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Abstract. This paper gives improvements of a composition rule for the left-sided and the right-
sided Caputo fractional derivatives. As application, improvements of Opial-type inequalities
involving the Caputo fractional derivatives are also given.

1. Introduction and preliminaries

This paper is motivated by the book of Anastassiou [2] and papers [3] and [4]
and presents improvements of a composition rule for the Caputo fractional derivatives
(compare Theorem 1.4 and Theorem 2.1).

First we follow [7] and survey some facts about fractional derivatives needed in
this paper.

By Cm[a,b] we denote the space of all functions on [a,b] which have continuous
derivatives up to order m , and AC[a,b] is the space of all absolutely continuous func-
tions on [a,b] . By ACm[a,b] we denote the space of all functions g ∈Cm−1[a,b] with
g(m−1) ∈ AC[a,b] .

By Lp[a,b] , 1 � p < ∞ , we denote the space of all Lebesgue measurable functions
f for which | f |p is Lebesgue integrable on [a,b] , and by L∞[a,b] the set of all functions
measurable and essentially bounded on [a,b] . Clearly, L∞[a,b]⊂ Lp[a,b] for all p � 1.

Let f ∈ L1[a,b] , ν > 0, n = [ν]+1 ( [·] is the integral part) and Γ is the gamma
function Γ(ν) =

∫ ∞
0 e−t tν−1 dt . The Riemann-Liouville fractional integrals Jν

a+ f
(left-sided) and Jν

b− f (right-sided) of order ν are defined by

Jν
a+ f (x) =

1
Γ(ν)

∫ x

a
(x− t)ν−1 f (t)dt , x ∈ (a,b] , (1.1)

Jν
b− f (x) =

1
Γ(ν)

∫ b

x
(t− x)ν−1 f (t)dt , x ∈ [a,b) . (1.2)
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LEMMA 1.1. [7, Lemma 2.3] Let 1 � p � ∞ , f ∈ Lp[a,b] and α,β > 0 . Then
the equations

Jα
a+Jβ

a+ f (x) = Jα+β
a+ f (x) , Jα

b−Jβ
b− f (x) = Jα+β

b− f (x) (1.3)

are satisfied at almost every point x ∈ [a,b] . If α + β > 1 , then the relations in (1.3)
hold at any point of [a,b] .

For ν � 0, n = [ν]+1, f ∈ ACm[a,b] , where m = n if ν /∈ N0 and m = n−1 if
ν ∈ N0 , the Caputo fractional derivatives of order ν Dν

a+ f (left-sided) and Dν
b− f

(right-sided) are defined by

Dν
a+ f (x) =

(
D̃ν

a+ [ f −Tm−1( f ;a)]
)
(x),

Dν
b− f (x) =

(
D̃ν

b−
[
f − T̃m−1( f ;b)

])
(x),

where Tm−1( f ;a)(t) = ∑m−1
k=0

f (k)(a)
k! (t − a)k , Tm−1( f ;b)(t) = ∑m−1

k=0
f (k)(b)

k! (b− t)k and
D̃ν

a+ , D̃ν
b− denote the left-sided and the right-sidedRiemann-Liouville fractional deriva-

tives (see [7, p.91]).
The following theorem appears to be more convenient for us in upcoming results.

THEOREM 1.2. [7, Theorem 2.1] Let ν � 0 , n = [ν]+1 . If f ∈ ACm[a,b] , m = n
if ν /∈ N0 and m = n−1 if ν ∈ N0 , then the Caputo fractional derivatives Dν

a+ f (left-
sided) and Dν

b− f (right-sided) exist almost everywhere on [a,b] .

(a) If ν �∈ N0 , then Dν
a+ f and Dν

b− f are represented by

Dν
a+ f (x) =

1
Γ(n−ν)

∫ x

a
(x− t)n−ν−1 f (n)(t)dt =: Jn−ν

a+ f (n)(x) (1.4)

and

Dν
b− f (x) =

(−1)n

Γ(n−ν)

∫ b

x
(t− x)n−ν−1 f (n)(t)dt =: (−1)nJn−ν

b− f (n)(x) . (1.5)

In particular, when 0 < ν < 1 and f ∈ AC[a,b] ,

Dν
a+ f (x) =

1
Γ(1−ν)

∫ x

a
(x− t)−ν f ′(t)dt =: J1−ν

a+ f ′(x) (1.6)

and

Dν
b− f (x) = − 1

Γ(1−ν)

∫ b

x
(t− x)−ν f ′(t)dt =: −J1−ν

b− f ′(x) . (1.7)

(b) If ν = n ∈ N0 , then Dn
a+ f and Dn

b− f are represented by

Dn
a+ f (x) = f (n)(x) , Dn

b− f (x) = (−1)n f (n)(x) . (1.8)

In particular,
D0

a+ f (x) = D0
b− f (x) = f (x) . (1.9)
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The following statement is analogous to that of Theorem 1.2 for functions f ∈
Cn[a,b] .

THEOREM 1.3. [7, Theorem 2.2] Let ν � 0 , n = [ν] + 1 and let f ∈ Cn[a,b] .
Then the Caputo fractional derivatives Dν

a+ f and Dν
b− f are continuous on [a,b] .

(a) If ν �∈ N0 , then Dν
a+ f and Dν

b− f are represented by (1.4) and (1.5) respectively.
Moreover,

Dν
a+ f (a) = Dν

b− f (b) = 0 . (1.10)

In particular, they have the forms (1.6) and (1.7) for 0 < ν < 1 , respectively.

(b) If ν = n ∈ N0 , then Dn
a+ f and Dn

b− f have representations given in (1.8). In
particular, the relations in (1.9) hold.

The following identities are instructive for results in this paper (for more details
see [7, Lemma 2.5, Lemma 2.6]):

Jn
a+ f (n)(x) = f (x)−

n−1

∑
i=0

f (i)(a)
i!

(x−a)i,

Jn
b− f (n)(x) = f (x)−

n−1

∑
i=0

(−1)i f (i)(b)
i!

(b− x)i, n ∈ N.

Our first goal is to improve composition identity for the left-sided Caputo frac-
tional derivatives in the following theorem, identity (1.12). We will prove that it is not
necessary to assume that f (k)(a) = 0 for k < m and that condition ν − γ � 1 can be
relaxed. This will be used in all presented Opial-type inequalities involving the Caputo
fractional derivatives.

THEOREM 1.4. [2, Theorem 16.16] Let ν � γ + 1 , γ � 0 . Call n = [ν] + 1 ,
m = [γ] + 1 . Assume f ∈ ACn[a,b] such that f (i)(a) = 0 for i = 0,1, . . . ,n− 1 , and
Dν

a+ f ∈ L∞(a,b) . Then

Dγ
a+ f ∈C[a,b] , Dγ

a+ f (x) = Jm−γ
a+ f (m)(x) , (1.11)

and

Dγ
a+ f (x) =

1
Γ(ν − γ)

∫ x

a
(x− t)ν−γ−1 Dν

a+ f (t)dt (1.12)

for all x ∈ [a,b] .

Also we will give composition identity for the right-sided Caputo fractional deriva-
tives (see Theorem 2.2).
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2. Main result

We relax some conditions in composition identity for the left-sided Caputo frac-
tional derivative given in Theorem 1.4.

THEOREM 2.1. Let ν > γ � 0 , n = [ν]+1 , m = [γ]+1 and f ∈ ACk[a,b] , k = n
if ν /∈ N0 and k = n−1 if ν ∈ N0 . Let Dν

a+ f ,Dγ
a+ f ∈ L1[a,b] . Suppose that one of the

following conditions holds:

(a) ν , γ /∈ N0 and f (i)(a) = 0 for i = m, . . . ,n−1 .

(b) ν ∈ N , γ /∈ N0 and f (i)(a) = 0 for i = m, . . . ,n−2 .

(c) ν /∈ N , γ ∈ N0 and f (i)(a) = 0 for i = m−1, . . . ,n−1 .

(d) ν ∈ N , γ ∈ N0 and f (i)(a) = 0 for i = m−1, . . . ,n−2 .

Then

Dγ
a+ f (x) =

1
Γ(ν − γ)

∫ x

a
(x− t)ν−γ−1 Dν

a+ f (t)dt. (2.1)

Proof. We give two proofs of the assertion (a). The proofs of the assertions (b),
(c), (d) follows the same lines. Let ν > γ � 0. Then using the Fubini theorem (note that
f (n) ∈ L1[a,b] and Jα

a+ is a bounded operator on L1[a,b] ; see for example [7, Lemma
2.1]), change of variables and the definition of the beta function, we have

1
Γ(ν − γ)

∫ x

a
(x− y)ν−γ−1 Dν

a+ f (y)dy

=
1

Γ(ν − γ)Γ(n−ν)

∫ x

y=a

∫ y

t=a
(x− y)ν−γ−1(y− t)n−ν−1 f (n)(t)dt dy

=
1

Γ(ν − γ)Γ(n−ν)

∫ x

t=a
f (n)(t)

∫ x

y=t
(x− y)ν−γ−1(y− t)n−ν−1dydt

=
1

Γ(ν − γ)Γ(n−ν)

∫ x

a
f (n)(t)

∫ x−t

0
uν−γ−1(x−u− t)n−ν−1dudt

=
1

Γ(ν − γ)Γ(n−ν)

∫ x

a
f (n)(t)

∫ 1

0
(x− t)n−γ−1vν−γ−1(1− v)n−ν−1dvdt

=
B(ν − γ,n−ν)

Γ(ν − γ)Γ(n−ν)

∫ x

a
(x− t)n−γ−1 f (n)(t)dt

=
1

Γ(n− γ)

∫ x

a
(x− t)n−γ−1 f (n)(t)dt .

Hence, for ν > γ � 0 we have

1
Γ(ν − γ)

∫ x

a
(x− y)ν−γ−1 Dν

a+ f (y)dy =
1

Γ(n− γ)

∫ x

a
(x− t)n−γ−1 f (n)(t)dt .
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Case 1. Let [ν] = [γ] , that is n = m . Then (2.1) follows with no boundary condi-
tions.

Case 2. Let [ν] > [γ] . Then [ν] > γ also, and therefore n− γ − 1 > 0. Using
integration by parts, it follows

1
Γ(n− γ)

∫ x

a
(x− t)n−γ−1 f (n)(t)dt

=
1

Γ(n− γ)

[
(x− t)n−γ−1 f (n−1)(t)

∣∣∣x
a
+(n− γ −1)

∫ x

a
(x− t)n−γ−2 f (n−1)(t)dt

]

=
∣∣∣ f (n−1)(a) = 0

∣∣∣
=

1
Γ(n− γ −1)

∫ x

a
(x− t)n−γ−2 f (n−1)(t)dt .

Case 2a. Let [ν] = [γ]+1. Then m = n−1 and with boundary condition f (n−1)(a)
= 0 follows (2.1).

Case 2b. Let [ν] > [γ]+1. Then n− γ −2 > 0 and

1
Γ(n− γ −1)

∫ x

a
(x− t)n−γ−2 f (n−1)(t)dt

=
1

Γ(n− γ −1)

[
(x− t)n−γ−2 f (n−2)(t)

∣∣∣x
a
+(n− γ −2)

∫ x

a
(x− t)n−γ−3 f (n−2)(t)dt

]

=
1

Γ(n− γ −2)

∫ x

a
(x− t)n−γ−3 f (n−2)(t)dt .

Case 2b.1. Let [ν] = [γ] + 2. Then m = n− 2 and, with boundary conditions
f (n−1)(a) = f (n−2)(a) = 0, the proof of (2.1) is complete.

Case 2b.2. Continuing in this way, in the last step, when m = n−(n−m) , we have
that with boundary conditions f (n−1)(a) = · · · = f (m)(a) = 0 follows (2.1).

We will also prove equality (2.1) using the Laplace transform. Let ν > γ � 0 and
f (i)(a) = 0 for i = m,m+1, . . . ,n−1. By Lemma 1.1 we have

Jν−γ
a+ Dν

a+ f = Jν−γ
a+ Jn−ν

a+ f (n) = Jn−γ
a+ f (n) .

Set g = f (m) . Now (2.1) can be written as

Jm−γ
a+ g(x) = Jn−γ

a+ g(n−m)(x), (2.2)

where x ∈ [a,b] and g(a) = g′(a) = · · · = g(n−m−1)(a) = 0. Define auxiliary function
h : [0,∞) → R with

h(x) =

{
g(x+a) , x ∈ [0,b−a]

∑n−m
k=0

g(k)(b)
k! (x−b+a)k , x � b−a

. (2.3)
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Obviously h(0) = h′(0) = · · · = h(n−m−1)(0) = 0. Also h has polynomial growth at
∞ , so the Laplace transform of h exists. Using simple substitution the identity (2.2) is
equivalent to the identity

1
Γ(m− γ)

∫ x

0
(x− t)m−γ−1h(t)dt =

1
Γ(n− γ)

∫ x

0
(x− t)n−γ−1h(n−m)(t)dt. (2.4)

Using standard properties of the Laplace transform we have

L

(
1

Γ(m− γ)

∫ x

0
(x− t)m−γ−1h(t)dt

)
(s)

=
1

Γ(m− γ)
L
(
xm−γ−1)(s)L (h)(s) = sγ−mL (h)(s). (2.5)

On the other hand we have

L

(
1

Γ(n− γ)

∫ x

0
(x− t)n−γ−1h(n−m)(t)dt

)
(s)

=
1

Γ(n− γ)
L
(
xn−γ−1)(s)L (

h(n−m)
)

(s)

= sγ−n · sn−mL (h)(s) = sγ−mL (h)(s). (2.6)

Using (2.5) and (2.6) it follows that both sides of (2.4) have the same Laplace transform,
we conclude that equality holds in (2.4) for every x � 0 (see [11, Theorem 6.3]). �

Next theorem gives us a composition identity for the right-sided Caputo fractional
derivatives.

THEOREM 2.2. Let ν > γ � 0 , n = [ν]+1 , m = [γ]+1 and f ∈ ACk[a,b] , k = n
if ν /∈ N0 and k = n−1 if ν ∈ N0 . Let Dν

b− f ,Dγ
b− f ∈ L1[a,b] . Suppose that one of the

following conditions holds:

(a) ν , γ /∈ N0 and f (i)(b) = 0 for i = m, . . . ,n−1 .

(b) ν ∈ N , γ /∈ N0 and f (i)(b) = 0 for i = m, . . . ,n−2 .

(c) ν /∈ N , γ ∈ N0 and f (i)(b) = 0 for i = m−1, . . . ,n−1 .

(d) ν ∈ N , γ ∈ N0 and f (i)(b) = 0 for i = m−1, . . . ,n−2 .

Then

Dγ
b− f (x) =

1
Γ(ν − γ)

∫ b

x
(t− x)ν−γ−1 Dν

b− f (t)dt. (2.7)
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Proof. Let ν > γ � 0 and f (i)(b) = 0 for i = m,m+1, . . . ,n−1. Then

1
Γ(ν − γ)

∫ b

x
(y− x)ν−γ−1 Dν

b− f (y)dy

=
(−1)n

Γ(ν − γ)Γ(n−ν)

∫ b

y=x

∫ b

t=y
(y− x)ν−γ−1(t− y)n−ν−1 f (n)(t)dt dy

=
(−1)n

Γ(ν − γ)Γ(n−ν)

∫ b

t=x
f (n)(t)

∫ t

y=x
(y− x)ν−γ−1(t− y)n−ν−1dydt

=
(−1)n

Γ(ν − γ)Γ(n−ν)

∫ b

x
f (n)(t)

∫ t−x

0
uν−γ−1(t−u− x)n−ν−1dudt

=
(−1)n

Γ(ν − γ)Γ(n−ν)

∫ b

x
f (n)(t)

∫ 1

0
(t− x)n−γ−1vν−γ−1(1− v)n−ν−1dvdt

=
(−1)n B(ν − γ,n−ν)

Γ(ν − γ)Γ(n−ν)

∫ b

x
(t− x)n−γ−1 f (n)(t)dt

=
(−1)n

Γ(n− γ)

∫ b

x
(t − x)n−γ−1 f (n)(t)dt .

Hence, for ν > γ � 0 we have

1
Γ(ν − γ)

∫ b

x
(y− x)ν−γ−1 Dν

b− f (y)dy =
(−1)n

Γ(n− γ)

∫ b

x
(t − x)n−γ−1 f (n)(t)dt .

Case 1. Let [ν] = [γ] , that is n = m . Then (2.7) follows with no boundary con-
ditions.

Case 2. Let [ν] > [γ] . Then [ν] > γ also, and therefore n− γ − 1 > 0. Using
integration by parts, it follows

(−1)n

Γ(n− γ)

∫ b

x
(t − x)n−γ−1 f (n)(t)dt

=
(−1)n

Γ(n− γ)

[
(t− x)n−γ−1 f (n−1)(t)

∣∣∣b
x
− (n− γ −1)

∫ b

x
(t− x)n−γ−2 f (n−1)(t)dt

]

=
(−1)n−1

Γ(n− γ −1)

∫ b

x
(t− x)n−γ−2 f (n−1)(t)dt .

Case 2a. Let [ν] = [γ] + 1. Then m = n − 1 and with boundary condition
f (n−1)(b) = 0 follows (2.7).

Case 2b. Let [ν] > [γ]+1. Then n− γ −2 > 0 and

(−1)n−1

Γ(n− γ −1)

∫ b

x
(t− x)n−γ−2 f (n−1)(t)dt

=
(−1)n−1

Γ(n− γ −1)

[
(t − x)n−γ−2 f (n−2)(t)

∣∣∣b
x
− (n− γ −2)

∫ b

x
(t− x)n−γ−3 f (n−2)(t)dt

]

=
(−1)n−2

Γ(n− γ −2)

∫ b

x
(t− x)n−γ−3 f (n−2)(t)dt .
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Case 2b.1. Let [ν] = [γ] + 2. Then m = n− 2 and, with boundary conditions
f (n−1)(b) = f (n−2)(b) = 0, the proof of (ii) is complete.

Hence, by induction, in the last step, that is m = n− (n−m) , we have boundary
conditions f (n−1)(b) = · · · = f (m)(b) = 0 and proved equality (2.7). �

3. Opial-type inequalities

Here we present Opial-type inequalities involving the Caputo fractional derivatives
and they improve those from [2, Section 16.3.1]. The following theorems are based on
[3] and [4] where this was done for the Riemann-Liouville fractional derivatives.

THEOREM 3.1. Suppose that the assumptions of Theorem 2.1 hold. Suppose also
p,q > 1 , 1

p + 1
q = 1 , ν > γ + 1

q and Dν
a+ f ∈ Lq[a,b] . Then

∫ x

a

∣∣Dγ
a+ f (w)

∣∣ ∣∣Dν
a+ f (w)

∣∣ dw � C1(x)
(∫ x

a

∣∣Dν
a+ f (w)

∣∣q dw

) 2
q

, a.e. x ∈ [a,b], (3.1)

where

C1(x) =
(x−a)r+ 2

p

2
1
q Γ(r+1)(rp+1)

1
p (rp+2)

1
p

, r = ν − γ −1.

Inequality (3.1) is sharp for ν = γ +1 where equality is attained for a function f such

that Dν
a+ f (t) = 1 for every t ∈ [a,b] (for example f (t) = (t−a)ν

Γ(ν+1) ).

We give a proof of the following theorem which is the right-sided version of The-
orem 3.1. A proof of Theorem 3.1 is analogous.

THEOREM 3.2. Suppose that the assumptions of Theorem 2.2 hold. Suppose also
p,q > 1 , 1

p + 1
q = 1 , ν > γ + 1

q and Dν
b− f ∈ Lq[a,b] . Then

∫ b

x

∣∣Dγ
b− f (w)

∣∣ ∣∣Dν
b− f (w)

∣∣ dw � C2(x)
(∫ b

x

∣∣Dν
b− f (w)

∣∣q dw

) 2
q

, a.e. x ∈ [a,b], (3.2)

where

C2(x) =
(b− x)r+ 2

p

2
1
q Γ(r+1)(rp+1)

1
p (rp+2)

1
p

, r = ν − γ −1.

Inequality (3.2) is sharp for ν = γ +1 where equality is attained for a function f such

that Dν
b− f (t) = 1 for every t ∈ [a,b] (for example f (t) = (b−t)ν

Γ(ν+1) ).
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Proof. Using Theorem 2.2, the triangle inequality and Hölder inequality we have:

∣∣Dγ
b− f (w)

∣∣ � 1
Γ(ν − γ)

∫ b

w
(t −w)ν−γ−1

∣∣Dν
b− f (t)

∣∣dt

� 1
Γ(ν − γ)

(∫ b

w
(t−w)prdt

) 1
p
(∫ b

w

∣∣Dν
b− f (t)

∣∣q dt

) 1
q

=
1

Γ(ν − γ)
(b−w)r+ 1

p

(pr+1)
1
p

(∫ b

w

∣∣Dν
b− f (t)

∣∣q dt

) 1
q

. (3.3)

Set z(w) =
∫ b
w

∣∣Dν
b− f (t)

∣∣q dt . Obviously z′(w) =− ∣∣Dν
b− f (w)

∣∣q . Using (3.3) it follows:

∣∣Dγ
b− f (w)

∣∣ ∣∣Dν
b− f (w)

∣∣ � 1
Γ(ν − γ)

(b−w)r+ 1
p

(pr+1)
1
p

z
1
q (w)

(−z′(w)
) 1

q . (3.4)

Using again the Hölder inequality and simple integration we have∫ b

x
(b−w)r+ 1

p z
1
q (w)

(−z′(w)
) 1

q dw

�
(∫ b

x
(b−w)pr+1dw

) 1
p
(∫ b

x
z(w)

(−z′(w)
)
dw

) 1
q

=
(b− x)r+ 2

p

(pr+2)
1
p

(
1
2

∫ b

x

∣∣Dν
b− f (t)

∣∣q dt

) 2
q

. (3.5)

Using (3.4) and (3.5) we obviously obtain (3.2).
Using equality condition in Hölder’s inequality it follows that equality holds in

(3.3) if and only if
∣∣Dν

b− f (t)
∣∣q =C(t−w)pr and Dν

b−(t) � 0 for some C � 0 Dν
b−(t) �

0 for every t ∈ [x,b] . This implies r = 0 or ν = γ +1. Direct verification shows that
for a function f for which Dν

b− f = 1 equality holds also in (3.5). �

COROLLARY 3.3. Suppose that the assumptions of Theorem 3.1 and Theorem 3.2
hold. Suppose also 1 < q � 2 . Then

∫ a+b
2

a

∣∣Dγ
a+ f (w)

∣∣ ∣∣Dν
a+ f (w)

∣∣dw+
∫ b

a+b
2

∣∣Dγ
b− f (w)

∣∣ ∣∣Dν
b− f (w)

∣∣dw

� C1,2

(
a+b

2

)(∫ a+b
2

a

∣∣Dν
a+ f (w)

∣∣q dw+
∫ b

a+b
2

∣∣Dν
b− f (w)

∣∣q dw

) 2
q

, (3.6)

where C1,2
(

a+b
2

)
= C1

(
a+b
2

)
= C2

(
a+b
2

)
. Inequality (3.6) is sharp for q = 2 and

ν = γ +1 .

Proof. Inequality (3.6) is a simple consequence of inequalities (3.1), (3.2) and
elementary inequality (x+ y)α � xα + yα which holds for α � 1. �
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REMARK 3.4. For ν = 1, γ = 0 and q = 2 inequality (3.6) implies classical
Opial’s inequality (see for example [1]). Boundary conditions f (a) = f (b) = 0 follow
from (d) case in Theorems 2.1 and 2.2.

Next theorem is motivated by Pang-Agarwal’s extension (see [10, Theorem 1.1])
of an inequality proved by Fink for ordinary derivatives (see [6]).

THEOREM 3.5. Let ν > γ2 � γ1+1� 1 , n = [ν]+1 , m1 = [γ1]+1 , m2 = [γ2]+1 ,
p,q > 1 such that 1

p + 1
q = 1 and f ∈ ACk[a,b] , k = n if ν /∈ N0 and k = n− 1 if

ν ∈ N0 . Let Dν
a+ f ∈ Lq[a,b] . Suppose that one of the following conditions holds:

(a) ν , γ1 /∈ N0 and f (i)(a) = 0 for i = m1, . . . ,n−1 .

(b) ν ∈ N , γ1 /∈ N0 and f (i)(a) = 0 for i = m1, . . . ,n−2 .

(c) ν /∈ N , γ1 ∈ N0 and f (i)(a) = 0 for i = m1−1, . . . ,n−1 .

(d) ν ∈ N , γ1 ∈ N0 and f (i)(a) = 0 for i = m1−1, . . . ,n−2 .

Then ∫ x

a

∣∣Dγ1
a+ f (τ)

∣∣ ∣∣Dγ2
a+ f (τ)

∣∣ dτ � C3(x)
(∫ x

a

∣∣Dν
a+ f (τ)

∣∣q dτ
) 2

q

, (3.7)

where

C3(x) =
(x−a)r1+r2+1+ 2

p

2
1
q Γ(r1 +1)Γ(r2 +2)[p(r2 +1)+1]

1
p [p(r1 + r2 +1)+2]

1
p

,

where ri = ν − γi−1 , i = 1,2 .
Inequality (3.7) is sharp for γ2 = γ1 +1 .

Proof. First we have r1 − r2 − 1 � 0 since γ2 � γ1 + 1. Let a � t � s � x . The
following estimation is proved in [6]):

∫ x

a
[(τ − t)r1

+(τ − s)r2
+ + (τ − s)r1

+(τ − t)r2
+]dτ � 1

(ν − γ2)
(x− t)r1(x− s)r2+1 , (3.8)

where (τ − t)α
+ is define by

(τ − t)α
+ =

{
(τ − t)α , if a � t < τ � x,

0 , if a � τ � t � x.

In the following calculation we abbreviate

c1 := (Γ(ν − γ2)Γ(ν − γ1))−1 , c2 := (Γ(ν − γ2 +1)Γ(ν − γ1))−1 ,

c3 := (ν − γ2)p+1 , ε := 2ν − γ1− γ2−1+
1
p
.
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Let a � τ � x , j = 1,2. Using Theorem 2.1 (notice that conditions (a)-(d) ensure that
analogous conditions hold also for γ2 ) we have:

(Dγ j
a+ f )(τ) =

1
Γ(ν − γ j)

∫ x

a
(τ − t)ri

+(Dν
a+ f )(t)dt .

Using this representation, the auxiliary inequality (3.8), and Hölder’s inequality, we
obtain ∫ x

a
|(Dγ1

a+ f )(τ)||(Dγ2
a+ f )(τ)|dτ

� c1

∫ x

a

(∫ x

a
|(Dν

a+ f )(t)|(τ − t)r1
+ dt

)(∫ x

a
|(Dν

a+ f )(s)|(τ − s)r2
+ ds

)
dτ (3.9)

= c1

∫ x

a
|(Dν

a+ f )(t)|
(∫ x

t
|(Dν

a+ f )(s)|

·
(∫ x

a
[(τ − t)r1

+(τ − s)r2
+ + (τ − s)r1

+(τ − t)r2
+]dτ

)
ds
)

dt

� c2

∫ x

a
|(Dν

a+ f )(t)|
(∫ x

t
|(Dν

a+ f )(s)|(x− t)r1(x− s)r2+1 ds
)

dt (3.10)

� c2

∫ x

a
|(Dν

a+ f )(t)|(x− t)r1
(∫ x

t
|(Dν

a+ f )(s)|q ds
) 1

q
(∫ x

t
(x− s)p(r2+1) ds

) 1
p
dt

(3.11)

= c2 c−1/p
3

∫ x

a
|(Dν

a+ f )(t)|(x− t)ε
(∫ x

t
|(Dν

a+ f )(s)|q ds
) 1

q
dt

� c2 c−1/p
3

(∫ x

a
|(Dν

a+ f )(t)|q
(∫ x

t
|(Dν

a+ f )(s)|q ds
)

dt
) 1

q
(∫ x

a
(x− t)ε p dt

) 1
p

(3.12)

= c2 c−1/p
3 (ε p+1)−1/p (x−a)(ε p+1)/p

(
1
2

(∫ x

a
|(Dν

a+ f )(t)|q dt
)2
) 1

q

.

It is obvious that in the case γ2 = γ1 + 1 equality holds in (3.8). Using equality
condition for Hölder’s inequality equality holds in (3.11) for a function f for which(
Dν

a+ f (s)
)q = (x− s)p(r2+1) . A straightforward calculation shows that for this function

equality also holds (3.12). Equality in (3.9) in this case is obvious. �
We remark here that under suitable assumptions on a function f (for example

when Dν
a+ f is continuous on [a,b]) we have

lim
γ2→ν−0

Dγ2
a+ f (τ) = lim

γ2→ν−0

1
Γ(ν − γ2)

∫ τ

a
(τ − t)ν−γ2−1Dν

a+ f (t)dt,

(see [5, Section 3]), so we can formally compare estimations obtained in Theorem 3.1
and Theorem 3.5. This is interesting because inequalities (3.1) and (3.7) are obtained
in a different way. Setting ν = γ2 and γ1 = γ in C3(x) , we have

C3(x) =
(x−a)r+ 2

p

2
1
q Γ(r+1)[pr+2]

1
p

, r = ν − γ −1,
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so obviously C1(x) < C3(x) for r > 0, so estimation in Theorem 3.1 is better than
estimation in Theorem 3.5.

The following right-sided version of Theorem 3.5 can be proven analogously.

THEOREM 3.6. Let ν > γ2 � γ1+1� 1 , n = [ν]+1 , m1 = [γ1]+1 , m2 = [γ2]+1 ,
p,q > 1 such that 1

p + 1
q = 1 and f ∈ ACk[a,b] , k = n if ν /∈ N0 and k = n− 1 if

ν ∈ N0 . Let Dν
b− f ∈ Lq[a,b] . Suppose that one of the following conditions holds:

(a) ν , γ1 /∈ N0 and f (i)(b) = 0 for i = m1, . . . ,n−1 .

(b) ν ∈ N , γ1 /∈ N0 and f (i)(b) = 0 for i = m1, . . . ,n−2 .

(c) ν /∈ N , γ1 ∈ N0 and f (i)(b) = 0 for i = m1−1, . . . ,n−1 .

(d) ν ∈ N , γ1 ∈ N0 and f (i)(b) = 0 for i = m1−1, . . . ,n−2 .

Then

∫ b

x

∣∣Dγ1
b− f (τ)

∣∣ ∣∣Dγ2
b− f (τ)

∣∣ dτ � C4(x)
(∫ b

x

∣∣Dν
b− f (τ)

∣∣q dτ
) 2

q

, (3.13)

where

C4(x) =
(b− x)r1+r2+1+ 2

p

2
1
q Γ(r1 +1)Γ(r2 +2)[p(r2 +1)+1]

1
p [p(r1 + r2 +1)+2]

1
p

,

where ri = ν − γi−1 , i = 1,2 .
Inequality (3.13) is sharp for γ2 = γ1 +1 .

A generalization of the classical Opial inequality in this setting also holds. The
proof is analogous to the proof of Corollary 3.3.

COROLLARY 3.7. Suppose that the assumptions of Theorem 3.5 and Theorem 3.6
hold. Suppose also 1 < q � 2 . Then

∫ a+b
2

a

∣∣Dγ1
a+ f (w)

∣∣ ∣∣Dγ2
a+ f (w)

∣∣dw+
∫ b

a+b
2

∣∣Dγ1
b− f (w)

∣∣ ∣∣Dγ2
b− f (w)

∣∣dw

� C3,4

(
a+b

2

)(∫ a+b
2

a

∣∣Dν
a+ f (w)

∣∣q dw+
∫ b

a+b
2

∣∣Dν
b− f (w)

∣∣q dw

) 2
q

, (3.14)

where C3,4
(

a+b
2

)
= C3

(
a+b
2

)
= C4

(
a+b
2

)
. Inequality (3.14) is sharp for q = 2 and

γ2 = γ1 +1 .

To complete studying various types of Opial’s inequalities with two fractional
derivatives on the left-hand side of an inequality, we present the following theorem
which is improvement of [2, Theorem 16.21].
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THEOREM 3.8. Let ν > γ +1 , γ � 0 , p,q > 1 , 1
p + 1

q = 1 . Let Dν
a+ f ∈ Lq[a,b] .

Suppose that the assumptions of Theorem 2.1 hold. Then

∫ x

a

∣∣Dγ
a+ f (w)

∣∣ ∣∣∣Dγ+1
a+ f (w)

∣∣∣ dw � C5(x)
(∫ x

a

∣∣Dν
a+ f (w)

∣∣q dw

) 2
q

, a.e. x ∈ [a,b],

(3.15)
where

C5(x) =
(x−a)2r+ 2

p

2Γ2(r+1)(rp+1)
2
p

, r = ν − γ −1.

Inequality (3.15) is sharp and equality in (3.15) is attained for a function f for

which Dν
a+ f (t) = (x− t)

rp
q .

Proof. Using Theorem 2.1 we have

∣∣Dγ
a+ f (w)

∣∣� 1
Γ(r+1)

∫ w

a
(w− t)r

∣∣Dν
a+ f (t)

∣∣dt := U(w).

Using again Theorem 2.1 and since r > 0 we have

∣∣∣Dγ+1
a+ f (w)

∣∣∣ � 1
Γ(r)

∫ w

a
(w− t)r−1

∣∣Dν
a+ f (t)

∣∣dt := U ′(w).

By Hölder’s inequality, we have∫ x

a
|(Dγ

a+ f )(ω)||(Dγ+1
a+ f )(ω)|dω

�
∫ x

a
U(ω)U ′(ω)dω =

1
2
U2(x)

=
1

2(Γ(r+1))2

(∫ x

a
(x− t)r |(Dν

a+ f )(t)|dt
)2

� 1
2(Γ(r+1))2

(∫ x

a
(x− t)rp dt

) 2
p
(∫ x

a
|(Dν

a+ f )(t)|q dt
) 2

q

=
1

2(Γ(r+1))2

(x−a)
2rp+2

p

(rp+1)
2
p

(∫ x

a
|(Dν

a+ f )(t)|q dt
) 2

q
.

Arguing the equality case is as in previous theorems. �
Although Theorem 3.8 and Theorem 3.5 for γ2 = γ1 + 1 are proved by different

methods, they give the same (the best possible) estimation.
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RE F ER EN C ES

[1] R. P. AGARWAL, P. Y. H. PANG, Opial Inequalities with Applications in Differential and Difference
Equations, Kluwer Academic Publishers, Dordrecht, Boston, London, 1995.

[2] G. A. ANASTASSIOU,Fractional Differentiation Inequalities, Springer, 2009.
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Faculty of Textile Technology

University of Zagreb
Zagreb, Croatia

e-mail: pecaric@element.hr

Ivan Perić
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