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ON MONOTONICITY PROPERTIES OF THE Lp–CENTROID BODIES

WANG WEIDONG, LU FENGHONG AND LENG GANGSONG

(Communicated by Y. Burago)

Abstract. Monotonicity properties for the quermassintegrals and dual quermassintegrals of the
Lp -centroid bodies are proved and equality cases are investigated.

1. Introduction

Let K n denote the set of convex bodies (compact, convex subsets with non-empty
interiors) in Euclidean space R

n and let K n
o denote the set of convex bodies containing

the origin in their interiors in R
n . Denote by S n

o the set of star bodies (about the origin)
in R

n and by Sn−1 the unit sphere in R
n . By V (K) we denote the n -dimensional

volume of body K and for the standard unit ball B in R
n we set ωn = V (B) .

The notion of classical centroid body was given by Petty (see [13] or books [3]
and [14]) and it is one of the most important notions in the Brunn-Minkowski theory.
For further study see Petty’s seminal work [13]. During the past two decades, a number
of important results for the classical centroid bodies have been obtained by Milman and
Pajor [11, 12], Lutwak [5, 6], Zhang [19, 20, 21] (see also books [3] and [14]).

In 1997, Lutwak and Zhang ([10]) extended the notion of classical centroid body.
They introduced the Lp -centroid body as follows: for each compact star-shaped (about
the origin) K ⊂ R

n and for real number p � 1, the Lp -centroid body ΓpK of K is the
origin-symmetric convex body whose support function is defined by ([10])

hp
ΓpK

(u) =
1

cn,pV (K)

∫
K
| u · x |p dx, (1.1)

for all u ∈ Sn−1 , where the integration is with respect to the Lebesgue measure, u · v
denotes the standard inner product of u and v , and

cn,p = ωn+p/ω2ωnωp−1, (1.2)

with
ωn = π

n
2
/

Γ
(
1+

n
2

)
.
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Associated with the Lp -centroid bodies, Lutwak and Zhang ([10]) established the
Lp -centro-affine inequality. Afterwards, Lutwak, Yang and Zhang ([9]) proved the Lp -
Busemann-Petty centroid inequality. For further study of Lp -centroid bodies, except
articles [9, 10], see also [1, 2, 15, 18]. In particular, in [15] authors presented a type of
monotonicity properties for the volumes of Lp -centroid body ΓpK and its polar Γ∗

pK
as follows:

THEOREM A. Suppose K,L ∈ S n
o , p � 1 . If for any Q ∈ S n

o , Ṽ−p(K,Q) �
Ṽ−p(L,Q) , then

V (ΓpK)−
p
n

V (K)
� V (ΓpL)−

p
n

V (L)
,

with equality if and only if K = L.

THEOREM B. Suppose K,L ∈ S n
o , p � 1 . If for any Q ∈ S n

o , Ṽ−p(K,Q) �
Ṽ−p(L,Q) , then

V (Γ∗
pK)

p
n

V (K)
�

V (Γ∗
pL)

p
n

V (L)
,

with equality if and only if K = L.

In Theorem A and Theorem B, Ṽ−p(M,N) denotes the Lp -dual mixed volume of
M,N ∈ S n

o which is defined by ([8])

Ṽ−p(M,N) =
1
n

∫
Sn−1

ρn+p
M (u)ρ−p

N (u)dS(u). (1.3)

For K ∈ K n , i = 0,1, · · · ,n−1, the quermassintegrals Wi(K) of K are given by
([3, 14])

Wi(K) =
1
n

∫
Sn−1

h(K,u)dSi(K,u), (1.4)

where Si(K, ·) ( i = 0,1, · · · ,n−1) denotes the mixed surface area measure of K . From
definition (1.4), we easily see that W0(K) = V (K).

For K ∈ S n
o and any real i , the dual quermassintegrals W̃i(K) of K are defined

by ([3, 14])

W̃i(K) =
1
n

∫
Sn−1

ρ(K,u)n−idS(u), (1.5)

where the integration is with respect to the spherical Lebesgue measure S on Sn−1 .
Obviously, W̃0(K) = V (K).

Associated with the notion of quermassintegrals, Wang and Leng ([18]) extended
Theorem A as follows:
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THEOREM C. Suppose K,L ∈S n
o , p � 1 , i = 0,1, · · · ,n−1 . If for any Q ∈S n

o ,

Ṽ−p(K,Q) � Ṽ−p(L,Q),

then
Wi(ΓpK)−

p
n−i

V (K)
� Wi(ΓpL)−

p
n−i

V (L)
,

with equality if and only if K = L.

In this paper, we give an extension of Theorem B on dual quermassintegrals and
obtain the following dual form of Theorem C:

THEOREM 1.1. Suppose K,L ∈ S n
o , p � 1 , i is any real and i �= n. If for any

Q ∈ S n
o ,

Ṽ−p(K,Q) � Ṽ−p(L,Q),

then
W̃i(Γ∗

pK)
p

n−i

V (K)
�

W̃i(Γ∗
pL)

p
n−i

V (L)
,

with equality if and only if K = L.

From Theorem 1.1 and (1.3), we know that if K ⊆ L , then Ṽ−p(K,Q) � Ṽ−p(L,Q) ,
for any Q ∈ S n

o . So we get that

COROLLARY 1.1. Suppose K,L ∈ S n
o , p � 1 , i is any real and i �= n. If K ⊆ L,

then
W̃i(Γ∗

pK)
p

n−i

V (K)
�

W̃i(Γ∗
pL)

p
n−i

V (L)
,

with equality if and only if K = L.

We give generalizations of Theorem C and Theorem 1.1 in Section 3.

2. Some notions

2.1. Support function, radial function and polar body

If K ∈ K n , then its support function hK = h(K, ·) : R
n → (−∞,∞) is defined by

([3])
h(K,x) = max{x · y : y ∈ K}, x ∈ R

n,

where x · y denotes the standard inner product of x and y .
If K is compact star-shaped (about the origin) in R

n , its radial function ρK =
ρ(K, ·) : R

n\{0} −→ [0,+∞) is defined by ([3])

ρ(K,x) = max{λ � 0 : λx ∈ K}, x ∈ R
n\{0}.
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If ρK is positive and continuous, K will be called a star body (about the origin). Two
star bodies K and L are said to be dilates (of one another) if ρK(u)/ρL(u) is indepen-
dent of u ∈ Sn−1 .

If K ∈ K n
o , the polar body K∗ of K is defined by ([3])

K∗ = {x ∈ R
n : x · y � 1,y ∈ K}. (2.1)

From definition (2.1), we know that:

hK∗ =
1

ρK
and ρK∗ =

1
hK

. (2.2)

2.2. Lp -mixed quermassintegrals

In [7], Lutwak introduced the notion of the Lp -mixed quermassintegrals. For
K,L ∈ K n

o , p � 1 and i = 0,1, · · · ,n−1, the Lp -mixed quermassintegrals Wp,i(K,L)
of K and L have the following integral representation

Wp,i(K,L) =
1
n

∫
Sn−1

hp
L(v)dSp,i(K,v), (2.3)

where the measure Sp,i(K, ·) is the Lp -mixed surface area measure of K .
From (1.4) and (2.3), it follows immediately that for each K ∈ K n

o and p � 1,

Wp,i(K,K) = Wi(K). (2.4)

The Minkowski inequality for the Lp -mixed quermassintegrals Wp,i can be stated
([7]):

For K,L ∈ K n
o , p � 1 and i = 0,1, · · · ,n−1 , then

Wp,i(K,L)n−i � Wi(K)n−i−pWi(L)p, (2.5)

with equality for p > 1 if and only if K and L are dilates; for p = 1 and 0 � i < n−1
if and only if K and L are homothetic; for p = 1 and i = n−1 , (2.5) is an identity.

2.3. Lp -dual mixed quermassintegrals

The notion of Lp -dual mixed quermassintegrals was defined by Wang and Leng
([16]). For K , L ∈ S n

o , p � 1 and real i �= n , the Lp -dual mixed quermassintegrals
W̃−p,i(K,L) of K and L are given by

W̃−p,i(K,L) =
1
n

∫
Sn−1

ρn+p−i
K (u)ρ−p

L (u)dS(u). (2.6)

From (2.6) and (1.3), we immediately obtain that:

W̃−p,0(K,L) = Ṽ−p(K,L). (2.7)
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Together with (1.5) and (2.6), we easily get

W̃−p,i(K,K) = W̃i(K). (2.8)

In particular, from (2.7)
Ṽ−p(K,K) = V (K). (2.9)

The Minkowski inequality for the Lp -dual mixed quermassintegrals can be stated
([16]): If K,L ∈ S n

o , p � 1 and i is any real, then for i < n or i > n+ p,

W̃−p,i(K,L)n−i � W̃i(K)n+p−iW̃i(L)−p; (2.10)

for n < i < n+ p,
W̃−p,i(K,L)n−i � W̃i(K)n+p−iW̃i(L)−p. (2.11)

Equality holds in (2.10) and (2.11) if and only if K and L are dilates.
Taking i = 0 in inequality (2.10), we have that (see [8]): If K,L ∈ S n

o , p � 1 ,
then

Ṽ−p(K,L)n � V (K)n+pV (L)−p, (2.12)

with equality if and only if K and L are dilates.

2.4. Lp -mixed projection bodies

Lutwak, Yang and Zhang in [9] introduced the notion of Lp -projection body. For
each K ∈ K n

o and p � 1, the Lp -projection body ΠpK of K is the origin-symmetric
convex body whose support function is defined by

hp
ΠpK

(u) =
1

nωncn−2,p

∫
Sn−1

| u · v |p dSp(K,v), (2.13)

for all u ∈ Sn−1 . Here Sp(K, ·) is the Lp -surface area measure of K .
Motivated by (2.13), Wang and Leng ([17]) defined the following notion of Lp -

mixed projection body. For each K ∈ K n
o , p � 1 and i = 0,1, · · · ,n− 1, the Lp -

mixed projection body Πp,iK of K is the origin-symmetric convex body whose support
function is defined by

hp
Πp,iK

(u) =
1

ncn−2,pωn

∫
Sn−1

| u · v |pdSp,i(K,v), (2.14)

for all u ∈ Sn−1 .
Obviously, from (2.13) and (2.14) for i = 0 we have Πp,0K = ΠpK.

2.5. Lp -mixed centroid bodies

From definition (1.1), we easily obtain

hp
ΓpK

(u) =
1

(n+ p)cn,pV (K)

∫
Sn−1

| u · v |p ρK(v)n+pdS(v). (2.15)
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Now we define a new geometric body as follows: For each compact star-shaped
(about the origin) K ⊂ R

n , real p � 1 and any real i , the Lp -mixed centroid body
Γp,iK of K is the origin-symmetric body whose support function is given by

hp
Γp,iK

(u) =
1

(n+ p)cn,pV (K)

∫
Sn−1

| u · v |p ρK(v)n+p−idS(v), (2.16)

for all u ∈ Sn−1 .
According to the integral form of Minkowski inequality (see [4]), we know that

for p � 1, the Lp -mixed centroid body Γp,iK is a convex body.
Obviously, from (2.15) and (2.16) for i = 0 we have

Γp,0K = ΓpK. (2.17)

3. Proofs of Theorems

In this section, using the Lp -mixed centroid bodies, we give general forms of
Theorem C and Theorem 1.1 as follows:

THEOREM 3.1. Suppose K,L∈S n
o , p � 1 , i = 0,1, · · · ,n−1 and real j �= n,n+

p. If for any Q ∈ S n
o ,

W̃−p, j(K,Q) � W̃−p, j(L,Q),

then
Wi(Γp, jK)−

p
n−i

V (K)
� Wi(Γp, jL)−

p
n−i

V (L)
, (3.1)

with equality if and only if K = L.

THEOREM 3.2. Suppose K,L ∈ S n
o , p � 1 , real i �= n and real j �= n, n+ p. If

for any Q ∈ S n
o ,

W̃−p, j(K,Q) � W̃−p, j(L,Q),

then
W̃i(Γ∗

p, jK)
p

n−i

V (K)
�

W̃i(Γ∗
p, jL)

p
n−i

V (L)
, (3.2)

with equality if and only if K = L.

LEMMA 3.1. If K,L ∈ S n
o , p � 1 and real j �= n, then for all Q ∈ S n

o ,

W̃−p, j(K,Q) = W̃−p, j(L,Q) (3.3)

if and only if K = L.

Proof. If (3.3) is true, taking Q = K in (3.3), and using (2.8), we have that
W̃j(K) = W̃−p, j(L,K) . Now inequality (2.10) and (2.11) give that W̃j(K) � W̃j(L) for
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j < n and W̃j(K) � W̃j(L) for n < j < n+ p or j > n+ p , and equality holds if and
only if K and L are dilates. Let Q = L in (3.3). Then we have W̃j(K) � W̃j(L) for
j < n and W̃j(K) � W̃j(L) for n < j < n+ p or j > n+ p , and equality holds if and
only if K and L are dilates. Hence, for real j �= n,n+ p , we have that W̃j(K) = W̃j(L)
and K and L must be dilates. Thus K = L .

Conversely, if K = L then (3.3) obviously is true. �

LEMMA 3.2. If K ∈ S n
o , p � 1 , i = 0,1, · · · ,n−1 and real j �= n, then

Wp,i(M,Γp, jK) =
ωn

V (K)
W̃−p, j(K,Π∗

p,iM), (3.4)

for any M ∈ K n
o .

Here Π∗
p,iM denotes the polar of Πp,iM .

Proof. According to (2.3) and (2.16), we have

Wp,i(M,Γp, jK) =
1
n

∫
Sn−1

hp
Γp, jK

(u)dSp,i(M,u)

=
1

n(n+ p)cn,pV (K)

∫
Sn−1

∫
Sn−1

| u · v |p ρn+p− j
K (v)dS(v)dSp,i(M,u).

From (1.2) it follows
ncn−2,p = (n+ p)cn,p,

and this, together with formulas (2.2), (2.6) and definition (2.14), gives

Wp,i(M,Γp, jK) =
ωn

nV(K)

∫
Sn−1

hp
Πp,iM

(v)ρn+p− j
K (v)dS(v)

=
ωn

nV(K)

∫
Sn−1

ρn+p− j
K (v)ρ−p

Π∗
p,iM

(v)dS(v)

=
ωn

V (K)
W̃−p, j(K,Π∗

p,iM). �

Proof of Theorem 3.1. Since K , L ∈ S n
o , and for real j �= n and any Q ∈ S n

o ,

W̃−p, j(K,Q) � W̃−p, j(L,Q), (3.5)

with equality in (3.5) if and only if K = L by Lemma 3.1.
Taking Q = Π∗

p,iM for any M ∈ K n
o in (3.5), we get that

W̃−p, j(K,Π∗
p,iM) � W̃−p, j(L,Π∗

p,iM).

Hence, using (3.4) we obtain that

V (K)Wp,i(M,Γp, jK) � V (L)Wp,i(M,Γp, jL),
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taking M = Γp, jL , and together with equality (2.4) and inequality (2.5), we get that

V (L)Wi(Γp, jL) � V (K)Wp,i(Γp, jL,Γp, jK)

� V (K)Wi(Γp, jL)
n−i−p

n−i Wi(Γp, jK)
p

n−i . (3.6)

According to the condition of equality in (2.5), equality holds in the second inequality
of (3.6) for p > 1 if and only if Γp, jK and Γp, jL are dilates, for p = 1 and 0 � i < n−1
if and only if Γp, jK and Γp, jL are homothetic. For p = 1 and i = n− 1, the second
inequality of (3.6) is an identity.

From inequality (3.6), we have that

Wi(Γp, jK)−
p

n−i

V (K)
� Wi(Γp, jL)−

p
n−i

V (L)
,

which is inequality (3.1).
By the equality conditions of inequality (3.5) and the second inequality of (3.6),

we know that the equality holds in inequality (3.1) if and only if K = L . Theorem 3.1
is proven. �

Taking j = 0 in Theorem 3.1, and using (2.7) and (2.17), we easily obtain Theo-
rem C.

The proof of Theorem 3.2 requires the following lemma.

LEMMA 3.3. If K ∈ S n
o , p � 1 , i, j ∈ R , i, j �= n, then

W̃−p, j(K,Γ∗
p,iM)

V (K)
=

W̃−p,i(M,Γ∗
p, jK)

V (M)
, (3.7)

for any M ∈ S n
o .

Proof. According to (2.2) and definition (2.16), we get

ρ−p
Γ∗

p,iM
(u) =

1
(n+ p)cn,pV (M)

∫
Sn−1

| u · v |p ρM(v)n+p−idS(v), (3.8)

for all u ∈ Sn−1 .
Using (3.8) and (2.6), respectively, we have that

W̃−p, j(K,Γ∗
p,iM)

=
1
n

∫
Sn−1

ρK(u)n+p− jρ−p
Γ∗

p,iM
(u)dS(u)

=
1

n(n+ p)cn,pV (M)

∫
Sn−1

∫
Sn−1

| u · v |p ρK(u)n+p− jρM(v)n+p−idS(v)dS(u)

=
V (K)
nV (M)

∫
Sn−1

ρM(v)n+p−iρ−p
Γ∗

p, jK
(v)dS(v)

=
V (K)
V (M)

W̃−p,i(M,Γ∗
p, jK). �
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Proof of Theorem 3.2. Since K,L ∈ S n
o , and for real j �= n and any Q ∈ S n

o ,

W̃−p, j(K,Q) � W̃−p, j(L,Q), (3.9)

with equality if and only if K = L by Lemma 3.1.
Taking Q = Γ∗

p,iM in (3.9) for any M ∈ S n
o and real i �= n , then

W̃−p, j(K,Γ∗
p,iM) � W̃−p, j(L,Γ∗

p,iM),

using (3.7), we have that

V (K)W̃−p,i(M,Γ∗
p, jK) � V (L)W̃−p,i(M,Γ∗

p, jL), (3.10)

with equality if and only if K = L .
For i < n , let M = Γ∗

p, jL in (3.10), and together with (2.8), we get that

V (L)W̃i(Γ∗
p, jL) � V (K)W̃−p,i(Γ∗

p, jL,Γ∗
p, jK). (3.11)

But according to inequality (2.10), we know that

W̃−p,i(Γ∗
p, jL,Γ∗

p, jK) � W̃i(Γ∗
p, jL)

n+p−i
n−i W̃i(Γ∗

p, jK)−
p

n−i , (3.12)

with equality if and only if Γ∗
p, jK and Γ∗

p, jL are dilates in inequality (3.12).
From (3.11) and (3.12), we obtain that

W̃i(Γ∗
p, jK)

p
n−i

V (K)
�

W̃i(Γ∗
p, jL)

p
n−i

V (L)
,

this is just inequality (3.2).
Because of Γ∗

p, jK = Γ∗
p, jL when K = L , this implies Γ∗

p, jK and Γ∗
p, jL are dilates.

Thus, according to the conditions of equality in (3.9) and (3.12), equality holds in (3.2)
if and only if K = L .

For n < i < n+ p , taking M = Γ∗
p, jL in (3.10) and using (2.8), we obtain inequality

(3.11) again. Since n− i < 0, using inequality (2.11), inequality (3.12) follows. This
proves inequality (3.2), and equality holds under same conditions as in the case i < n .

For i > n+ p , let M = Γ∗
p, jK in (3.10). Using (2.8), we have

V (K)W̃i(Γ∗
p, jK) � V (L)W̃−p,i(Γ∗

p, jK,Γ∗
p, jL). (3.13)

This together with inequality (2.10), and noting n− i < −p < 0, gives

W̃−p,i(Γ∗
p, jK,Γ∗

p, jL) � W̃i(Γ∗
p, jK)

n+p−i
n−i W̃i(Γ∗

p, jL)−
p

n−i . (3.14)

Equality in inequality (3.14) holds if and only if Γ∗
p, jK and Γ∗

p, jL are dilates.
From (3.13) and (3.14), we get inequality (3.2), and equality holds similarly as in

the case i < n .
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For i = n+ p , using formulas (2.6) and (1.5), it follows

W̃−p,n+p(M,Γ∗
p, jK) = W̃n+p(Γ∗

p, jK),

for any M ∈ S n
o . Hence, from inequality (3.10), we have

V (K)W̃n+p(Γ∗
p, jK) � V (L)W̃n+p(Γ∗

p, jL),

i.e.
W̃n+p(Γ∗

p, jK)−1

V (K)
�

W̃n+p(Γ∗
p, jL)−1

V (L)
. (3.15)

This is just the case i = n+ p of inequality (3.2). According to the condition of equality
in (3.10), equality holds in (3.15) if and only if K = L . The proof of Theorem 3.2 is
now complete. �

By letting j = 0 in Theorem 3.2, together with (2.7) and (2.17), we immediately
get Theorem 1.1.
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[10] E. LUTWAK AND G. Y. ZHANG, Blaschke-Santaló inequalities, J. Differential Geom. 47 (1997), 1–

16.
[11] V. D. MILMAN AND A. PAJOR, Cas limites des inégalités du type Khinchine et applications
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