
Y Xit1 +Xit2 i(x)
Note that y, =0, y,—1 = x,—1/x1, and y,_» = x,_» for x = (x1,..., x,) € K,,A. The

map @: K,,A — d)(KnA) defined by ®(xy,..., x,) = (y1,-.., yn) is bijective. The in-
verse map @~ ! is obtained as the solution of the system of equations y;(x;; | +x;12) —
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x;=0(i=1,...,n—2). Let

Pk(Zl7Z2a~~~7zk) =

-1 Z2 %2
=1z %
—1 Zk

Inductively, we can prove that x; = P,—;—1(yi, Yit1,---» Yn—2). By the properties of
determinant, we can prove the following lemma.

LEMMA 4.1. ([2] Lemma 3.1) The followings hold. Here we put Py := 1 and
P =1.
(1) P(z1,..o ) =zPo1(zt s 2e1) Y a—1Pe2(z1, -0 2—2)-
(2) For 1 < j <k,

Pk(Zla"'7Zk) :Pj(Zla"'7Zj)Pk7j(Zj+17"'aZk)
+Zij_1(Zl,...,Zj_l)Pk,j,l(qu.g,...,Zk).

LEMMA 4.2. ([2] Lemma 3.2) Let X = (x1,..., x,) € K, and (y1,..., yp) =
D(xy,..., x,). Assume that x;0,E,(x) =0 forall i=1, 2,..., n. Then the followings
hold.

(1) yi=YIPi(1s-r Yiet)Poict (Vi -0 Yn2)
(2) y1=yi=yyi1Pa(i. - Yie2)Paci2(Vig1s--r Yn2)

Proof. Put p; := P,(y1,..., yi). Then (1), (2) can be written as (1) y; = y%p,-,lxi,

and (2) y1 — yi = Y1Vi_ 1 Pi—2Xit1 -
(1) As a formal rational function

Xi Xi—2X; Xi—1X;
KOE(X) =~
Xit1 T Xip2 (xz—l +x1) (x, +xt+l)
2 2
i Vi M
=y
Xi—2 Xi—1

So, the condition x;d;E,(x) = 0 can be represented as

2 2
Vi Yi2 4 Yic1

4.2.1
Xi  Xi—2  Xi—] ( )

as an equation in the field R (xj,..., x,—2). Here, we regard xo = x, =0, x_; =
Xp—1=1,y0=yn=0,and y_; =y, = 1/x;. Itis enough to show

Vi
x—l_ :y%p,‘,1 (422)

1
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in R (xp,..., x,-2).

Consider the case i = 1. Then, pp = 1. (4.2.1) can be written as y; /x| = l/x%.
Multiply x?y;, then we have (4.2.2).

Consider the case i =2. By (4.2.1) and x1y; = 1, y; = Pi(y1) = p1, we have

2
Y2 _ Yy
= =-L=y=yip.
X2 X1
Thus we obtain (4.2.2).

Consider the case i > 3. We shall prove (4.2.2) by induction on i. By the induction
assumption, y;/x; = y%pj_l for 1 < j<i. By Lemma 4.1 (1), pi-1 = yi—1pi—2+
Yi-2pi-3- Thus

Yi Yia | Vi

= +—= y% (Yi—2Pi—3 +Yi—1pi2) = y%pifl-
Xi  Xi2 X1

(2) Apply Lemma 4.1 (5) with k =n—2, j=1i—1, then we obtain x| = p;_1x; +
Yi—1Pi—2Xi+1. Since x; = 1/yy, after multiplying y% to the both hand sides, we obtain
yi = Yipio1Xi+ y}yic1pi—2xit1. By (1),

Yi—=Yi=y1— y%piflxi = y%yiflpi72xi+l .

Thus we obtain (2). [

THEOREM 4.3. ([2] Proposition 3.3) If nel}?E”(X) = Ey(a) at a € K, then
XEKy
U(a) > 1/2.

Proof. We may assume a = (xi,..., X,) € KnA. By Lemma 4.2 (1), (2), we have
0<xi/(Xiv1 +xi2) =yi<yi=1/x;=U(a) (i=1,..., n). Assume that U(a) < 1/2.
Then x; > 2, and 2x; < x;11 +x;42. Take 3, we obtain

n n n
22)6,‘ < 2()6,‘4,.1 —|—xi+2) = 22)6,‘.
i i=1

A contradiction. [

5. Short segments

The following Theorem is an extenstion of [2] Lemma 4.1, [5] §4, §5 and [6] §5.

THEOREM 5.1. Assume that glKnnE,,(x) =E,(a) at a€ K;,. Then a does not
contain segments of length 2, 3, 4, 5, 7, or 9.

Proof. Let s = (ay,..., a;) be a l-segment of a (I >2). Put U:=U(a), V:=
1Ty Note that @y =0, ajss — a;/U by Theorem 2.4 (1). By Theorem 4.3,

a
U>1/2.
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Since a2+ aj3 = ajp0 = al/U, we have

1 aj—q a 1 2
0<dEfd)=s———k — — — — < —(U—-(V=1)=U").
b+1£:(a) apyr+apes alz a,2+2 az( ( ) )

Thus, we have V < U?. Since 1 <V < 1+U—U?, we have U < 1 and

1
5 1
1<V<>— (U~

D:z{(u,v)ER2 [ 1/2<u<1, 1<v<1+u—u?}.

U —
5 L .
< 1 Thus (U, V) is included in the set

1 2
By (3.6.1), 2L — — — 24 Thyg we have
U uooa

aja;—q V-1
a = = —5—daj.
a1U2 U2

Since d;2E,(a) =0 (i=3,4,...,1+2), we have

1
ai—4 ai—3

(ai3+ai2)?*  (ai2+ai1)?

a; = —dj_1.

Here a_; = a,—1 =Ua; and ap = a, = 0. Inductively, we obtain

1 U-V+1
az = —ay = ap afl1>3)
an_1/a2 U?
VU
aq = —U2 aq (lfl>4)
1+UV —V?2
%:—ivﬁf—m (f 1> 5).

Thus, we define a series of rational functions by

) =1, play) = 0 fln) =" ful) =

1
Sima(u,v) N Sima(u,v)
(Jci73(u»v)+ﬁ72(uvv))2 (fif2(u7v) +fi71(u7v))2

(i=5). Then, a; = fi(U, V)a;y for 1 <i<I1+2.Especially, fj.1(U,V)=a+1/a1 =
0.

u

fi(uﬁv> = _fi—l(u7V)

Since u—v+1>0, v—u>0, 1 +uv—v>>0 on D, we obtain f;(u, v) >0
on D fori=3,4,5. Thus a1 # 0 for [ =2, 3, 4. Therefore, a does not contain
segments of length 2, 3, or 4.

Similarly, f;(#, v) >0 on D for i =6, 8, 10. We need numerical analysis to
prove this. If you have ‘Mathematica’, execute the following.
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<< Graphics‘ImplicitPlot‘;
fili_, u_, v_] := (a =1; b = (v-1)/u"2;
c = (1+u-v)/u~2; d = (v-u)/u"2;
Do[(e=1/(a/(b+c)"2 + b/(c+td)"2) - d; a=b; b=c; c=d; 4 = e),
{k, 5, i, 1}]; e)
G1[i_]:=(Plot3D[fili, u, v], {u, 1/2, 1}, {v, 1, 1 + u - u~2}])
G2[i_]:=(ImplicitPlot[(u"2 - u + v - 1) fi[i, u, v] == 0,
{u, 1/2, 1}, {v, 1, 5/4}])

For example, you can observe the graph of fjo(u, v) by G1[10]. You can also
draw the graph of fio(u, v) =0 by G2[10].

(1/2.5/4) fio =0

(1/2,1) (L1

Sio(u, 1+u— uz) have a zero of the order 2 at u = 1. Thus, as the above figure,
the graph of fio(u, v) = 0 tangents to the parabola v = 1 +u—u? at (1, 1), but have
no common point with D. Thus we know that fjo(«, v) >0 on D.

We know also fg(u, v) >0 on D similarly.

It is possible to prove fg(u, v) > 0 on D directly. f¢(u, v) can be written as

f67l (u’ V)f6,2(u7 V)
fﬁ(u,v) - u2vf673(u,v)

, here

for(u,v):i=1—v+v>—w?

for(u,v) i= (14+v—v?) +uv
fos(u,v) :=—1 v+ =V

It is easy too see that fe 1 (u, v) >0, feo(u, v) >0, fe3(u, v) >0 on D. Thus fs(u,
v) >0 on D. Since fg(u, v) >0, fz(u, v) >0 and fio(u, v) >0 on D, we conclude
that a does not contain segments of length 5, 7,0r 9. [

COROLLARY 5.2. Assume that mi]gl E,(x)=E,(a) atacK,.
xek,

(1) If n =12, then the index of a must be (11).
(2) If n =23, then the index of a must be one of the following 17 indexes: (22), (20,
1), (18, 1, 1), (16, 1, 1, 1), (15, 6), (14, 1, 1, 1, 1), (13, 8), (13, 6, 1),
(12, 1, 1, 1, 1, 1), (11, 10), (11, 8, 1), (11, 6, 1, 1), (10, 1, 1, 1, 1, 1, 1)
(8,6,6), (8 1,1,1,1,1,1,1),(6,6,6,1),(6,1,1,1,1,1, 1,1, 1).

i

>
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DEFINITION 5.3. Assume that miI?En(x) =E,(a) at a€ K, and that s = (51,
XEKpy

$2,..., 8) isa [-segment of a with [ > 2. Then, we define
S
‘/I(a) = 1 + gv
51
s Head(s)
Ri(a):=— =
/(@) s; Tail(s)

If there are no segment of length / in a, we define R;(a) := 1. Moreover we define
Ri(a) := 1. By Corollary 3.5, V;(a) and R;(a) do not depend the choice of s.

THEOREM 5.4. Assume that milgl E,(x)=E,(a) atac K.
xeky,

(1) If a contains segment of length 6, then the following holds.
1/2<U(a) <0.63894, Rg(a) <1/2
(2) If a contains a segment of length 8, then the following holds.
1/2<U(a) <0.73254, Rg(a) < 0.65994
(3) If a contains a segment of length 10, then the following holds.
0.63893 < U(a) < 0.78332, Rjp(a) <0.90213
(4) If a contains a segment of length 11, then the following holds.
094197 <U(a) < 1
(5) If a contains a segment of length 12, then the following holds.
0.73253 < U(a) < 0.81295, Rj»(a) < 1.20768
(6) If a contains a segment of length 13, then the following holds.
0.90868 < U(a) < 1
(7) If a contains a segment of length 14, then the following holds.
0.78331 < U(a) < 0.83098, Rj4(a) < 1.61530
(8) If a contains a segment of length 15, then the following holds.
1/2<U(a) <0.63894 or 0.88942 < U(a) < 0.94198
(9) If a contains a segment of length 16, then the following holds.

0.81294 < U(a) < 0.84220, Rjg(a) < 2.20409
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Proof. We use the same notation with the proof of Theorem 5.1. Moreover put
U:=U(a), V:=V/(a),and
D)= {(u,v) eD | Si(u,v) > 0}7
D;:=D,NDsNDyN---ND..

Note that D}, = Dy = D, = D, = D}, = Dy = D, = D.
(1) Consider the case [ = 6. The graph I'; of f7(u,v) =0 on D is as following.

(1/2,5/4) (0.63894, 1.23070)

(0.5,1.15239)

(1/2,1) (1, 1)

This curve I'7 is the hyper elliptic curve defined by
(2v =202 = v Fu(—1+2v v =203 v = 0.

Thus, we put

VP =1D)@2v—1)++/ =13 +v2+3v—1)
212

fralv) =

We obtain the intersection of T'; and the parabola v = 1+ u —u? on D by solving
f1(u, 14+ u—u?)=0. This root is u ~ 0.6389355101 (rounded up). If a has a 6-
segment, then f7(U, V) =0. Thus 1/2 < U < 0.6389355101. Since fs(f7,1(v), v) is
monotonically increasing on 1.15239 < v < 1.23070, we have

Re(a) < 1/fs(f7.1(1.23070),1.23070) < 0.42657 < 1/2
(2) Consider the case [ = 8. The graph I'g of fo(u,v) =0 on D is as following.

(1/2,5/4) (0.63894, 1.23070)

(0.73254,1.19593)

(0.5,1.03252)

(1/2,1) (0.63894,1) (1,1)
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We can calculate the root of fo(u, 14+u—u®) =0 with 1/2<u <1 by
FindRoot [fi[9, u, 1+u-u~2] == 0, {u, 0.7}]

and we have u ~ 0.7325361425 (rounded up). Thus 1/2 < U < 0.7325361425. Exe-
cute

Plot3D[1/fi[8, u, v], {u, 1/2, 0.7325361425}, {v, 1, 1 + u - u"2}]
Maximize [{1/fi[8, 0.7325361425, v], 1<v <= 5/4}, v] // N

and we conclude that

1 1

0.65994
Foly) = 7:(0.73254,1.10735) ©

on I'gND. Thus Rg(a) < 0.65994.
(3) Consider the case I = 10. The graph 'y of f1;(u,v) =0 on D is as following.
1/2,5/4

(1/2,5/4) (0.73254, 1.19593)
(0.78332,1.16973)

(1/2,1)
(0.63894, 1) (0.73254,1) (1,1)

Thus 0.6389355100 < U < 0.7833151924. Since 1/fio < 1/f10(0.78332,
1.09863) < 0.90213 on T'y;; N D, we have Ryo(a) < 0.90213.

(4) Consider the case I = 11. The graph of fi2(«,v) =0 on D is a curve connect-
ing (1, 1) and (0.94197, 1.05466) as following.

(1/2,5/4)

(0.94197,1.05466)

(1/2,1) (1,1)

Thus, 0.9419748741 < U < 1.
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(5) Consider the case I = 12. The graph I'j3 of fi3(u,v) =0 on D is as following.
(1/2,5/4)

(0.78332,1.16973)
(0.81295,1.15207)

(1/2,1) (0.73256,1)  (0.78332,1)  (1,1)

Thus, 0.7325361424 < U < 0.8129451277.. Since 1/fi3(u, v) < 1/f13(0.81295,
1.08843) < 1.20768 on T'y;3N D, we have Rj»(a) < 1.20768.

(6) Consider the case [ = 13. The graph of fi14(u,v) =0 on D is as following. But
the curve connecting (1/2, 1.19728) and (0.55413, 1.24707) is included in D — Dy
on which ag < 0. Thus, we omit this curve.

(0.55413,1.24707)

(1/2,5/4)
(1/2,1.19728)

+ (0.90869, 1.08297)
(0.94197,1.05466)
fia=0
(1/2,1) (0.94197,1) (1,1)

Thus we have 0.9086897811 < U < 1.

(7) Consider the case [ = 14. The graph T'j5 of fi5(u,v) =0 on D is as following.
(1/2,5/4)

(0.81295,1.15207)
(0.83098,1.14045)
+

fi5=0

(1/2,1) (0.78332,1) (0.81295,1) (1,1)

Thus, 0.7833151923 < U < 0.8309779815. Since 1/ fi4(u, v) < 1/£14(0.83098,
1.08039) < 1.61530, we have Ry4(a) < 1.61530.
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(8) Consider the case I = 15. The graph I'js of fic(u,v) =0 on D is as following.

(0.55413,1.24707)
(1/2,5/4) (0.63894, 1.23070)

(1/2,1.19728)

(0.88943,1.09835)

(1/2,0.08015) (0.90869, 1.08297)

(1/2,1)

(1,1)
(0.55413, 1) (0.90869,1)  (0.94197,1)

Thus, 1/2 < U < 0.6389355101 or 0.8894259160 < U < 0.9419748742.
(9) Consider the case I = 16. The graph I'j7 of f17(u,v) =0 on D is as following.

(1/2,5/4)

(0.83098,1.14045)
0.84220, 1.13290)

fir=20

(1,1)
(1/2,1) (0.81295,1) (0.83098,1)

Thus, 0.8129451276 < U < 0.8421985095. Since 1/ fi4(u, v) < 1/f16(0.84220,
1.07460) < 2.20409 on T';7ND, we have Rj(a) < 2.20409. [

6. Proof of Theorem 1.1

THEOREM 6.1. Assume that mli(n E»3(x) = Ex3(a) at a € K55, Then the index of
XEK23

a can not be any of the following values.

(1) (6,6,6,1),(6,1,1,1,1,1,1, 1, 1).
(2) (8,6,6),(8,1,1,1, 1,1, 1, 1).
(3) (10, 1,1, 1, 1, 1, 1).

(4) (11, 10), (11, 8, 1), (11, 6, 1, 1).
(5) (13, 8), (13, 6, 1).

(6) (15, 6).

(7) (12,1, 1, 1
(8) (14,1, 1, 1
(9) (16,1, 1, 1

, 1, 1),
, 1
).
Proof. We use the same notation with the proof of Theorem 5.1. Let U := U(a),
R; := R;(a), and let m; be the number of /;-segments in a (i =1,..., ¢g), and let

)



A NEW PROOF OF SHAPIRO INEQUALITY 629

r:=mi+my+---+m, be the number of segments in a. Then,

U'R" ..-RZ" =1. (6.1.1)

(1) In these cases, U < 1, Rg < 1 by Theorem 5.4 (1). Thus (6.1.1) can not hold.

(2) In these cases, U < 1, Rg < 1, Rg < 1 by Theorem 5.4 (1), (2). Thus (6.1.1)
can not hold.

(3) In this case, U < 1, Ry9 < 1 by Theorem 5.4 (3). Thus (6.1.1) can not hold.

(4) In these cases, 0.94197 < U < 1 by Theorem 5.4 (4). But if a have a segment
of length 10, 8 or 6, then 0.63893 < U < 0.78332, 1/2 < U < 0.73254, 1/2< U <
0.63894 respectively. There exists no such U.

(5) is similar to (4).

(6) Consider the case (15, 6). 1/2<U < 0.63894 and R¢(a) < 1/2 by Theorem
5.4 (1), (8). Execute

Plot3D[Ri[15, u, v], {u, 1/2, 0.6389355101}, {v, 1, 1 + u - u"2}]
Maximize [{Ri[15, 0.6389355101, V], 1 <= V <= 5/4}, V] // N

Thus we have 1/fis(u, v) < 1/f15(0.63894, 1.09583) < 0.08952 on the set T'jgN
{(u,v) €D | 1/2<u <0.63894}. Thus Rys5 < 0.08952 and (6.1.1) can not hold.

(7) In this case, 1 = U°R;» < 0.81295° x 1.20768 < 1. A contradiction.
(8) In this case, 1 = U R4 < 0.83098 x 1.61530 < 1. A contradiction.
(9) In this case, 1 = U*R;¢ < 0.84220* x 2.20409 < 1. A contradiction. [

The left cases are (11) when n=12, and (22), (20, 1), (18, 1, 1) when n=23.

THEOREM 6.2.

(1) Assume that xrélli{rll2 E\»(x) =E»(a) at a € K;,. Then the index of a can not be
(11). Thus, Theorem 1.1 (2) holds.

(2) Assume that Xlgll(rzl3 Ex3(x) = Ex3(a) at a € K55. Then the index of a can not be
(22).

Proof. We use the same notation with the proof of Theorem 6.1.

(1) We may assume a = (1, az,..., a1, 0). Note that ay; = Ua; = U. We draw
the graph of fi1(u, v) —u =0 on D. Execute

Plot3D[Ai[11,u,v]-u, {u, 0.5, 1}, {v, 1, 1.25}]
ImplicitPlot[(u"2-u+v-1) (Ai[11,u,v]-u)==0, {u, 0.5, 1}, {v, 1, 1.25}]

We obtain the following.
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(1/2,5/4) (0.68938, 1.21414)

(1/2,1)  (0.60824,1) (1,1)

Thus 0.6082388995 < U < 0.6893774937. But 0.94197 < U < 1 by Theorem 5.4 (4).
Thus the index (11) can not occur.

(2) We may assume a = (1, ay,..., a1, 0), here ap; = U. The graph of f>3(u,
v) = 0 and the graph of f>;(u, v) —u =0 on D are as following.

(0.51615, 1.24974)

5 1.24242
(1/2,5/1) (0.58706, )

(0.72164, 1.20088)

(0.81969, 1.14780)
(0.83898,1.13510)
(0.85369,1.12491)
(0.85648,1.12292)

(1/2,1.20417)

(1/2,1.12731)

(1/2,1.02526)

"(0.51615,1) (0.68507, 1)
(0.75947,1)
(0.84484,1)

\\(0.85369, 1) L1

(0.84925,1)

The graph T3 of f>3(u, v) =0 consists of five parts. The first is the curve con-
necting (1/2, 1.20417) and (0.51615, 1.24974), the second is (1/2, 1.12731) —
(0.58706, 1.24242) , the thirdis (1/2, 1.02526) — (0.51615, 1), the fourthis (0.84925,
1) — (0.85648, 1.12292), and the fifth is (0.85369, 1) — (0.85369,1.12491). The
graph T, of f»(u, v) —u =0 consists of three parts. The first is (0.68507, 1) —
(0.72164, 1.20088), the second is (0.75947, 1) — (0.81969, 1.14780), and the third
is (0.84484, 1) — (0.83898, 1.13510). As the above figure, I';3NI%, "D = 0. Thus,
(U, Va3) can not exists if the index of a is (23). O

THEOREM 6.3. Assume that mli{n Ex3(x) = Ex3(a) at a € K35. Then, the index
XeKy3

of a can not be any of the following values. Thus, Theorem 1.1 (1) holds.
(1) (18, 1, 1).
(2) (20, 1).

Proof. (1) We may assume that a = (1, aa,..., aig, 0, az, 0, ax, 0). Let
U:= U(a) and V .= Vlg(a). Then, a22=U, a20:U2, aly =U3, f19(U, V) =0 and
flS(U7 V):U3
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The graph of fio(u, v) =0 and the graph of fig(u, v) —u® =0 on D are as
following.

(0.63606, 1.23149)
(0.70658, 1.20733)

(1/2,5/4)

(0.84220, 1.13290)
(0.84454,1.13129)
(0.84925,1.12803)

(1/2,1
(0.55362,1)  (0.64255, 1) (0'?3%2321(,{1)’ (0.84496,1)  (1,1)

The graph T'y9 of fio(u, v) =0 consists of two parts. The first is the curve
C; connecting (0.83098, 1) and (0.84925, 1.12803), and the second is (0.84220,
1) — (0.84220, 1.13290). The graph Iy of fig(u, v) —u® =0 consists of three
parts. The first is (0.55362, 1) — (0.63606, 1.23149), the second is (0.64255, 1)
— (0.70658, 1.20733), and the third is the curve C, connecting (0.84496, 1) and
(0.84454, 1.13129). As the above figure, T'jg NIy N D = C; NC, ~ (0.8391429974,
1.0981287467). Thus U ~ 0.8391429974 and V ~ 1.0981287467 . In this case E»3(a)
> 11.511>23/2=E»(1, 1,..., 1). So, Ex3(a) can not be minimum.

(2) We may assume a = (1, ap,..., ax, 0, axn, 0). Let U:=U(a) and V :=
Vlg(a). Then ayy = U, ayy = Uz’ f21(U, V) =0 and fzo(U, V) = U3.

The graph of f;(u, v) =0 and the graph of foo(u, v) —u> =0 on D are as
following.

(0.51615, 0.24974)

(1/2,5/4)

0.68507, 1.21575
(1/2,0.23198) (0.685 )

(0.75947,1.18268)

(0.84484,1.13108)
(0.84925,1.12803)
(0.85369,1.12491)

(1/2,1)
(0.63606,1)  (0.70658, 1) (0.84925,1) (1,1)

(0.84220, 1) (0.84454, 1)

The graph Iy of f2;(u, v) =0 consists of three parts. The firstis (1/2, 1.23198)
—(0.51615, 1.24974), the second is the curve C3 connecting (0.84220, 1) and (0.85369,
1.12491), and the third is (0.84925, 1) — (0.84925, 1.12803). The graph I'y, of
fao(u, v) —u? =0 consists of three parts. The first is (0.63606, 1) — (0.68507,
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1.21575), the second is (0.70658, 1) — (0.75947, 1.18268), and the third is the
curve Cy connecting (0.84454, 1) and (0.84484, 1.13108). As the above figure,
Iy NThyND =C3NCy ~ (0.8388196493, 1.0346467269). Thus U ~ 0.8388196493,
and V ~ 1.0346467269. Then Ey3(a) > 11.512>23/2 = Eps(1,..., 1). Thus Ex3(a)
can not be minimum. U
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