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Abstract. In this paper, we present some monotonicity theorems involving the generalized el-
liptic integrals Ka(r) and Ea(r) , and find an asymptotic property of Ka(r) when r → 1 . As
applications, some well known results are improved.

1. Introduction

For real numbers a , b and c with c �= 0,−1,−2, · · · , the Gaussian hypergeometric
function is defined by

F(a,b;c;x) = 2F1(a,b;c;x) =
∞

∑
n=0

(a,n)(b,n)
(c,n)

xn

n!
, |x| < 1. (1.1)

Here (a,0) = 1 for a �= 0 and (a,n) denotes the shifted factorial function

(a,n) = a(a+1)(a+2)(a+3) · · ·(a+n−1)

for n = 1,2, · · · . It is well known that F(a,b;c;x) has many important applications,
and many classes of special functions in mathematical physics are particular or limiting
cases of this function. For these, and for properties of F(a,b;c;x) see [2, 7, 14–16, 19,
20, 24].

For r ∈ (0,1) , a ∈ (0,1) and r′ =
√

1− r2 , the generalized elliptic integrals are
defined by ⎧⎨

⎩
Ka = Ka(r) = πF(a,1−a;1;r2)/2,
Ka

′ = Ka
′(r) = Ka(r′),

Ka(0) = π/2, Ka(1) = ∞
(1.2)

and ⎧⎨
⎩

Ea = Ea(r) = πF(a−1,1−a;1;r2)/2,
Ea

′ = E ′
a(r) = Ea(r′),

Ea(0) = π/2, Ea(1) = [sin(πa)]/[2(1−a)],
(1.3)
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which arise from the Schwarz-Christoffel transformation of the upper half-plane onto
a parallelogram. In particular, when a = 1/2, the functions Ka(r) and Ea(r) reduce
to K (r) and E (r) , respectively, which are the complete elliptic integrals of the first
and second kind [1, 4, 18]. By symmetry of (1.2), we assume that a ∈ (0,1/2] in the
sequel.

Recently, the Gaussian hypergeometric function and generalized elliptic integrals
have been the subject of intensive research [5, 6, 8, 10, 11, 13, 17, 21–23, 25]. In
particular, the quotient of hypergeometric functions plays an important role in deriving
important inequalities and identities, for example, S. Simić and M. Vuorinen [22] estab-
lished Landen inequalities for zero-balanced hypergeometric function by showing the
monotonicity properties of the quotient F(a,b;a+b;x)/F(1/2,1/2;1;x) with a,b > 0.
In [21], the authors considered the quotient (F(a,b;c,x)+F(a,b;c;y))/F(a,b;c;z) and
the difference F(a,b;c,x)+F(a,b;c;y)−F(a,b;c;z) for a,b,c > 0 and 0 < x < y < 1
with z = x+ y− xy , and give best possible bounds for both expressions under various
hypotheses about the parameter triple (a,b;c) .

In [9], Carlson and Gustafson proved that

K (r)
log(4/r′)

<
4

3+ r2 (1.4)

for all r ∈ (0,1) . Later, Anderson et al. [3] conjectured that

9
8+ r2 <

K (r)
log(4/r′)

(1.5)

for all r ∈ (0,1) . Inequality (1.5) was proved by Kühnau [12].

The purpose of this paper is to establish the new monotonicity properties of the
generalized elliptic integrals Ka(r) and Ea(r) , present the generalization form of in-
equality (1.4), and improve inequality (1.5).

2. Lemmas

In order to establish our main results we need several formulas and Lemmas, which
we present in this section.

Throughout this paper, we denote r′ =
√

1− r2 for 0 < r < 1. Let

R(a,b) = −2γ −Ψ(a)−Ψ(b), R(a) = R(a,1−a),

where γ is the Euler-Mascheroni constant defined by

γ = lim
n→∞

(
n

∑
k=1

1
k
− logn) = 0.577215 . . .

and

Ψ(x) =
Γ′(x)
Γ(x)

, Γ(x) =
∞∫

0

tx−1e−t dt, x > 0.
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The following formulas were presented in [18]:

dKa

dr
=

2(1−a)
rr′2

(Ea− r′2Ka),
dEa

dr
=

2(a−1)
r

(Ka−Ea),

d
dr

(Ka −Ea) =
2(1−a)rEa

r′2
,

d
dr

(Ea− r′2Ka) = 2arKa.

LEMMA 2.1. [4, Theorem 1.25] For −∞ < a< b< ∞ , let f ,g : [a,b]→R be con-
tinuous on [a,b] , and be differentiable on (a,b) , let g′(x) �= 0 on (a,b) . If f ′(x)/g′(x)
is increasing (decreasing) on (a,b) , then so are

f (x)− f (a)
g(x)−g(a)

and
f (x)− f (b)
g(x)−g(b)

.

If f ′(x)/g′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

The following Lemma 2.2 follows from [1, Lemma 5.2(1), (3)–(4), (6) and Lemma
5.4(1)] and [15, Theorem 2.3].

LEMMA 2.2. Let a ∈ (0,1/2] , then

(1) (Ea− r′2Ka)/(r2) is strictly increasing from (0,1) onto
(πa/2, [sin(πa)]/[2(1−a)]);

(2) (Ka−Ea)/(r2Ka) is strictly increasing from (0,1) onto (1−a,1);

(3) (Ea− r′2Ka)/(r2Ka) is strictly decreasing from (0,1) onto (0,a);

(4) r′2(Ka−Ea)/(r2Ea) is strictly decreasing from (0,1) onto (0,1−a);

(5) r′cKa is strictly decreasing from (0,1) onto (0,π/2) if and only if
c � 2a(1−a);

(6) Ka/
[
log(eR(a)/2/r′)

]
is strictly decreasing from (0,1) onto (sin(πa),π/R(a)) .

3. Main Results

THEOREM 3.1. Let a ∈ (0,1/2] , then

(1) f (r)≡ [(1−a)(Ea− r′2Ka)−ar′2(Ka−Ea)]/r4 is strictly increasing from (0,1)
onto (πa(1−a)(2−a)/4, [sin(πa)]/2);

(2) g(r) ≡ {[sin(πa)]/[2(1− a)]− (Ea − r′2Ka)}/{r′2 [R(a)/2− logr′]} is strictly
decreasing from (0,1) onto (asin(πa), [sin(πa)]/[R(a)(1−a)]);

(3) h(r) ≡ [(1−a)Ka +aEa−π/2]/[log(1/r′)− r2/2] is strictly increasing from
(0,1) onto (πa(1−a)2(2−a)/2,(1−a)sin(πa));
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(4) F(r) ≡ Ea− r′2(1−a)Ka is strictly increasing from (0,1) onto
(0, [sin(πa)]/[2(1−a)]);

(5) G(r) ≡ 2Ea− r′2Ka is strictly increasing in (0,1) if and only if a = 1/2 ;

(6) H(r) ≡ (1+ r′)Ka is strictly increasing in (0,1) if and only if a = 1/2 .

Proof. For part (1), clearly f (1−) = [sin(πa)]/2. Let f1(r) = (1 − a)(Ea

− r′2Ka)−ar′2(Ka−Ea) and f2(r) = r4 , then f1(0) = f2(0) = 0, f (r) = f1(r)/ f2(r)
and

f1′(r)
f2′(r)

=
a(2−a)

2
Ka−Ea

r2 . (3.1)

From equation (3.1), Lemma 2.1, Lemma 2.2(2) and l’Hôpital’s rule we clearly
see that f (r) is strictly increasing in (0,1) and f (0+) = πa(1−a)(2−a)/4.

For part (2), clearly g(0+) = [sin(πa)]/[(1−a)R(a)] . Let g1(r) = [sin(πa)]/
[2(1−a)]− (Ea− r′2Ka) and g2(r) = r′2[R(a)/2− logr′] , then g1(1−) = g2(1−) = 0,
g(r) = g1(r)/g2(r) and

g1
′(r)

g2
′(r)

=
2a

2
[
log(eR(a)/2/r′)

]
/Ka−1/Ka

. (3.2)

It follows from (3.2), Lemma 2.1 and Lemma 2.2(6) together with l’Hôpital’s rule
that g(r) is strictly decreasing in (0,1) and g(1−) = asin(πa) .

For part (3), let h1(r) = (1− a)Ka + aEa − π/2 and h2(r) = log(1/r′)− r2/2,
then h1(0) = h2(0) = 0, h(r) = h1(r)/h2(r) and

h1
′(r)

h2
′(r)

= 2(1−a)
(1−a)(Ea− r′2Ka)−ar′2(Ka−Ea)

r4 . (3.3)

From (3.3), part (1) and Lemma 2.1 we know that h(r) is strictly increasing in
(0,1) . Making use of l’Hôpital’s rule we conclude that h(0+) = πa(1−a)2(2−a)/2
and h(1−) = (1−a)sin(πa) .

For part (4), clearly F(0+) = 0 and F(1−) = [sin(πa)]/[2(1−a)] . By differenti-
ation one has

F ′(r) = 2(1−a)

[
−Ka−Ea

r
+ rr′−2a

Ka− r′−2a Ea− r′2Ka

r

]

=
2(1−a)(1− r′2a)(Ka −Ea)

rr′2a > 0. (3.4)

Therefore, the monotonicity of F(r) follows from inequality (3.4).
For part (5), by differentiation we have

G′(r) = rKaG1(r), (3.5)
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where

G1(r) = 2a−2(1−a)
Ka−Ea

r2Ka
. (3.6)

From (3.6) and Lemma 2.2(2) we clearly see that G1(r) is strictly decreasing from
(0,1) onto (4a− 2,2(−a2 + 3a− 1)) . Then part (5) follows from (3.5) and the range
of G1(r) .

For part (6), simple computation leads to

H ′(r) = rr′−3/2H1(r), (3.7)

where

H1(r) = 2(1−a)
Ea− r′2Ka

r2 (r′1/2 + r′−1/2)− r′1/2
Ka. (3.8)

It is well known that the function r 	→ r+1/r is strictly decreasing in (0,1) . Then
from (3.8), and Lemma 2.2(1) and (5) we conclude that H1(r) is strictly increasing from
(0,1) onto (−π(1−2a)2/2,+∞) . Therefore, part (6) follows from (3.7) and the range
of H1(r) . �

THEOREM 3.2. Let a ∈ (0,1/2] , then

J(r) ≡ r′2Ka(r)
Ka(r)/sin(πa)− log(eR(a)/2/r′)

is strictly decreasing from (0,1) onto ([sin(πa)]/ [a(1−a)],π [sin(πa)]/[π − R(a)
sin(πa)]) . Moreover, the inequality

sin(πa)
α +(1−α)r2 <

Ka(r)
log(eR(a)/2/r′)

<
sin(πa)

β +(1−β )r2 (3.9)

holds for all r ∈ (0,1) with the best possible constants α = [sin(πa)]R(a)/π and β =
a2−a+1 .

Proof. Let J1(r) = r′2Ka(r) and J2(r) = [Ka(r)/sin(πa)]− log(eR(a)/2/r′) , then
J1(1−) = J2(1−) = 0, J(r) = J1(r)/J2(r) and

J1
′(r)

J2
′(r)

=
−2rKa +2(1−a)(Ea− r′2Ka)/r[

2(1−a)(Ea− r′2Ka)/(rr′2 sin(πa))
]− r/r′2

=
r′2[2Ka−2(1−a)(Ea− r′2Ka)/r2]

1−2(1−a)(Ea− r′2Ka)/[r2 sin(πa)]
. (3.10)

Denote J3(r) = r′2[2Ka − 2(1− a)(Ea − r′2Ka)/r2] and J4(r) = 1− 2(1− a)
(Ea − r′2Ka)/[r2 sin(πa)] . Then J3(1−) = J4(1−) = 0, J1

′(r)/J2
′(r) = J3(r)/J4(r)

and

J3
′(r)

J4
′(r)

=
(1−a)(1+ r2)(Ka −Ea)+ r2(2a−1−a2r′2)Ka

[(1−a)/sin(πa)][a(Ka−Ea)− (1−a)(Ea− r′2Ka)]
. (3.11)
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Let J5(r) = (1− a)(1+ r2)(Ka −Ea)+ r2(2a− 1− a2r′2)Ka and J6(r) = [(1−
a)/sin(πa)][a(Ka−Ea)−(1−a)(Ea−r′2Ka)] , then J5(0)= J6(0)= 0, J3

′(r)/J4
′(r) =

J5(r)/J6(r) and

J5
′(r)

J6
′(r)

=
(a2−a+1)r′2(Ka−Ea)sin(πa)

a(1−a)(Ea− r′2Ka)

+
r2 sin(πa)

a(1−a)2(Ea− r′2Ka)
[a2(a+1)r′2Ka +(1−a)Ea]. (3.12)

It follows from (3.12), Lemma 2.2(1) and (4)-(5) that J5
′(r)/J6

′(r) is strictly de-
creasing in (0,1) . Then equations (3.10) and (3.11) together with Lemma 2.1 lead
to the conclusion that J(r) is strictly decreasing in (0,1) . Moreover, Making use of
l’Hôpital’s rule we get

lim
r→0+

J(r) =
π sin(πa)

π −R(a)sin(πa)
(3.13)

and

lim
r→1−

J(r) =
sin(πa)
a(1−a)

. (3.14)

Therefore, Theorem 3.2 follows from (3.13) and (3.14) together with the mono-
tonicity of J(r) . �

Taking a = 1/2 in Theorem 3.2, then we get inequality (1.4) and improve inequal-
ity (1.5) as follows.

COROLLARY 3.3. Inequality

1
α∗ +(1−α∗)r2 <

K (r)
log(4/r′)

<
1

β ∗ +(1−β ∗)r2 (3.15)

holds for all r ∈ (0,1) with the best possible constants α∗ = 4(log2)/π and β ∗ = 3/4 .
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