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Abstract. We determine the maximum (minimum) in the class of unitarily invariant norms ‖ · ‖
such that ‖T‖ � w(T ) (‖T‖ � w(T ) ) for every bounded operator T in B(H) . Here, H is an
infinite dimensional Hilbert space and w(T ) denotes the numerical radius of T .

1. Introduction

A unitarily invariant norm on B(H) , the algebra of all bounded linear operators
on a Hilbert space H , is a norm that satisfies ‖UTV‖ = ‖T‖ , and also a norm is called
weakly unitarily invariant if ‖UTU∗‖ = ‖T‖ , where U,V,T ∈ B(H) and U,V are
unitary.

The most familiar example of a weakly unitarily (but not unitarily) invariant norm
is the numerical radius w(·) defined as

w(T ) = sup{|〈Tx,x〉| : ‖x‖ � 1}.
The following inequalities are well known and easily proved:

‖ · ‖op

2
� w(·) � ‖ · ‖op,

where ‖ · ‖op is the operator norm on B(H) .
Some examples of unitarily invariant norms on B(H) can be found in [3]. When

H is of finite dimension n , we shall identify B(H) with Mn , the algebra of all n× n
complex matrices. In this case, the singular value decomposition implies a very nice
representation of unitarily invariant norms as symmetric gauge functions [5].

Typical examples of unitarily invariant norms on Mn are Ky Fan p -norms defined
by

‖A‖p = Σn
i=1[(si(A))p]

1
p ,

where s1 � . . . � sn are singular values of A . More details can be found in [2,5].
T. Ando [1] proved that max{ s1(·)

2 , ‖·‖1
n } (s1(·)) is the maximum (minimum) in

the class of unitarily invariant norms ‖ · ‖ such that ‖A‖ � w(A) (‖A‖ � w(A)) for all
n×n matrices A in Mn . In this paper, we prove that if H is infinite dimensional, then

max{ s1(·)
2 , ‖·‖1

n } is replaced by ‖ · ‖op
2 .
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2. Main result

The following lemma can be obtained from [4, Proposition 3.18 ] and is used in
the next theorem.

LEMMA 2.1. A norm ‖ · ‖ on B(H) is unitarily invariant if and only if for all
operators R,T and S the inequality ‖RTS‖ � ‖R‖op‖T‖‖S‖op holds.

THEOREM 2.2. Let H be an infinite dimensional Hilbert space. Then 1
2‖ · ‖op

(‖ · ‖op) is the maximum (minimum) in the class of unitarily invariant norms ‖ · ‖ sat-
isfying the inequality ‖T‖ � w(T ) (w(T ) � ‖T‖) for all T ∈ B(H) .

Proof. Let {eα}α∈J be an orthonormal basis for Hilbert space H . Since J is an
infinite set, we can choose subsets J1,J2 of J such that J1 ∩ J2 = ∅ and card(J1) =
card(J2) = card(J) [6]. Then, there exist bijective maps f : J1 → J2 and g : J1 → J .

Let ‖ · ‖ be a unitarily invariant norm satisfying the inequality ‖T‖ � w(T ) for
all T ∈ B(H) . For proving ‖ · ‖ � 1

2‖ · ‖op , it is sufficient to prove ‖T‖ � 1 for every
operator T such that ‖T‖op = 2.

Now, let ‖T‖op = 2 and A = ‖T‖opI , where I is the identity operator on H . Also,
suppose that U = Σα∈J1e f (α) ⊗ eα , B = 2Σα∈J1eα ⊗ e f (α) , C = BU = 2Σα∈J1eα ⊗ eα
and V = Σα∈J1eg(α) ⊗ eα . Considering an arbitrary element h on the unit ball of H ,
with h = Σα∈Jhαeα , we have:

|〈B(h),h〉| = |〈2Σα∈J1h f (α)eα ,Σα∈Jhαeα〉| = |Σα∈J12h f (α)hα |
� Σα∈J1(|h f (α)|2 + |hα |2) � ‖h‖2 = 1.

Hence, the inequality w(B) � 1 holds. But V and U are partial isometries and so
‖V‖op = ‖U‖op = 1. Also, since A = VCV ∗ , we have ‖A‖ � ‖C‖ . Using Lemma 2.1
we conclude that

‖T‖ = ‖TI‖ � ‖T‖op‖I‖ = ‖A‖ � ‖C‖ � ‖B‖‖U‖op � w(B) = 1.

Now, let ‖ ·‖ be a unitarily invariant norm that satisfies the inequality w(T ) � ‖T‖ for
all T ∈ B(H) . But ‖S‖op = w(S) , for every hermitian operator S . Therefore

‖T‖2
op = ‖TT ∗‖op = w(TT ∗) � ‖TT ∗‖ � ‖T‖‖T∗‖op = ‖T‖‖T‖op

and so ‖T‖op � ‖T‖ for every T ∈ B(H) . �
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