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SOME NEW SCALES OF REFINED HARDY TYPE INEQUALITIES

VIA FUNCTIONS RELATED TO SUPERQUADRACITY

S. ABRAMOVICH AND L.-E. PERSSON

(Communicated by S. Varošanec)

Abstract. For the Hardy type inequalities the “breaking point” (= the point where the inequal-
ity reverses) is p = 1 . Recently, J. Oguntoase and L. E. Persson proved a refined Hardy type
inequality with a breaking point at p = 2 . In this paper we prove a new scale of refined Hardy
type inequality which can have a breaking point at any p � 2. The technique is to first make
some further investigations for superquadratic and superterzatic functions of independent inter-
est, among which, a new Jensen type inequality is proved.

1. Introduction

Hardy’s famous inequality reads: If f is nonnegative and is p-integrable over
(0,∞) , then:

∫ ∞

0

(
1
x

∫ x

0
f (y)dy

)p

dx �
(

p
p−1

)p ∫ ∞

0
f p (x)dx, p > 1. (1.1)

This inequality was stated by G. H. Hardy in 1920 (see [4]) and finally proved by him
in 1925 (see [5]). The first weighted version of (1.1) was proved in 1928 also by G. H.
Hardy (see [6]) and it reads: If f is nonnegative and measurable on (0,∞) , then

∫ ∞

0

(
1
x

∫ x

0
f (y)dy

)p

xαdx �
(

p
p−1−α

)p ∫ ∞

0
f p (x)xαdx, (1.2)

whenever p > 1 and α < p−1. But it has been recently pointed out in [14] that these

two inequalities are in fact equivalent, since the substitutions f (x) = g(x1− 1
p )x−

1
p and

f (x) = g(x
p−α−1

p )x−
α+1

p , respectively, carry over both inequalities to the inequality

∫ ∞

0

(
1
x

∫ x

0
g(y)dy

)p dx
x

� 1
∫ ∞

0
gp (x)

dx
x

. (1.3)

Since (1.3) follows directly from Jensen’s inequality and reversing the order of inte-
gration, we get a very simple proof of the weighted Hardy’s inequality (1.2) even with
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equality for p = 1 and holding in reverse direction for 0 < p < 1. All constants above
are obviously sharp, and by discussing in the same way, when the interval (0,∞) is
replaced by an interval (0,b) , 0 < b � ∞, we obtain the following version of (1.2), still
with sharp constant:

∫ b

0

(
1
x

∫ x

0
f (y)dy

)p

xαdx �
(

p
p−1−α

)p ∫ b

0
f p (x)xα

(
1−
(x

b

) p−α−1
p

)
dx,

(1.4)
where p � 1 and α < p−1.

For this and more information of this type see [14]. Concerning Hardy type in-
equalities with general weights we refer to [8], [9] and [10].

Even if all constants above are sharp we can improve all inequalities above by
making so called “refinements” i.e., inserting some additional strictly positive terms on
the left hand-side of the inequalities.

Here we will mention some of these results.
An early result of this type is the following one by C. O. Imoru from 1977 [7]:

∫ b

0

(
1
x

∫ x

0
f (y)dy

)p

xαdx+
p

p−1−α
b1−p−α

(∫ b

0
f (y)dy

)p

�
(

p
p−1−α

)p ∫ b

0
f p (x)xαdx,

where p � 1, α < p−1 and 0 < b < ∞. This result was further generalized (and also
previous results by D. T. Shum) in the paper [12]. In the paper [11] (cf. also [13]) the
same authors made a refinement of a completely different type, namely the following:
Let p � 1, α < p−1 and 0 < b � ∞. If p � 2, then

∫ b

0

(
1
x

∫ x

0
f (y)dy

)p

xαdx

+
p−1−α

p

∫ b

0

∫ b

t

∣∣∣∣∣ p
p−α −1

( t
x

)1− p−α−1
p

f (t)− 1
x

∫ x

0
f (τ)dτ

∣∣∣∣∣
p

×xα− p−α−1
p dxt

p−α−1
p −1dt

�
(

p
p−α −1

)p ∫ b

0
f p (x)xα

(
1−
(x

b

) p−α−1
p

)
dx (1.5)

If 1 < p � 2, then (1.5) holds in the reverse direction. In particular, for p = 2 we
have equality in (1.5). This means that the natural “breaking point” is p = 2 in this
refined Hardy inequality. In all other Hardy type inequalities discussed above and else-
where (see e.g. the books and the references there) the corresponding natural breaking
point is p = 1. The crucial point in the proof of the result in [11] was to use the con-
cept of superquadratic functions and a corresponding refined Jensen type inequality by
Abramovich & al (see [2]). In [3] it was proved that the refinement with breaking point
p = 2 is not unique and that (1.5) can be replaced by another inequality with breaking
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point at p = 2. Moreover, another new refined Hardy type inequality was proved there
with breaking point p = 3. This was obtained by using the concept of superterzatic
functions, which was introduced and studied in the paper [1]. The main purpose of this
paper is to derive a whole scale of refined Hardy type inequalities which can have a
breaking point at any point p = α, α > 2.

In Section 2 of this paper we define all concepts mentioned above and other prelim-
inaries. In Section 3 we prove some equivalent ways to define superterzatic functions
including a new Jensen type inequality (see Theorem 1 and Theorem 2). In Section 4
we study the case when K(x) := xγϕ (x) , γ ∈ R+, where ϕ is superquadratic or con-
vex. In this section we compare some bounds in the crucial inequality (4.1), which is
important in our Section 5 but also of independent interest. Our new refined Hardy type
inequalities are presented and proved in Section 5 (see especially Theorem 3) but now
with other natural breaking points. We derive a refinement of Hardy’s inequality in a
similar way as the refinement which was achieved via superquadratic and subquadratic
functions in [11]. In this way we can obtain a whole scale of refined Hardy-type in-
equalities with natural breaking points p = p0 � 2.

2. Preliminaries

First we define the crucial concept of superquadratic and subquadratic functions
(see [2]).

DEFINITION 1. Let ϕ : [0,b)→R. The function ϕ is superquadratic if for all x∈
[0,b) there exists Cϕ (x) ∈ R such that

ϕ (y)−ϕ (x) � Cϕ (x) (y− x)+ ϕ (|y− x|) (2.1)

for all y ∈ [0,b) .
The function ϕ is subquadratic if −ϕ is superquadratic and the reverse inequality

of (2.1) holds.

REMARK 1. Inequality (2.1) holds for all ϕ (x) = xp , x � 0, p � 2 and reduces to
equality for ϕ (x) = x2. The reverse of (2.1) holds for all ϕ (x) = xp , x � 0, 0 � p � 2.

The following result is useful (see [2, Lemma 2.1]):

LEMMA 1. Let ϕ be a superquadratic function with Cϕ (x) as in (2.1).
(i) Then ϕ (0) � 0.
(ii) If ϕ (0) = ϕ ′ (0) = 0, then Cϕ (x) = ϕ ′ (x) whenever ϕ is differentiable at

x > 0 .
(iii) If ϕ � 0, then ϕ is convex and ϕ (0) = ϕ ′ (0) = 0.

The following refined Jensen type inequality was proved in [2]:
The inequality

ϕ
(∫

Ω
f (x)dμ (x)

)
�
∫

Ω
ϕ ( f (x))dμ (x)−

∫
Ω

ϕ
(∣∣∣∣ f (x)−

∫
Ω

f (x)dμ (x)
∣∣∣∣
)

dμ

(2.2)



682 S. ABRAMOVICH AND L.-E. PERSSON

holds for all probability measure spaces (Ω,μ) of μ -integrable nonnegative functions
f if and only if ϕ is superquadratic. Moreover, (2.2) holds in the reverse direction if
and only if ϕ is subquadratic.

EXAMPLE 1. For the case ϕ (x) = xp (2.2) implies that the inequality

(∫
Ω

f (x)dμ (x)
)p

�
∫

Ω
( f (x))p dμ (x)−

∫
Ω

∣∣∣∣ f (x)−
∫

Ω
f (x)dμ (x)

∣∣∣∣
p

dμ (x) (2.3)

holds for p � 2 and (2.3) holds in the reversed direction if 0 < p � 2.

Now, following [1] superterzatic and subterzatic functions are defined as follows:

DEFINITION 2. A function g : [0,b) → R is called superterzatic provided that for
all x ∈ [0,b) there exists a constant C (x) ∈ R such that the inequality

N

∑
i=1

αig(xi)−g(x)

�
N

∑
i=1

αixi

[
(xi − x)C (x)+ |xi− x|−1 g(|xi − x|)

]

=
N

∑
i=1

αi (xi− x)2C (x)+
N

∑
i=1

αixi |xi− x|−1 g(|xi − x|) (2.4)

holds for all xi : [0,b) and αi � 0, i = 1, ...,N , such that ∑N
i=1 αi = 1, where x =

∑N
i=1 αixi .

The function g is called subterzatic if −g is superterzatic and the reverse inequal-
ity in (2.4) holds.

Also, according to [1, Theorem 1, Case A], we have:

LEMMA 2. Let ϕ : [0,b) →R be a superquadratic function, and let g : [0,b)→R

and be defined by g(x) = xϕ (x) . Then g is superterzatic. If ϕ is subquadratic, then g
is subterzatic. Moreover C (x) = Cϕ (x) , where C(x) is as in (2.4) and Cϕ (x) is as in
(2.1).

The name “Superterzatic Function” is given to g because (2.4) holds for g(x) =
xp, p � 3, x � 0, with equality for p = 3. (2.4) holds in the reversed direction for
1 < p < 3.

In the next section we characterize in paricular superterzatic and subterzatic func-
tions via a new Jensen type inequality in a similar way to the characterization by (2.2)
of superquadratic functions and the characterization of subquadratic functions by the
reverse inequality of (2.2) (See Theorem 2).
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3. Characterization of the superterzatic functions – a new Jensen type inequality

In Theorem 1 and in Theorem 2 we present equivalent definitions to the one in
[1] for superterzacity, which are important for our further investigations but also of
independent interest.

THEOREM 1. The function g : [0,b) → R is superterzatic if and only if for all
x ∈ [0,b) , there exist constants C(x) ∈ R and D(x) ∈ R such that

g(y)−g(x) � C(x)y(y− x)+D(x)(y− x)+ y |y− x|−1 g(|y− x|) (3.1)

for all y ∈ [0,b) .
If g(x) = xϕ (x) where ϕ is superquadratic, then C (x) =Cϕ (x) , where Cϕ (x) is

as appears in (2.1).
If ϕ is differentiable, superquadratic, g(x) = xϕ (x) and ϕ (0) = ϕ ′ (0) = 0, then

C (x) = ϕ ′ (x) and D(x) = ϕ (x) .
g is subterzatic if and only if the reverse of inequality (3.1) holds.

Proof. First we show that if (2.4) holds, then (3.1) holds.
Inequality (2.4) for n = 2 reads

αg(y1)+ βg(y2)−g(x)

� C(x)αβ (y2 − y1)2 + αy1 (β |y2 − y1|)−1 g(β |y2 − y1)|
+βy2 (α |y2 − y1|)−1 g(α |y2− y1)| , (3.2)

where 0 � α � 1, α + β = 1.
Let us assume that

0 � y1 < x < y2 < b

and choose
α =

y2 − x
y2− y1

, β =
x− y1

y2 − y1
.

Then from (3.2), after some manipulations, we get that

g(y2)
y2− x

− g(x)
y2− x

−C(x)y2− y2

(y2 − x)
g(y2− x)
(y2− x)

� g(y1)
y1− x

− g(x)
y1− x

−C(x)y1− y1

(y1− x)
g(x− y1)
(x− y1)

. (3.3)

By fixing y1 ∈ (0,x) we obtain a lower bound, which shows that

D(x) = inf
y2>x

g(y2)−g(x)−C(x)y2(y2 − x)− y2(y2 − x)−1g(y2− x)
y2− x

exists. Now we take y2 = y to see that

g(y)−g(x)−C(x)y(y− x)− y(y− x)−1g(y− x) � D(x)(y− x)
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for all y > x , and take y1 = y to get that

g(y)−g(x)−C(x)y(y− x)− y(x− y)−1g(x− y) � D(x)(y− x)

for all y < x . Thus (3.1) holds.
Conversely, we get (2.4) from (3.1) by replacing in (3.1) y by xi, where xi ∈ [0,b)

i = 1, ...,N, and by choosing x = ∑N
i=1 αixi, multiplying each of the N inequalities by

αi and taking the sum of these N inequalities, where 0 � αi � 1, i = 1, ...,N and
∑N

i=1 αi = 1.
In the case that g(x) = xϕ (x) where ϕ is superquadratic it follows from [1] and

[2] that C (x) = Cϕ (x) and from the differentiability and superquadracity of ϕ , and
since ϕ (0) = ϕ ′ (0) = 0, it follows that C (x) = ϕ ′ (x) . Dividing (3.1) by y− x and
then letting y → x in the case y > x and then in the case y < x, we get that D = ϕ .

The result for a subterzatic function g is obtained by dealing with the superterzatic
function −g. The proof is complete. �

In our next characterization, (3.4) may be regarded as a new refined Jensen type
inequality yielding for superterzatic functions.

THEOREM 2. The function g is superterzatic if and only if

∫
Ω

g( f (s))dμ(s)−g

(∫
Ω

f (s)dμ(s)
)

� C

(∫
Ω

f (s)dμ(s)
)∫

Ω
f (s)

(
f (s)−

∫
Ω

f (t)dμ(t)
)

dμ(s)

+
∫

Ω
f (s)

(∣∣∣∣ f (s)−
∫

Ω
f (t)dμ(t)

∣∣∣∣
)−1

g

(∣∣∣∣ f (s)−
∫

Ω
f (t)dμ(t)

∣∣∣∣
)

dμ(s) (3.4)

holds for all probability measures μ and all nonnegative μ -integrable functions f on
the measure space (Ω,μ) .

If g(x) = x3, x � 0, then (3.4) reduces to equality.
The reverse of inequality (3.4) holds if g is subterzatic.

Proof. According to Theorem 1, if g is superterzatic, then (3.1) holds.
Fix a probability measure μ and a nonnegative, μ -integrable function f . Set

x =
∫

Ω f dμ , and let C(x) and D(x) be the constants in (3.1) . Then, by integrating we
find that ∫

Ω (g( f (s))−g(x)−C (x) f (s) ( f (s)− x)
− f (s) | f (s)− x|−1 g(| f (s)− x|)

)
dμ(s)

� D(x)
∫

Ω ( f (s)− x)dμ (s) = 0,

which by rearranging yields (3.4). So we have proved that if g is superterzatic, then
(3.4) holds.

Now we show that from (3.4) we get (3.1). Suppose that 0 < y1 < x < y2 and let
μ be the probability measure on [0,1] with μ (0) = x−y1

y2−y1
and μ (1) = y2−x

y2−y1
. With

f (0) = y2, f (1) = y1 we have that
∫

Ω f dμ = x so inequality (3.4) becomes (3.3) and
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from this inequality we continue as in the proof of Theorem 1 and we get that (3.1) holds
and therefore that g is superterzatic.The remaining part of the proof follows similarly
by using Theorem 1, Lemma 2 and Definition 2. The proof is complete. �

By using the results above and Theorem 1 for the function g(x) = xp , x � 0, p � 3
and 1 < p � 3 we get the following inequalities:

COROLLARY 1. Let p � 3. If x = ∑n
i=1 αixi, αi � 0, ∑n

i=1 αi = 1, xi ∈ [0,∞) ,
then the following inequality holds:

∑αix
p
i − xp � ∑αixi

[
(xi− x)(p−1)xp−2 + |xi− x|p−1

]
=

n

∑
i=1

αi (xi− x)2 (p−1)xp−2 +
n

∑
i=1

αixi |xi − x|p−1 . (3.5)

If x , y � 0, then

yp− xp � (p−1)xp−2y(y− x)+ y |y− x|p−1 + xp−1 (y− x) , (3.6)

and∫
Ω

( f (s))p dμ (s)−
(∫

Ω
f (s)dμ (s)

)p

� (p−1)
(∫

Ω
f (s)dμ (s)

)p−2∫
Ω

f (s)
(

f (s)−
∫

Ω
f (t)dμ (t)

)
dμ (s)

+
∫

Ω
f (s)

∣∣∣∣ f (s)−
∫

Ω
f (t)dμ (t)

∣∣∣∣
p−1

dμ(s). (3.7)

holds for all probability measure spaces (Ω,μ) of nonnegative μ -integrable functions
f .

If 1 � p � 3, then the reverse of these inequalities hold.
Inequalities (3.5), (3.6) and (3.7) reduce to equalities for p = 3, where f is any

nonnegative μ -integrable function on the probability measure space (Ω,μ) .

4. The case K (x) = xγϕ (x) , where ϕ is superquadratic or convex

In order to get more refinements of Hardy’s inequalities similarly to those in [11],
we prove in this section some inequalities that hold when the given function K (x) sat-
isfies K (x) = xγ ϕ (x) , γ ∈ R+, where ϕ is a superquadratic function. These inequal-
ities include and generalize the results in Section 2 related to superquadratic function
ϕ : [0,b) → R and in Section 3 to superterzatic functions g : [0,b) → R that satisfy
g(x) = xϕ (x) .

LEMMA 3. Let K (x) = xγ ϕ (x) , γ ∈R+, where ϕ (x) is superquadratic on [0,b) .
Then

K (y)−K (x) � ϕ (x) (yγ − xγ)+Cϕ (x)yγ (y− x)+ yγϕ (|y− x|) , (4.1)
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holds for x ∈ [0,b) , y ∈ [0,b) . Moreover,

N

∑
i=1

αiK (yi)−K

(
N

∑
i=1

αiyi

)

� ϕ

(
N

∑
j=1

α jy j

)(
N

∑
i=1

αiy
γ
i −
(

N

∑
j=1

α jy j

)γ)

+Cϕ

(
N

∑
j=1

α jy j

)
N

∑
i=1

αiy
γ
i

(
yi −

N

∑
j=1

α jy j

)
+

N

∑
i=1

αiy
γ
i ϕ

(∣∣∣∣∣yi −
N

∑
j=1

α jy j

∣∣∣∣∣
)

(4.2)

holds for xi ∈ [0,b) , yi ∈ [0,b) , 0 � αi � 1, i = 1, ...,n, and ∑N
i=1 αi = 1; and

∫
Ω

K ( f (s))dμ (s)−K

(∫
Ω

f (s)dμ (s)
)

�
∫

Ω

[
ϕ (x)( f γ (s)− xγ)+Cϕ (x) f γ (s)( f (s)− x)+ f γ (s)ϕ (| f (s)− x|)]dμ (s) .

(4.3)

holds, where f is any nonnegative μ -integrable function on the probability measure
space (Ω,μ) and x =

∫
Ω f (s)dμ (s) .

If ϕ is subquadratic, then the reverse inequality of (4.1), (4.2), and (4.3) hold, in
particular

∫
Ω

K ( f (s))dμ (s) −K

(∫
Ω

f (s)dμ (s)
)

�
∫

Ω

[
ϕ (x)( f γ (s)− xγ)+Cϕ (x) f γ (s)( f (s)− x)+ f γ (s)ϕ (| f (s)− x|)]dμ (s) .

(4.4)

Inequalities (4.1), (4.2) and (4.3) are satisfied in particular by K (x) = xp, p �
γ + 2. For γ < p � γ + 2 the reverse inequalities hold. They reduce to equalities for
p = γ +2.

Proof. Multiplying (2.1) by yγ , by simple manipulations we get that K (x) =
xγϕ (x) satisfies (4.1) when ϕ is superquadratic.

By fixing in (4.1) a probability measure μ and a nonnegative integrable function
f , setting x =

∫
Ω f dμ and Cϕ (x) is as in the definition of superquadracity, we obtain

for K (x) = xγϕ (x) , γ ∈ R+, where ϕ (x) is superquadratic, that (4.3) holds.
(4.2) is the discrete case of (4.3) and is obtained from (4.1) in the same way as

(2.4) was derived from (3.1).
Similarly, since −ϕ is superquadratic, inequality (4.4) and the reverse inequalities

of (4.1) and (4.2) are obtained for subquadratic functions.
Since ϕ (x) = xp , is superquadratic for p � 2, x > 0, and subquadratic for 0 <

p � 2, x > 0, we find that inequalities (4.1), (4.2) and (4.3) hold when p � γ +2 and
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the reverse of inequalities (4.1), (4.2) and (4.3) hold when γ < p � γ +2. As a result,
we in particular find that (4.1), (4.2) and (4.3) reduce to equalities for p = γ + 2. The
proof is complete. �

In an analogous way we can start with a convex function ψ satisfying ψ (y)−
ψ (x) �Cψ (x)(y− x) , which reduces to equality for ψ (x) = x and by the same proce-
dure we obtain that for the function T (x) = xγ ψ (x) , γ ∈ R+ , where ψ (x) is convex,
it yields that

T (y)−T (x) � ψ (x) (yγ − xγ)+Cψ (x)yγ (y− x) . (4.5)

In particular, inequality (4.5) holds for T (x) = xp, p � γ +1 with equality for T (x) =
xγ+1.

In Section 5 (see Theorem 3), we prove a new Hardy type inequaliy related to the
functions ϕ (x) = xm , x � 0, m � 1, which are superquadratic when m � 2 and sub-
quadratic when 1 < m � 2. These functions are evidently differentiable, nonnegative,
convex, increasing and satisfy ϕ (0) = ϕ ′ (0) = 0. But in order to get the results of The-
orem 3 we need to compare inequality (4.1) for K (x) = xγ ϕ (x) and K (x) = xγ−1ψ (x) ,
where ψ (x) = xϕ (x) (see Lemma 4 below). First we state a useful remark that guides
us how to prove Lemma 4 (see [2, Lemma 3.1]).

REMARK 2. Let ϕ(x) , 0 � x < ∞, be a differentiable positive convex, increasing

function and ϕ (0) = ϕ ′ (0) = 0 and let ψ (x) = xϕ (x) . Because ψ ′(x)
x is increasing

and ψ (0) = ψ ′ (0) = 0, then ψ (x) is superquadratic. In particular, if ϕ(x) , 0 � x < ∞,
is a differentiable positive superquadratic function, then (according to Lemma 1) ϕ is
convex increasing and ϕ (0) = ϕ ′ (0) = 0. Therefore also ψ (x) is positive, increasing,
convex and superquadratic.

LEMMA 4. Let K (x) = xγ ϕ (x) = xγ−1ψ (x) , γ � 1, where ϕ is a differentiable
positive superquadratic function and ψ (x) = xϕ (x) . Then the bound obtained for
K (x) = xγϕ (x) is stronger than the bound obtained for K (x) = xγ−1ψ (x) , that is:

K (y)−K (x) � ϕ (x)(yγ − xγ)+ ϕ ′ (x)yγ (y− x)+ yγϕ (|y− x|) (4.6)

implies that

K (y)−K (x) � ψ (x)
(
yγ−1− xγ−1)+ ψ ′ (x)yγ−1 (y− x)+ yγ−1ψ (|y− x|) . (4.7)

Moreover, if K (x) = xnϕ (x) , ψk (x) = xkϕ (x) , n is an integer, k = 1,2, ...,n, and
ϕ (x) is nonnegative superquadratic, then the inequalities

∫
Ω

K ( f (s))dμ (s) −K

(∫
Ω

f (s)dμ (s)
)

�
∫

Ω

[
ϕ (x) ( f n (s)− xn)+Cϕ (x) f n (s) ( f (s)− x)

+ f n (s)ϕ (| f (s)− x|)]dμ (s)
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�
∫

Ω

[
ψk (x)

(
f n−k (s)− xn−k

)
+Cψk (x) f n−k (s) ( f (s)− x)

+ f n−k (s)ψk (| f (s)− x|)
]
dμ (s)

�
∫

Ω
ψn (| f (s)− x|)dμ (s) � 0 (4.8)

hold for all probability measure spaces (Ω,μ) of μ -integrable nonnegative functions
f , where x =

∫
Ω f (s)dμ (s) .

Furthermore if ϕ (x) is positive, increasing, convex, subquadratic and ϕ (0) =
ϕ ′ (0) = 0, then xϕ (x) is superquadratic and∫

Ω

[
ϕ (x)( f n (s)− xn)+Cϕ (x) f n (s)( f (s)− x)

+ f n (s)ϕ (| f (s)− x|)]dμ (s)

�
∫

Ω
K ( f (s))dμ (s) −K

(∫
Ω

f (s)dμ (s)
)

�
∫

Ω

[
ψk (x)

(
f n−k (s)− xn−k

)
+Cψk (x) f n−k (s) ( f (s)− x)

+ f n−k (s)ψk (| f (s)− x|)
]
dμ (s)

�
∫

Ω
ψn (| f (s)− x|)dμ (s) � 0; k = 1, ...,n. (4.9)

In particular, if ϕ (x) = xp, x � 0, p � 1, then (4.8) is satisfied when p � 2 and (4.9)
is satisfied when 1 � p � 2. When p = 2 equality holds in the first inequality of (4.8)
and in the first inequality of (4.9).

Proof. We will show that when ϕ is differentiable, nonnegative superquadratic or
ϕ is differentiable, positive increasing, convex and ϕ (0) = ϕ ′ (0) = 0, where ψ (x) =
xϕ (x) , then

ϕ (x) (yγ − xγ)+ ϕ ′ (x)yγ (y− x)+ yγϕ (|y− x|)
� ψ (x)

(
yγ−1 − xγ−1)+ ψ ′ (x)yγ−1 (y− x)+ yγ−1ψ (|y− x|) . (4.10)

After some manipulations we see that in order to prove (4.10) it is sufficient to show
that

ϕ ′ (x) (x− y)2 + yϕ (|y− x|)−|y− x|ϕ (|y− x|) � 0. (4.11)

Case a: y � x � 0. In this case we have to prove that

ϕ ′ (x)(x− y)2 + xϕ (|y− x|) � 0, (4.12)

which is satisfied because x, ϕ , ϕ ′ are nonnegative.
Case b: x � y � 0. Then (4.11) becomes

(x− y)
[
(x− y)ϕ ′ (x)−ϕ (x− y)

]
+ yϕ (x− y) � 0. (4.13)
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Since ϕ ′ is increasing, from x � y � 0 we get that

(x− y)ϕ ′ (x)−ϕ (x− y) � (x− y)ϕ ′ (x− y)−ϕ (x− y) � 0. (4.14)

The last inequality in (4.14) holds since ϕ (0) = ϕ ′ (0) = 0 and as ϕ is convex . Hence
(4.13) holds.

From Remark 2 we know that if ϕ is nonnegative and superquadratic so is xkϕ (x)
= ψk (x) , k is a nonnegative integer. Since (4.3) is obtained from (4.1), then, by using
(4.10), we get (4.8). If ϕ is positive, subquadratic, convex, increasing, differentiable
and ϕ (0) = ϕ ′ (0) = 0, then, as we showed, (4.10) still holds and as in this case that
(4.4) holds we get that for a nonnegative integer n, the left hand-side of (4.9) is nonneg-
ative. However, according to Remark 2, ψk (x) = xkϕ (x) , k = 1,2..., is superquadratic.
Therefore also the right hand-side of (4.9) holds. The assertions on ϕ (x) = xp, p � 1,
in the statement of this lemma hold because these functions are differentiable, nonnega-
tive increasing and superquadratic when p � 2 and subquadratic when 1 � p � 2. This
completes the proof of the lemma. �

REMARK 3. As explained in Remark 2, given a positive, increasing and convex
F (x) where F (0) = F ′ (0) = 0 we get that ϕ (x) = xF (x) is superquadratic and there-
fore that K (x) = xγϕ (x) satisfies inequality (4.6), γ ∈ R+ . Hence, from (4.5) and (4.6)
we derive the following: Let F (x) , 0 � x < b, be a differentiable positive increasing
convex function and F (0) = F

′
(0) = 0. Then K (x) = xγ+1F (x) , γ ∈ R+, because of

the convexity of F(x) satisfies the inequality

yγ+1F(y)− xγ+1F(x) � F(x)
(
yγ+1 − xγ+1)+F ′(x)yγ+1 (y− x) ,

and because of the superquadracity of ϕ(x) = xF(x) the inequality

yγ+1F(y)− xγ+1F(x)
� xF(x)(yγ − xγ)+ (xF(x)) ′yγ (y− x)+ yγ |y− x|F(|y− x|).

REMARK 4. From Example 3 in [1], we can see that if ϕ is superquadratic but
ϕ or ϕ ′ is not increasing and ψ (x) = xϕ (x) , then ψ is superterzatic and can be sub-
quadratic.

Indeed ϕ (x) = x2 lnx, 0 < x < ∞, ϕ (0) = 0 is superquadratic and ψ (x) = x3 lnx,
0 < x < ∞, ψ (0) = ψ ′ (0) = 0, is subquadratic on

[
0,e−3/2

]
and therefore is supert-

erzatic and subquadratic on
[
0,e−3/2

]
. It is easy to verify that this follows in general if

ϕ is negative, decreasing, concave superquadratic function, satisfying ϕ (0) = ϕ ′ (0) =
0. In this case we get the following inequalities:

(y− x)ϕ (x) + (y− x)yϕ ′ (x)+ yϕ (|y− x|)
� ψ (y)−ψ (x) � (y− x)ψ ′ (x)+ ψ (|y− x|) ,

where ψ (x) = xϕ (x) . In other words

(y− x)ϕ (x) + (y− x)yϕ ′ (x)+ yϕ (|y− x|)
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� yϕ (y)− xϕ (x)
� (y− x)xϕ ′ (x)+ (y− x)ϕ (x)+ (|y− x|)ϕ (|y− x|) .

In such cases we get that the superterzacity of ψ gives a lower bound and the sub-
qudracity of ψ gives an upper bound to ψ (y)−ψ (x) .

5. Some new scales of refined Hardy type inequalities

In this section we use the ideas and techniques of [11], and implement them on
the functions K(x) = xγ ϕ(x), γ ∈ R+, where ϕ(x) is superquadratic. First we prove a
proposition in a similar way to Proposition 2.1a in [11].

PROPOSITION 1. Let 0 < b � ∞, u : (0,∞) → R, be a nonnegative weight func-

tion such that u(x)
x2 is locally integrable on (0,∞) and let the weight function v be

defined by

v(t) = t
∫ b

t

u(x)
x2 dx, t ∈ (0,b) . (5.1)

If the function ϕ is integrable and superquadratic on [0,b) and K (x) = xγ ϕ (x) ,
γ ∈ R+, then∫ b

0
K( f (x))

v(x)
x

dx−
∫ b

0
K

(
1
x

∫ x

0
( f (t)dt)

)
u(x)
x

dx]

�
∫ b

0

∫ b

t

(
f γ (t)−

(
1
x

∫ x

0
f (τ)dτ

)γ)
ϕ
(

1
x

∫ x

0
f (τ)dτ

)
u(x)
x2 dxdt

+
∫ b

0

∫ b

t
f γ (t)

(
f (t)− 1

x

∫ x

0
f (τ)dτ

)
Cϕ

(
1
x

∫ x

0
f (τ)dτ

)
u(x)
x2 dxdt

+
∫ b

0

∫ b

t
f γ (t)ϕ

(∣∣∣∣ f (t)− 1
x

∫ x

0
f (τ)dτ

∣∣∣∣
)

u(x)
x2 dxdt, (5.2)

holds for all nonnegative locally integrable functions f . If ϕ is subquadratic, then the
reverse of inequality (5.2) holds.

COROLLARY 2. For γ = 0 (5.2) coincides with the statement in Proposition 2.1a
in [11], that is∫ b

0
ϕ ( f (x))

v(x)
x

dx−
∫ b

0
ϕ
(

1
x

∫ x

0
f (t)dt

)
u(x)
x

dx

�
∫ b

0

∫ b

t
ϕ
(∣∣∣∣ f (t)− 1

x

∫ x

0
f (τ)dτ

∣∣∣∣
)

u(x)
x2 dxdt. (5.3)

Proof. Let us choose the probability measure dμ (t) = 1
x dt, 0 � t � x in (4.3) .

Then

1
x

∫ x

0
K ( f (t))dt−K

(
1
x

∫ x

0
f (t)dt

)
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� ϕ
(

1
x

∫ x

0
f (t)dt

)
1
x

∫ x

0

(
f γ (t)−

(
1
x

∫ x

0
f (τ)dτ

)γ)
dt

+Cϕ

(
1
x

∫ x

0
f (t)dt

)
1
x

∫ x

0
f γ (t)

(
f (t)− 1

x

∫ x

0
f (τ)dτ

)
dt

+
1
x

∫ x

0
f γ (t)ϕ

(∣∣∣∣ f (t)− 1
x

∫ x

0
f (τ)dτ

∣∣∣∣
)

dt. (5.4)

Multiplying (5.4) by u(x)
x and integrating on 0 � x � b , we get that

∫ b

0

∫ x

0
K ( f (t))dt

u(x)
x2 dx−

∫ b

0
K

(
1
x

∫ x

0
f (t)dt

)
u(x)

x
dx

�
∫ b

0

∫ x

0

(
f γ (t)−

(
1
x

∫ x

0
f (τ)dτ

)γ)
ϕ
(

1
x

∫ x

0
f (τ)dτ

)
u(x)
x2 dtdx

+
∫ b

0

∫ x

0
f γ (t)

(
f (t)− 1

x

∫ x

0
f (τ)dτ

)
Cϕ

(
1
x

∫ x

0
f (τ)dτ

)
u(x)
x2 dtdx

+
∫ b

0

∫ x

0
f γ (t)ϕ

(∣∣∣∣ f (t)− 1
x

∫ x

0
f (τ)dτ

∣∣∣∣
)

u(x)
x2 dtdx. (5.5)

Now using (5.1) and Fubini’s theorem we find that

∫ b

0

∫ x

0
K ( f (t))

u(x)
x2 dtdx

=
∫ b

0

1
t

∫ b

t
K ( f (t))

tu(x)
x2 dxdt

=
∫ b

0
K ( f (t))

v(t)
t

dt =
∫ b

0
K ( f (x))

v(x)
x

dt. (5.6)

(5.5) and (5.6) lead to (5.2). When ϕ is subquadratic the proof is similar and therefore
is omitted. The proof is complete. �

EXAMPLE 2. From Proposition 1 for ϕ (x) = xp, p � 2 (therefore Cϕ (x) = ϕ ′ (x)
= pxp−1 ), choosing u(x) = 1 and γ ∈ R, we find that

∫ b

0

(
1− x

b

)
f p+γ (x)

dx
x
−
∫ b

0

(
1
x

∫ x

0
f (t)dt

)p+γ dx
x

�
∫ b

0

∫ b

t

(
f γ (t)−

(
1
x

∫ x

0
f (τ)dτ

)γ)(1
x

∫ x

0
f (τ)dτ

)p dx
x2 dt

+
∫ b

0

∫ b

t
f γ (t)

(
f (t)− 1

x

∫ x

0
f (τ)dτ

)
p

(
1
x

∫ x

0
f (τ)dτ

)p−1 dx
x2 dt

+
∫ b

0

∫ b

t
f γ (t)

(∣∣∣∣ f (t)− 1
x

∫ x

0
f (τ)dτ

∣∣∣∣
)p dx

x2 dt. (5.7)

The reverse inequality holds when 1 < p � 2.
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By using (5.7) we are now ready to derive our new scales of refined Hardy type
inequalities.

THEOREM 3. Let p � 2, k > 1, 0 < b � ∞, and γ ∈ R+, and let the function f
be nonnegative and locally integrable on (0,b) . Then

(
p+ γ
k−1

)p+γ ∫ b

0

(
1−
(x

b

) k−1
p+γ
)

xp+γ−k f p+γ (x)dx−
∫ b

0
x−k
(∫ x

0
f (t)dt

)p+γ
dx

�
(

k−1
p+ γ

)∫ b

0

∫ b

t

((
f (t)

p+ γ
k−1

( t
x

)1− k−1
p+γ

)γ

−
(

1
x

∫ x

0
f (σ)dσ

)γ
)

×
(

1
x

∫ x

0
f (σ)dσ

)p

x

(
1− k−1

p+γ

)
(p+γ−1)

t
k−1
p+γ −1 dx

x2 dt

+
(

k−1
p+ γ

)1−γ ∫ b

0

∫ b

t

(
f (t) t1−

k−1
p+γ
)γ
(

f (t)
p+ γ
k−1

( t
x

)1− k−1
p+γ − 1

x

∫ x

0
f (σ)dσ

)

×p

(
1
x

∫ x

0
f (σ)dσ

)p−1

x

(
1− k−1

p+γ

)
(p+1)

t
k−1
p+γ −1 dx

x2 dt

+
(

k−1
p+ γ

)1−γ ∫ b

0

∫ b

t

(
f (t) t1−

k−1
p+γ
)γ
(∣∣∣∣∣ f (t)

p+ γ
k−1

( t
x

)1− k−1
p+γ − 1

x

∫ x

0
f (σ)dσ

∣∣∣∣∣
)p

×x

(
1− k−1

p+γ

)
(p+1)

t
k−1
p+γ −1 dx

x2 dt. (5.8)

Moreover, if γ is a nonnegative integer, then the right hand side of (5.8) is non-
negative. If 1 < p � 2, then inequality (5.8) is reversed. Equality holds when p = 2.
When γ = 0 , inequality (5.8) coincide with (1.5).

Proof. The proof follows the steps of the proof of Theorem 3.1 in [11].

We denote the right hand side of (5.7) by R and replace the parameter b by b
k−1
p+γ

and f (x) by f
(
x

p+γ
k−1

)
x

p+γ
k−1 −1. Then

R =
∫ b

k−1
p+γ

0

∫ b
k−1
p+γ

t

(
f γ
(
t

p+γ
k−1

)
t(

p+γ
k−1−1)γ −

(
1
x

∫ x

0
f
(

τ
p+γ
k−1

)
τ

p+γ
k−1 −1dτ

)γ)

×
(

1
x

∫ x

0
f
(

τ
p+γ
k−1

)
τ

p+γ
k−1 −1dτ

)p dx
x2 dt

+
∫ b

k−1
p+γ

0

∫ b
k−1
p+γ

t

(
f
(
t

p+γ
k−1

)
t

p+γ
k−1 −1

)γ
(

f
(
t

p+γ
k−1

)
t

p+γ
k−1 −1−1

x

∫ x

0
f
(

τ
p+γ
k−1

)
τ

p+γ
k−1 −1dτ

)

×p

(
1
x

∫ x

0
f
(

τ
p+γ
k−1

)
τ

p+γ
k−1 −1dτ

)p−1 dx
x2 dt
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+
∫ b

k−1
p+γ

0

∫ b
k−1
p+γ

t
f γ
(
t

p+γ
k−1

)
t(

p+γ
k−1 −1)γ

×
(∣∣∣∣ f (t p+γ

k−1

)
t

p+γ
k−1 −1− 1

x

∫ x

0
f
(

τ
p+γ
k−1

)
τ

p+γ
k−1 −1dτ

∣∣∣∣
)p dx

x2 dt. (5.9)

We use now the substitutions

y = x
p+γ
k−1 and s = t

p+γ
k−1 ⇔ x = y

k−1
p+γ t = s

k−1
p+γ

from which it follows that

t = b
k−1
p+γ ⇒ s = b, x = b

k−1
p+γ ⇒ y = b,

dt = k−1
p+γ s

k−1
p+γ −1ds, k−1

p+1ds = t
p+γ
k−1 −1dt, dx = y

k−1
p+γ −1 k−1

p+γ dy,

dy = p+γ
k−1 x

p+γ
k−1 −1dx, and t

p+γ
k−1 −1 = s1− k−1

p+γ .

By using these substitutions we get from (5.9) that

R =
(

k−1
p+ γ

)p+γ+2∫ b

0

∫ b

s

⎛
⎝
(

p+ γ
k−1

f (s)
(

s
y

)1− k−1
p+γ
)γ

−
(

1
y

∫ y

0
f (σ)dσ

)γ
⎞
⎠

×
(

1
y

∫ y

0
f (σ)dσ

)p

y

(
1− k−1

p+γ

)
(p+γ+1)

s
k−1
p+γ −1 dy

y2 ds

+p

(
k−1
p+ γ

)p+2∫ b

0

∫ b

s

⎛
⎝ p+ γ

k−1
f (s)

(
s
y

)(1− k−1
p+γ

)
− 1

y

∫ y

0
f (σ)dσ

⎞
⎠

×
(

f (s) s

(
1− k−1

p+γ

))γ (1
y

∫ y

0
f (σ)dσ

)p−1

y

(
1− k−1

p+γ

)
(p+1)

s
k−1
p+γ −1 dy

y2 ds

+
(

k−1
p+ γ

)p+2 ∫ b

0

∫ b

s

(∣∣∣∣∣ p+ γ
k−1

f (s)
(

s
y

)1− k−1
p+γ

− 1
y

∫ y

0
f (σ)dσ

∣∣∣∣∣
)p

×
(

f (s)s1− k−1
p+γ
)γ

y

(
1− k−1

p+γ

)
(p+1)

s
k−1
p+γ −1 dy

y2 ds. (5.10)

Now we make the same changes on the left hand side of (5.7), denoted by L , that is,

we replace b by b
k−1
p+γ and f (x) by f

(
x

p+γ
k−1

)
x

p+γ
k−1 −1 and by the substitution y = x

p+γ
k−1

we get that

L =
∫ b

0

k−1
p+ γ

(
1−
(y

b

) k−1
p+γ
)

yp+γ−k ( f (y))p+γ dy

−
(

k−1
p+ γ

)p+γ+1∫ b

0
y−k
(∫ y

0
f (s)ds

)p+γ
dy. (5.11)
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Therefore from (5.7), (5.9)-(5.11), after dividing L and R by
(

k−1
p+γ

)p+γ+1
, we

get the first inequality in (5.8).
We obtain inequality (5.8) by starting with inequality (4.3) and chosing ϕ (x) = xp,

p � 2, x � 0. In Lemma 4 we proved that the right handside of (4.3) is nonnegative
when γ is a nonnegative integer. Therefore, also the right hand-side of (5.8) is nonneg-
ative when γ is a nonnegative integer.

The reverse of inequality (5.8) holds for 1 < p � 2 because in this case the function
ϕ (x) = xp, x > 0, is subquadratic. The equality in the case p = 2 follows from the
fact that there is equality in (2.1) for ϕ (x) = x2 and therefore also in (4.1) and (4.3) for
p = 2, γ ∈ R+. This extends the equality case proved in [11, Theorem 3.1].

When γ = 0 the first two double-integrals in (5.8) are indeed zero: The first
double-integral is evidently zero since the integrand equals zero in this case. We get
that the second double-integral equals zero for γ = 0 by changing the order of inte-
gration in this case, and then integrating between t = 0 and t = x we get by a direct
computation that the integral equals zero, and therefore also the double integral equals
zero. The last integral in (5.8) coincides with the corresponding term in (1.5): This is
obtained by choosing γ = 0, k−1 = p−α −1, and by the fact that

x

(
1− k−1

p

)
(p+1)

x2 = xp−k− k−1
p .

This completes the proof of the theorem. �

RE F ER EN C ES
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