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SOME NEW SCALES OF REFINED HARDY TYPE INEQUALITIES
VIA FUNCTIONS RELATED TO SUPERQUADRACITY

S. ABRAMOVICH AND L.-E. PERSSON

(Communicated by S. Varosanec)

Abstract. For the Hardy type inequalities the “breaking point” (=the point where the inequal-
ity reverses) is p = 1. Recently, J. Oguntoase and L. E. Persson proved a refined Hardy type
inequality with a breaking point at p = 2. In this paper we prove a new scale of refined Hardy
type inequality which can have a breaking point at any p > 2. The technique is to first make
some further investigations for superquadratic and superterzatic functions of independent inter-
est, among which, a new Jensen type inequality is proved.

1. Introduction

Hardy’s famous inequality reads: If f is nonnegative and is p-integrable over
(0,00), then:

(1 [ P » \ [
/0 (E/o f(y)dy> dxg(ﬁ) /O fP(x)dx, p>1. (1.1)

This inequality was stated by G. H. Hardy in 1920 (see [4]) and finally proved by him
in 1925 (see [5]). The first weighted version of (1.1) was proved in 1928 also by G. H.
Hardy (see [6]) and it reads: If f is nonnegative and measurable on (0,o°), then

< (1 [* P P P o
/O (;/0 f()’)dY> x%dx < (m) /0 JP (x)x%dx, (1.2)

whenever p > 1 and o < p — 1. But it has been recently pointed out in [14] that these
11
two inequalities are in fact equivalent, since the substitutions f(x) = g(x' 7?)x 7 and
pme-l. _ ol . . -, . .
f(x)=g(x 7 )x P, respectively, carry over both inequalities to the inequality

= (1 ’d = d
LG ema) S [ om (13

Since (1.3) follows directly from Jensen’s inequality and reversing the order of inte-
gration, we get a very simple proof of the weighted Hardy’s inequality (1.2) even with
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equality for p =1 and holding in reverse direction for 0 < p < 1. All constants above
are obviously sharp, and by discussing in the same way, when the interval (0,0) is
replaced by an interval (0,b), 0 < b < oo, we obtain the following version of (1.2), still
with sharp constant:

[ rom) e (i) e (-7 )

(1.4)

where p>1 and ax < p— 1.

For this and more information of this type see [14]. Concerning Hardy type in-
equalities with general weights we refer to [8], [9] and [10].

Even if all constants above are sharp we can improve all inequalities above by
making so called “refinements” i.e., inserting some additional strictly positive terms on
the left hand-side of the inequalities.

Here we will mention some of these results.

An early result of this type is the following one by C. O. Imoru from 1977 [7]:

b 1 X P o p l—p—o b P
/0 (;/0 f(y)dy> e L (/O f(y)dy)
P bob o
< (m) /O I (x)x%dx,

where p > 1, oo < p—1 and 0 < b < 0. This result was further generalized (and also
previous results by D. T. Shum) in the paper [12]. In the paper [11] (cf. also [13]) the
same authors made a refinement of a completely different type, namely the following:
Letp>1, o <p—1land 0 <b < oo If p>2, then

/ ' G / Xf(y)dyfx“dx
=

o L=9= P— ocf

p
1 X
10 -1 [ @
x X d i

(p Oc—l) /fp ( (b)pﬁl>dx (1.5)

If 1 < p <2, then (1.5) holds in the reverse direction. In particular, for p =2 we
have equality in (1.5). This means that the natural “breaking point” is p = 2 in this
refined Hardy inequality. In all other Hardy type inequalities discussed above and else-
where (see e.g. the books and the references there) the corresponding natural breaking
point is p = 1. The crucial point in the proof of the result in [1 1] was to use the con-
cept of superquadratic functions and a corresponding refined Jensen type inequality by
Abramovich & al (see [2]). In [3] it was proved that the refinement with breaking point
p =2 is not unique and that (1.5) can be replaced by another inequality with breaking

p— a—l )
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point at p = 2. Moreover, another new refined Hardy type inequality was proved there
with breaking point p = 3. This was obtained by using the concept of superterzatic
functions, which was introduced and studied in the paper [1]. The main purpose of this
paper is to derive a whole scale of refined Hardy type inequalities which can have a
breaking point at any point p = o, o > 2.

In Section 2 of this paper we define all concepts mentioned above and other prelim-
inaries. In Section 3 we prove some equivalent ways to define superterzatic functions
including a new Jensen type inequality (see Theorem 1 and Theorem 2). In Section 4
we study the case when K(x) :=x7¢ (x), y € Ry, where ¢ is superquadratic or con-
vex. In this section we compare some bounds in the crucial inequality (4.1), which is
important in our Section 5 but also of independent interest. Our new refined Hardy type
inequalities are presented and proved in Section 5 (see especially Theorem 3) but now
with other natural breaking points. We derive a refinement of Hardy’s inequality in a
similar way as the refinement which was achieved via superquadratic and subquadratic
functions in [11]. In this way we can obtain a whole scale of refined Hardy-type in-
equalities with natural breaking points p = pg > 2.

2. Preliminaries

First we define the crucial concept of superquadratic and subquadratic functions
(see [2]).

DEFINITION 1. Let ¢ : [0,b) — R. The function @ is superquadratic if for all x €
[0,b) there exists Cy (x) € R such that

) =@ (x) = Cop(x) (y=x) + ¢ (ly—x) 2.1

forall y € [0,b).
The function ¢ is subquadratic if —¢ is superquadratic and the reverse inequality
of (2.1) holds.

REMARK 1. Inequality (2.1) holds forall ¢ (x) =x”, x>0, p > 2 and reduces to
equality for ¢ (x) = x?. The reverse of (2.1) holds forall ¢ (x) =x”, x>0, 0< p <2.

The following result is useful (see [2, Lemma 2.1]):

LEMMA 1. Let ¢ be a superquadratic function with Cy (x) as in (2.1).

(i) Then ¢(0) <0.

(ii) If (0) = @' (0) =0, then Cy (x) = ¢’ (x) whenever @ is differentiable at
x>0.

(iii) If @ >0, then @ is convex and ¢ (0) = ¢’ (0) = 0.

The following refined Jensen type inequality was proved in [2]:
The inequality

o([rwane) < [ormnant - [o(|rm- [ rmauw

Jas

(2.2)
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holds for all probability measure spaces (L2, ) of u -integrable nonnegative functions

f if and only if ¢ is superquadratic. Moreover, (2.2) holds in the reverse direction if
and only if ¢ is subquadratic.

EXAMPLE 1. For the case ¢ (x) = x? (2.2) implies that the inequality

(/Qf(x)du(x)>p</g(f Py (x /‘f )~ [ r@an |

holds for p > 2 and (2.3) holds in the reversed direction if 0 < p < 2.

du(x) (2.3)

Now, following [1] superterzatic and subterzatic functions are defined as follows:

DEFINITION 2. A function g: [0,b) — R is called superterzatic provided that for
all x € [0,b) there exists a constant C (x) € R such that the inequality

N
; g (xi) — g (x)

WV
M=

—

i [ (5= )€ (x) + i —x| ' g (i — )|

N
x)—l—Zaixi |xi—x|_1g(\xi—x|) (2.4)
i=1

I
=
S
£
|
Na)

Il
—_

holds for all x; : [0,b) and o; >0, i =1,...,N, such that 2?’:1 o; = 1, where x =
25'\;1 OGX; .

The function g is called subterzatic if —g is superterzatic and the reverse inequal-
ity in (2.4) holds.

Also, according to [1, Theorem 1, Case A], we have:

LEMMA 2. Let ¢:[0,b) — R be a superquadratic function, andlet g : [0,b) — R
and be defined by g (x) = x@ (x). Then g is superterzatic. If ¢ is subquadratic, then g
is subterzatic. Moreover C(x) = Cy (x), where C(x) is as in (2.4) and Cy (x) is as in
2.1).

The name “Superterzatic Function” is given to g because (2.4) holds for g(x) =
xP. p =23, x > 0, with equality for p = 3. (2.4) holds in the reversed direction for
1<p<3.

In the next section we characterize in paricular superterzatic and subterzatic func-
tions via a new Jensen type inequality in a similar way to the characterization by (2.2)
of superquadratic functions and the characterization of subquadratic functions by the
reverse inequality of (2.2) (See Theorem 2).
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3. Characterization of the superterzatic functions — a new Jensen type inequality

In Theorem 1 and in Theorem 2 we present equivalent definitions to the one in
[1] for superterzacity, which are important for our further investigations but also of
independent interest.

THEOREM 1. The function g :[0,b) — R is superterzatic if and only if for all
x € [0,b), there exist constants C(x) € R and D(x) € R such that

g(y) —g(x) = Cx)y(y —x) + D(x)(y —x) +yly— x| g (ly —x|) 3.1)

Sforall y€0,D).

If g(x) = x@ (x) where @ is superquadratic, then C(x) = Cy(x), where Cy (x) is
as appears in (2.1).

If @ is differentiable, superquadratic, g(x) = x¢@ (x) and ¢ (0) = ¢’ (0) =0, then

C(x) = ¢'(x) and D(x) = ¢ (x).
g is subterzatic if and only if the reverse of inequality (3.1) holds.

Proof. First we show that if (2.4) holds, then (3.1) holds.
Inequality (2.4) for n = 2 reads

org(y1) + Bg(v2) —g(x)
> C(x)aB(y2—y1)* + ayi (Bly2 —yi) ™' g(Bly2 — 1)
+By2 (alyz —yi)) " g(erly2 =yl (3.2)
where 0 < a <1, a+p=1.

Let us assume that
0<y1<x<ym<b

and choose
y2—X X—)1
oa= , = .
Y2—=n Y2=Mn
Then from (3.2), after some manipulations, we get that
X —X
g() &) Clx)ys — —22 g2 —x)
y2=x  ya—x (2 —x) (y2—x)

X)V1 _ .
- yi—X Y1—X (r1—x) (x—y1)

By fixing y; € (0,x) we obtain a lower bound, which shows that

D(x) = inf 802) =800 = ClOyalya =) — 202 —x)"'g(y2—x)
ya>x y2—X

exists. Now we take y, =y to see that

8(y) —g(x) = Cx)y(y—x) —y(y—x) g (y —x) = D(x)(y —x)
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for all y > x, and take y; =y to get that

g(y) —g(x) —C(x)y(y—x) —y(x—y) 'g(x—y) = D(x)(y—x)

for all y < x. Thus (3.1) holds.

Conversely, we get (2.4) from (3.1) by replacing in (3.1) y by x;, where x; € [0,b)
i=1,...,N, and by choosing x = Zf"zl a;x;, multiplying each of the N inequalities by
o; and taking the sum of these N inequalities, where 0 < o; < 1, i =1,....N and
2{-\]:1 o=1.

In the case that g (x) = x¢ (x) where ¢ is superquadratic it follows from [1] and
[2] that C(x) = Cy (x) and from the differentiability and superquadracity of ¢, and
since @ (0) = ¢’ (0) =0, it follows that C(x) = ¢’ (x). Dividing (3.1) by y —x and
then letting y — x in the case y > x and then in the case y < x, we get that D = ¢.

The result for a subterzatic function g is obtained by dealing with the superterzatic
function —g. The proof is complete. [J

In our next characterization, (3.4) may be regarded as a new refined Jensen type
inequality yielding for superterzatic functions.

THEOREM 2. The function g is superterzatic if and only if

[ stronan ~e ([ saucs)
> ([ r0au®)) [ 6) (560~ [ s auis)
+ [ (o [roao]) e (|- [ oo

holds for all probability measures | and all nonnegative L -integrable functions f on
the measure space (Q, ).

If g(x) =x3, x>0, then (3.4) reduces to equality.

The reverse of inequality (3.4) holds if g is subterzatic.

)du(s) (3.4)

Proof. According to Theorem 1, if g is superterzatic, then (3.1) holds.
Fix a probability measure (t and a nonnegative, u-integrable function f. Set
x= Jqofdu, and let C(x) and D(x) be the constants in (3.1). Then, by integrating we

find that
Ja(8(f(s)) =g (x) =C(x) £ (s) (f (s) —x)
—f&)If ()= g(If (5) —x\)) du(s)
> D(x) Jo (f (s) —x)du(s) =0,
which by rearranging yields (3.4). So we have proved that if g is superterzatic, then
(3.4) holds.

Now we show that from (3.4) we get (3.1). Suppose that 0 < y; <x <y, and let

U be the probability measure on [0, 1] with u(0) = % and p (1) = yyzz:y)i . With
f(0) =y2, f(1) =y; we have that [, fdu = x so inequality (3.4) becomes (3.3) and
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from this inequality we continue as in the proof of Theorem | and we get that (3.1) holds
and therefore that g is superterzatic.The remaining part of the proof follows similarly
by using Theorem 1, Lemma 2 and Definition 2. The proof is complete. [

By using the results above and Theorem 1 for the function g (x) =x?, x>0, p>3
and 1 < p <3 we get the following inequalities:

COROLLARY 1. Let p 2 3. If x =31 axi, @, =20, X} 0 =1, x; € [0,00),
then the following inequality holds:

Y oxl —xP =Y oixi [(xi—x) (p— )P+ |xi—x\p_l}
=Y o (xi—x)* (p— D2+ Y o — 2P (3.5)
= i=1
If x, y >0, then
V= 2 (p= 1)y (v —x) +yly =2 T (v ), (3.6)

and

| yrants (/f Y (s ),,
0 ([roa®)” [10(ro- [ s0an0)ano
e Lrolro- [romn|”

du(s). (3.7)
holds for all probability measure spaces (X, L) of nonnegative U -integrable functions
f.

If 1 < p < 3, then the reverse of these inequalities hold.
Inequalities (3.5), (3.6) and (3.7) reduce to equalities for p = 3, where f is any
nonnegative |L-integrable function on the probability measure space (Q, ).

4. The case K (x) =x7¢ (x), where ¢ is superquadratic or convex

In order to get more refinements of Hardy’s inequalities similarly to those in [11],
we prove in this section some inequalities that hold when the given function K (x) sat-
isfies K (x) =x¢ (x), y € R4, where ¢ is a superquadratic function. These inequal-
ities include and generalize the results in Section 2 related to superquadratic function
¢ :[0,b) — R and in Section 3 to superterzatic functions g : [0,b) — R that satisfy

8(x) =x¢ (x).

LEMMA 3. Let K (x) =x7¢ (x), y€RL, where ¢ (x) is superquadratic on [0,b).
Then

K(y) =K (x) = ¢ (x) (7 =x") +Cp (x) ¥ (y —x) +¥"0 (ly — x]), 4.1)
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holds for x € [0,b), y € [0,b). Moreover,

N N
D ok (vi) — K (Z ai)’i)
i=1 i=1

ol o ()

N N N
+Co (Z 0‘./%) > ay! (yi - 0‘./)}1‘) +Y anle ( Vi
j i=1

j=1 i=1 =1

H Mz

N
- Z ojyj
j=1

) 4.2)

holds for x; € [0,b), y; €[0,b), 0< 0 < 1, i=1,....,n, and YN, 0 = 1; and

Lxrenaune & ([ r6ane)

//Q[ () (f7(8) =x7) +Cop () f7(5) (f () =) + T (s) @ (If () =)} s (s) -
4.3)

holds, where f is any nonnegative [l -integrable function on the probability measure
space (Q,u) and x = [ f(s)du (s).

If @ is subquadratic, then the reverse inequality of (4.1), (4.2), and (4.3) hold, in
particular

Lxrenaue k([ roau)

\/Q[ () (f7(5) =x7) + Co (x) f7 (5) ( (8) =)+ f7 () @ (I (s) —x])] dp (s)-
(4.4)

Inequalities (4.1), (4.2) and (4.3) are satisfied in particular by K (x) =xP, p >
Y+2. For y < p < v+2 the reverse inequalities hold. They reduce to equalities for
p=7+2.

Proof. Multiplying (2.1) by y¥, by simple manipulations we get that K (x) =
xY¢ (x) satisfies (4.1) when ¢ is superquadratic.

By fixing in (4.1) a probability measure ( and a nonnegative integrable function
f, setting x = [, fdu and Cy (x) is as in the definition of superquadracity, we obtain
for K(x) =x"¢(x), y€ Ry, where ¢ (x) is superquadratic, that (4.3) holds.

(4.2) is the discrete case of (4.3) and is obtained from (4.1) in the same way as
(2.4) was derived from (3.1).

Similarly, since — ¢ is superquadratic, inequality (4.4) and the reverse inequalities
of (4.1) and (4.2) are obtained for subquadratic functions.

Since ¢ (x) = xP, is superquadratic for p > 2, x > 0, and subquadratic for 0 <

< 2, x>0, we find that inequalities (4.1), (4.2) and (4.3) hold when p > y+2 and
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the reverse of inequalities (4.1), (4.2) and (4.3) hold when ¥ < p < y+2. As a result,
we in particular find that (4.1), (4.2) and (4.3) reduce to equalities for p = y+ 2. The
proof is complete. [

In an analogous way we can start with a convex function y satisfying y(y) —
y (x) = Cy (x) (y — x), which reduces to equality for y (x) = x and by the same proce-
dure we obtain that for the function T (x) =x"y (x), y € Ry, where y (x) is convex,
it yields that

T(y)—T(x) = wx) " =x")+Cy (x)y" (y—x). (4.5)

In particular, inequality (4.5) holds for T (x) =x”, p > y+ 1 with equality for T (x) =
KTt

In Section 5 (see Theorem 3), we prove a new Hardy type inequaliy related to the
functions ¢ (x) =x™, x > 0, m > 1, which are superquadratic when m > 2 and sub-
quadratic when 1 < m < 2. These functions are evidently differentiable, nonnegative,
convex, increasing and satisfy ¢ (0) = ¢’ (0) = 0. But in order to get the results of The-
orem 3 we need to compare inequality (4.1) for K (x) = x7¢ (x) and K (x) =x"" 'y (x),
where ¥ (x) = x@ (x) (see Lemma 4 below). First we state a useful remark that guides
us how to prove Lemma 4 (see [2, Lemma 3.1]).

REMARK 2. Let ¢(x), 0 <x < oo, be a differentiable positive convex, increasing
function and ¢ (0) = ¢’ (0) = 0 and let y(x) = x¢ (x). Because @ is increasing
and v (0) = v/ (0) =0, then v (x) is superquadratic. In particular, if @(x), 0 < x < oo,
is a differentiable positive superquadratic function, then (according to Lemma 1) ¢ is
convex increasing and ¢ (0) = ¢’ (0) = 0. Therefore also y (x) is positive, increasing,
convex and superquadratic.

LEMMA 4. Let K (x) =x7¢ (x) =x" 'y (x), y=> 1, where ¢ is a differentiable
positive superquadratic function and y(x) = x@ (x). Then the bound obtained for
K (x) = xY¢ (x) is stronger than the bound obtained for K (x) = x"~ 'y (x), that is:

K(y)—K(x)= o) ("' —x")+ ¢ (x)y" (y—x)+ "0 (ly—x]) (4.6)

implies that
K@) =K@ =y " =)+ v @y =)+ w(ly—x). @47

Moreover, if K (x) = x"@ (x), i (x) = x*@ (x), n is an integer, k=1,2,....n, and
o (x) is nonnegative superquadratic, then the inequalities

[xoaue k([ o)

> /Q [@ (x) (/" () =x") + Co ()" (5) (f (5) — )
+/ ()@ (1f (s) = x)]du (s)
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> [ i (£ 6) = ) +Cu (046 () )
) w1 () = )| e )
> [l —xdu () > (4.8)

hold for all probability measure spaces (Q, 1) of W-integrable nonnegative functions

[, where x= [ f(s)du(s).
Furthermore if ¢ (x) is positive, increasing, convex, subquadratic and ¢ (0) =
¢©'(0) =0, then x¢ (x) is superquadratic and
/Q [ (x) (/" (5) =x") +Cp (x) " (5) (f (5) — )
+" () @ (If () —x)] dp (s)

> [KCOae k([ romo)
> [ [w o (£ 6) =v ) +Cu (9 () =)
() W (1 (5) = )| daa (s)
/l,/n () —a)du(s) =0,  k=1,...n. 4.9)

In particular, if @ (x) =xP, x>0, p > 1, then (4.8) is satisfied when p > 2 and (4.9)
is satisfied when 1 < p < 2. When p = 2 equality holds in the first inequality of (4.8)
and in the first inequality of (4.9).

Proof. We will show that when ¢ is differentiable, nonnegative superquadratic or
@ is differentiable, positive increasing, convex and ¢ (0) = ¢’ (0) =0, where y (x) =
x@ (x), then
@ (x) 67 =x7) + 9" (x)y" (v —x) + ¥ (ly —x])
>y () (0 =) W @y T =)y (y—x). (410)

After some manipulations we see that in order to prove (4.10) it is sufficient to show
that

¢’ () (x=3)* +y9 Iy —x) = [y x| @ (ly —x]) > 0. (.11)
Case a: y > x > 0. In this case we have to prove that

¢ (x) (x—y) > +xo (ly—x]) >0, (4.12)

which is satisfied because x, @, ¢’ are nonnegative.
Caseb: x>y >0. Then (4.11) becomes

(=) [(x=y) ¢ (x) =@ (x—y)] +yo(x—y) >0. (4.13)
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Since ¢’ is increasing, from x >y > 0 we get that

=)@ () —px—y)=x=y)0' (x—y) —@(x—y) =0. (4.14)

The last inequality in (4.14) holds since ¢ (0) = ¢’ (0) =0 and as ¢ is convex. Hence
(4.13) holds.

From Remark 2 we know that if ¢ is nonnegative and superquadratic so is x¢ (x)
=y (x), k is a nonnegative integer. Since (4.3) is obtained from (4.1), then, by using
(4.10), we get (4.8). If ¢ is positive, subquadratic, convex, increasing, differentiable
and ¢ (0) = @' (0) = 0, then, as we showed, (4.10) still holds and as in this case that
(4.4) holds we get that for a nonnegative integer 7, the left hand-side of (4.9) is nonneg-
ative. However, according to Remark 2, y; (x) = x*¢ (x), k=1,2..., is superquadratic.
Therefore also the right hand-side of (4.9) holds. The assertions on @ (x) =x?, p > 1,
in the statement of this lemma hold because these functions are differentiable, nonnega-
tive increasing and superquadratic when p > 2 and subquadratic when 1 < p < 2. This
completes the proof of the lemma. [

REMARK 3. As explained in Remark 2, given a positive, increasing and convex
F (x) where F (0) = F’(0) =0 we get that @ (x) = xF (x) is superquadratic and there-
fore that K (x) = x¥¢ (x) satisfies inequality (4.6), ¥ € R+. Hence, from (4.5) and (4.6)
we derive the following: Let F (x), 0 < x < b, be a differentiable positive increasing
convex function and F (0) = F' (0) = 0. Then K (x) = x""'F (x), y € Ry, because of
the convexity of F(x) satisfies the inequality

YIUF(y) =27 (x) > F () (7 =)+ F/ (™ (v ),
and because of the superquadracity of ¢(x) =xF(x) the inequality

VHF(y) =T (x)
> xF (x) (y7 = x7) + (xF (x))y7 (v = x) + 37 [y = x| F (|y = x]).

REMARK 4. From Example 3 in [1], we can see that if ¢ is superquadratic but
¢ or ¢ is not increasing and v (x) = x¢ (x), then y is superterzatic and can be sub-
quadratic.

Indeed ¢ (x) =x?Inx, 0 < x < oo, ¢ (0) =0 is superquadratic and v (x) = x*Inx,
0 <x <o, y(0) =y’ (0) =0, is subquadratic on [0,e~/] and therefore is supert-
erzatic and subquadratic on [0,e¢%/2] . Itis easy to verify that this follows in general if
@ is negative, decreasing, concave superquadratic function, satisfying ¢ (0) = ¢’ (0) =
0. In this case we get the following inequalities:

(y=x)@(x) + (y—x)y¢' (x) +yo (ly —x])
Sy -vE) <G-x0)¥ @) +w(y—ax),

where ¥ (x) =x¢ (x). In other words

(y—x)0(x) + (y—x)yo' (x)+yo (ly—x|)
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<yo(y) —xe(x)
< (=x)x¢" (x)+ (y—x) @ (x) + (ly —x)) @ (ly —x[).

In such cases we get that the superterzacity of y gives a lower bound and the sub-
qudracity of y gives an upper bound to v (y) — y (x).

5. Some new scales of refined Hardy type inequalities

In this section we use the ideas and techniques of [11], and implement them on
the functions K (x) = x"@(x), y € Ry, where ¢(x) is superquadratic. First we prove a
proposition in a similar way to Proposition 2.1a in [11].

PROPOSITION 1. Let 0 <b < oo, u:(0,00) — R, be a nonnegative weight func-
u(x)

tion such that =3~ is locally integrable on (0,00) and let the weight function v be
defined by

v(t):t/tb @d}@ t€(0,b). (5.1

If the function @ is integrable and superquadratic on [0,b) and K (x) =x7¢ (x),
Yye Ry, then

[ k) Pac /ObK(l [ )d,>> 0 g
L (0 () oL )
L Lot [rom)e(s 100 e
+/Ob[bfY(r>¢(’f< @ D 40 g, 52)

holds for all nonnegative locally integrable functions f. If ¢ is subquadratic, then the
reverse of inequality (5.2) holds.

COROLLARY 2. For y=0 (5.2) coincides with the statement in Proposition 2.1a
in[11], that is

[ouen ™ @a- o4 [ rwar) “ax
// ('f ——/f D >ddt (5.3)

Proof. Let us choose the probability measure du (1) = %dt, 0<t<xin (4.3).

L [ruonas( 100
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o (4 [ roa) [ (ro- (%/Oxfmdr)y)dr
+Cp G/Oxf(z)dz) %/Ova(t) (f(t)—%/oxf(r)dl') dt
s [rwe(ro-1 [ r@ar)a 54

Multiplying (5.4) by M and integrating on 0 < x < b, we get that

//K dt—d—/(/f dt)
L (oGt
+/0/0f7(t< ——/f dr)@,,( /f ) ) i
+/Ob/0xfy (’f __/ fe D ") . (5.5)
Now using (5.1) and Fubini’s theorem we find that
//K 0 gy
_/0 t/ k()
- [ K(f(t))Ttdt= /0 K(f(X))VEC—x)dL 56)

(5.5) and (5.6) lead to (5.2). When ¢ is subquadratic the proof is similar and therefore
is omitted. The proof is complete. [

EXAMPLE 2. From Proposition 1 for ¢ (x) =x?, p > 2 (therefore Cy (x) = ¢’ (x)
= pxP~1), choosing u(x) = 1 and y € R, we find that

S
> [ (o= (e dT))(/f )
S [ro(ro-1f f(T)dT)p(;/Of(T)dr)p Y

[ ro(fro-1 [ rma) Ga 6.7

The reverse inequality holds when 1 < p < 2.
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By using (5.7) we are now ready to derive our new scales of refined Hardy type
inequalities.

THEOREM 3. Let p =22, k> 1, 0<b < oo, and y <€ R, and let the function f
be nonnegative and locally mtegrable on (0,b). Then

(%)pﬂ/ob (1 -(3) M)xp+y—kfp+7’(x)dx—/bx_k </xf(t)dt>p+ydx
S L (ot @) - (2 o))
x (1 /xf(G)dcr> )0 g1y
()L o By (0 () L o)
x,,(l [ f(a)da)””x(l f,+;)<p+1>t;;%;4§dt

() L oy (o) o)

-1 \x xJo
k=1 _
O >(”“)tk—lv‘1d—fdt. (5.8)
X

Moreover, if Y is a nonnegative integer, then the right hand side of (5.8) is non-
negative. If 1 < p < 2, then inequality (5.8) is reversed. Equality holds when p = 2.
When y =0, inequality (5.8) coincide with (1.5).

Proof. The proof follows the steps of the proof of Theorem 3.1 in [11].

We denote the right hand side of (5.7) by R and replace the parameter b by b%’
and f(x) by f (;%’)x%“l. Then

+/bp Y/bl’ v (f (tp%v)t%y— >Y<f (t%y)t”%y—l—l
0 t '
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P P
_|-/ / fy <t%’>[(%’71)7
0 t
p+7 1 7~ ptyY\ Pty _ dx
(‘f () 1——/ f(eH) = 1dr) S (5.9)
X Jo
We use now the substitutions
Ly iantd k=1 k=1
y=xk1 and §=tF1 & x=yrir t = griy

from which it follows that

kL k-1
t=brv =s=>b, x=brv =y=»,

k=1
k=1 -1 1 pry_ lk 1
dt = preAlak ds, erlds—tk 17 dt, dx—yl’+7 a’y7

+y +y k=1
dy =Pty = lax, and (71l =!

By using these substitutions we get from (5.9) that

(=)L (”” >(;)“k’_*l’)y—(§/if<ﬁ>da)y

P 1
0

y

<p+y>"“// <5><1—%>_;/;WG

y y

<(rosl W)(:/f i)~ y@hwwwml?
<p+7)p+2// (pﬂ/ (;) _ﬁ—%/oyf(ﬁ)dc

X (f(5)517%>yy(1‘m)(p+1) k1 g d

sPHY ;)ds.

ds

(5.10)

Now we make the same changes on the left hand side of (5.7), denoted by L, that is

k l b 9 9
we replace b by br™ and f(x) by f (xk l)xk 1! and by the substitution y = =
we get that

bk—1 2o
L= p+y— k Pty g
Op+y( ) ) () dy

v+l p p+y
<p+Y> /Oy (/f ) dy. (5.11)
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>p+Y+l

Therefore from (5.7), (5.9)-(5.11), after dividing L and R by (% , We
get the first inequality in (5.8).

We obtain inequality (5.8) by starting with inequality (4.3) and chosing ¢ (x) = x?,
p =2, x>0. In Lemma 4 we proved that the right handside of (4.3) is nonnegative
when 7 is a nonnegative integer. Therefore, also the right hand-side of (5.8) is nonneg-
ative when 7y is a nonnegative integer.

The reverse of inequality (5.8) holds for 1 < p < 2 because in this case the function
o (x) =xP, x> 0, is subquadratic. The equality in the case p =2 follows from the
fact that there is equality in (2.1) for ¢ (x) = x> and therefore also in (4.1) and (4.3) for
p =2, v€ R,. This extends the equality case proved in [1 |, Theorem 3.1].

When y = 0 the first two double-integrals in (5.8) are indeed zero: The first
double-integral is evidently zero since the integrand equals zero in this case. We get
that the second double-integral equals zero for Y = 0 by changing the order of inte-
gration in this case, and then integrating between t = 0 and # = x we get by a direct
computation that the integral equals zero, and therefore also the double integral equals
zero. The last integral in (5.8) coincides with the corresponding term in (1.5): This is
obtained by choosing y =0, k—1 = p— o — 1, and by the fact that

-1

1—ﬂ> +1
L5 e .
_ =X P,

x2

This completes the proof of the theorem. [
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