
Mathematical
Inequalities

& Applications

Volume 16, Number 3 (2013), 701–715 doi:10.7153/mia-16-53

ON INEQUALITY Rp < R OF THE PEDAL TRIANGLE

JIAN LIU

(Communicated by V. Volenec)

Abstract. In this paper we give a simple proof of the pedal triangle inequality Rp < R , where
R is the circumradius of a triangle and Rp is the circumradius of the pedal triangle of an in-
terior point with respect to this triangle. We also establish a stronger result and a refinement
of inequality Rp < R . Some related interesting conjectures checked by the computer are put
forward.

1. Introduction and main results

Let P be an interior point of the triangle ABC , let D , E , F be the feet of perpen-
diculars from P to the sides BC , CA , AB . Denote by S , R , r , s the area, circumradius
inradius, and semi-perimeter of the triangle ABC respectively, and denote by Sp , Rp ,
rp the area, circumradius and inradius of the pedal triangle DEF , respectively. As
usual, we put

BC = a, CA = b, AB = c,

PD = r1, PE = r2, PF = r3,

PA = R1, PB = R2, PC = R3.

It is well known that the following inequality holds between Sp and S :

Sp � 1
4
S, (1.1)

with equality if and only if P coincides with the circumcenter O of �ABC . This
inequality is a direct consequence of the following Gergonne formula (see [1]):

Sp =
1
4

(
1− PO2

R2

)
S, (1.2)

which holds actually for arbitrary interior point P of the circumcircle of �ABC.
Of course, we can consider other inequalities between the pedal triangle DEF and

the original triangle ABC . For instance, compare Rp with R we can find the following
inequality:
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THEOREM 1.1. For any interior point P of �ABC, we have

Rp < R, (1.3)

in which the constant 1 in front of R is the best possible.

In fact, inequality (1.3) is given in [2] by the author without proof twenty years
ago. But it seems that nobody has been studying this inequality since then. In this paper
we shall give a simple proof of inequality (1.3).

Recently, the author found Rp < R can be strengthened to (1.4) below.

THEOREM 1.2. For any interior point P of �ABC, we have

Rp +
3
√

3r1r2r3

4Sp
� R, (1.4)

with equality if and only if �ABC is equilateral and P is its center.

In my recent paper [3], I have proved a linear inequality:

R1 +R2 +R3− r1− r2− r3 � 6rp. (1.5)

This and (1.3) inspire us to obtain the following refinement of inequality Rp < R :

THEOREM 1.3. For any interior point P of �ABC, we have

Rp <
1
2
(R1 +R2 +R3− r1− r2− r3) < R, (1.6)

in which the constant 1
2 is the best possible.

2. Proofs of the theorems

2.1. Proof of Theorem 1.1

Proof. In order to prove inequality (1.3), we first show that the weighted inequality
which involves three sides and the area of �ABC :

(xa+ yb+ zc)(ayz+bzx+ cxy)> 2(y+ z)(z+ x)(x+ y)S (2.1)

holds for all positive real numbers x,y,z .
Since

(xa+ yb+ zc)(ayz+bzx+ cxy)−2(y+ z)(z+ x)(x+ y)S
= xyz(a2 +b2 + c2)+a(bz+ cy)x2 +b(cx+az)y2 + c(ay+bx)z2

−2
[
2xyz+ x(y2 + z2)+ y(z2 + x2)+ z(x2 + y2)

]
S

= xyz(a2 +b2 + c2−4S)+ (bc−2S)x(y2+ z2)
+(ca−2S)y(z2 + x2)+ (ab−2S)z(x2 + y2) > 0,
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hence inequality (2.1) holds true.
Putting x = r1 , y = r2 , z = r3 in (2.1), then using the identity:

ar1 +br2 + cr3 = 2S, (2.2)

we get
ar2r3 +br3r1 + cr1r2 > (r2 + r3)(r3 + r1)(r1 + r2).

Noticing the following identity:

ar2r3 +br3r1 + cr1r2 = 4RSp, (2.3)

which is easily proved, we have

(r2 + r3)(r3 + r1)(r1 + r2) < 4RSp. (2.4)

Since also

(r2 + r3)(r3 + r1)(r1 + r2) > EF ·FD ·DE = 4RpSp,

here we used the known formula abc = 4SR for the pedal �DEF . Thus, the claimed
inequality Rp < R follows from (2.4) at once.

We now show the constant in (1.3) is the best possible. Suppose that the following
inequality:

(xa+ yb+ zc)(ayz+bzx+ cxy)> k(y+ z)(z+ x)(x+ y)S

holds for positive numbers x , y , z and k . For y = z = 1 and let x → 0, then we have
(b+ c)a > 2kS , thus

b+ c > kha, (2.5)

where ha is the altitude of BC . If we take b = c and let a → 0, then b → ha , c → ha

and k < 2 follows further from (2.5). This means that the constant 2 on the right
hand side of (2.1) is optimal. Thus, the constant 1 in front of R in Rp < R is the best
possible. The proof of Theorem 1.1 is completed. �

2.2. Proof of Theorem 1.2

To prove Theorem 1.2, we need several lemmas.

LEMMA 2.1. Let x , y , z be three real numbers such that y + z > 0 , z + x > 0 ,
x+ y > 0 and yz+ zx+ xy > 0 . Then the following inequality:

xa2 + yb2 + zc2 � 4
√

yz+ zx+ xyS (2.6)

holds for any �ABC. Equality in (2.6) holds if and only if x : y : z = (b2 + c2 − a2) :
(c2 +a2−b2) : (a2 +b2− c2) .
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Proof. Indeed, the weighted inequality (2.6) is equivalent to the following famous
Neuberg-Pedoe inequality for two triangles (see, e.g., [4]):

a2(b′2 + c′2−a′2)+b2(c′2 +a′2−b′2)+ c2(a′2 +b′2− c′2) � 16SS′, (2.7)

where a′ , b′ , c′ are the sides of �A′B′C′ and S′ is its area. Equality in (2.7) holds if
and only if the two triangles are similar.

When real numbers x , y , z satisfy y + z > 0, z + x > 0, x + y > 0 and yz +
zx + xy > 0, it is easy to prove that

√
y+ z ,

√
z+ x ,

√
x+ y form a triangle A0B0C0

with area 1
2

√
yz+ zx+ xy (we omit the details). If we apply Neuberg-Pedoe inequality

to �A0B0C0 and �ABC , then inequality (2.6) follows immediately (In contrast, (2.7)
can be deduced easily from (2.6)). Moreover the equality in (2.6) holds only when
a : b : c =

√
y+ z :

√
z+ x :

√
x+ y. This implies x : y : z = (b2+c2−a2) : (c2+a2−b2) :

(a2 +b2− c2) . The proof of Lemma 2.1 is completed. �
Next, we give a lemma which is very interesting itself.

LEMMA 2.2. For any interior point P of �ABC, we have

a
r1

+
b
r2

+
c
r3

− a
R1

− b
R2

− c
R3

� 3
√

3, (2.8)

with equality if and only if �ABC is equilateral and P is its center.

Proof. Since the area of the quadrilateral is less than or equal to the half of product
of two diagonals, so we have

S�PCA +S�PAB � 1
2
aR1,

with equality only if PA ⊥ BC . Hence

br2 + cr3 � aR1, (2.9)

and two similar relations are valid. Therefore, to prove inequality (2.8) we need to
prove that

a
r1

+
b
r2

+
c
r3

− a2

br2 + cr3
− b2

cr3 +ar1
− c2

ar1 +br2
� 3

√
3. (2.10)

Next, we shall show first that the equivalent weighted inequality:

(x+ y+ z)
(

a2

x
+

b2

y
+

c2

z
− a2

y+ z
− b2

z+ x
− c2

x+ y

)
� 6

√
3S, (2.11)

i.e.
y+ z− x
x(y+ z)

a2 +
z+ x− y
y(z+ x)

b2 +
x+ y− z
z(x+ y)

c2 � 6
√

3
x+ y+ z

S (2.12)
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holds for any positive real numbers x , y , z . Putting

x1 =
y+ z− x
x(y+ z)

, y1 =
z+ x− y
y(z+ x)

, z1 =
x+ y− z
z(x+ y)

,

we have

y1 + z1 =
x(y2 + z2 + xy+ xz)

yz(z+ x)(x+ y)
> 0,

etc., and

y1z1 + z1x1 + x1y1 =
2(x+ y+ z)

(y+ z)(z+ x)(x+ y)
> 0.

Thus, according to Lemma 2.1, to prove (2.12) it remains to prove that

4

√
2(x+ y+ z)

(y+ z)(z+ x)(x+ y)
� 6

√
3

x+ y+ z
,

which is equivalent to

8(x+ y+ z)3 � 27(y+ z)(z+ x)(x+ y).

This follows from the arithmetic-geometric mean inequality obviously. Hence, inequal-
ities (2.12) and (2.11) are proved.

In (2.11), putting x = ar1 , y = br2 , z = cr3 , then using the preceding identity (2.2)
we get (2.10) immediately. Thus, inequality (2.8) follows from (2.10) by (2.9). Clearly,
the equality in (2.12) occurs if and only if x = y = z , a = b = c . Further, we know that
the equality condition of (2.8) is just as mentioned in Lemma 2.2. This completes the
proof of Lemma 2.2. �

LEMMA 2.3. For any interior point P, the following inequality holds:

aR2R3 +bR3R1 + cR1R2 � abc, (2.13)

with equality if and only if P coincide with one vertex of �ABC or �ABC is acute-
angled and P is its orthocenter.

Inequality (2.13) is due to T. Hayashi and is actually valid for arbitrary point P
(see [4], [5]).

LEMMA 2.4. If the following inequality:

f (a,b,c,R1,R2,R3,r1,r2,r3) � 0 (2.14)

holds for arbitrary point P of the plane of �ABC, then the inequality holds after
making transformation K :

(a,b,c,R1,R2,R3,r1,r2,r3)

→
(

aR1

2r2r3R
,

bR2

2r3r1R
,

cR3

2r1r2R
,

1
r1

,
1
r2

,
1
r3

,
1
R1

.
1
R2

,
1
R3

)
.
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The K transformation is called reciprocation transformation (see e.g., [2], [4], [6],
[7], [8]).

LEMMA 2.5. For any interior point P of �ABC, we have

ar1R
2
1 +br2R

2
2 + cr3R

2
3 = 8R2Sp. (2.15)

The identity (2.15) is very important and is equivalent to

ar1R
2
1 +br2R

2
2 + cr3R

2
3 = 2R(ar2r3 +br3r1 + cr1r2), (2.16)

which is given in [8] by M. S. Klamkin. In [2], the author pointed out that the more
general identity:

�S�PBCPA2 +�S�PCAPB2 +�S�PABPC2 = 4R2�S�DEF (2.17)

(where �S�PBC denotes the directed area of �PBC etc., see e.g. [3]) holds for any point
P in the plane. A new proof of (2.17) is given recently by the author in [9].

Next, we prove Theorem 1.2.

Proof. By Lemma 2.3, we have

a
R1

+
b
R2

+
c
R3

� abc
R1R2R3

. (2.18)

Coupling (2.18) with inequality (2.8) of Lemma 2.2 yields

a
r1

+
b
r2

+
c
r3

− abc
R1R2R3

� 3
√

3, (2.19)

in which the equality condition is the same as in (2.8). Applying Lemma 2.4 to inequal-
ity (2.19), we obtain

aR2
1

2r2r3R
+

bR2
2

2r3r1R
+

cR2
3

2r1r2R
− abcR1R2R3

8r1r2r3R3 � 3
√

3.

As a = 2RsinA etc., so that

1
2R

(
ar1R

2
1 +br2R

2
2 + cr3R

2
3

)−R1R2R3 sinAsinBsinC � 3
√

3r1r2r3.

By Lemma 2.5 and the following identity:

R1R2R3 sinAsinBsinC = 4SpRp, (2.20)

which is gotten by using abc = 4SR to the pedal triangle DEF , we get

4(R−Rp)Sp � 3
√

3r1r2r3,

which is equivalent with inequality (1.4) of Theorem 1.2. Clearly, the equality in (1.4)
holds only when �ABC is equilateral and P is its center. This completes the proof of
Theorem 1.2. �
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2.3. Proof of Theorem 1.3

LEMMA 2.6. The ternary quadratic inequality:

p1x
2 + p2y

2 + p3z
2 � q1yz+q2zx+q3xy (2.21)

holds for all real numbers x , y , z if and only if p1 � 0 , p2 � 0 , p3 � 0 , 4p2p3−q2
1 � 0 ,

4p3p1−q2
2 � 0 , 4p1p2−q2

3 � 0, and

4p1p2p3− (q1q2q3 + p1q
2
1 + p2q

2
2 + p3q

2
3) � 0. (2.22)

The above conclusion is well known (see, e.g., [10]). Because it gives the neces-
sary and sufficient conditions of the general ternary quadratic inequality, the importance
is self-evident. In recent years, we have used it in a number of articles (see, e.g., [11]–
[13]).

LEMMA 2.7. For all real numbers u, v , w and positive real numbers x , y , z we
have

M1 ≡ d1u
2 +d2v

2 +d3w
2 − (e1vw+ e2wu+ e3uv) > 0, (2.23)

where

d1 = (x+ y+ z)(y2 + z2),
d2 = (x+ y+ z)(z2 + x2),
d3 = (x+ y+ z)(x2 + y2),
e1 = 2x[x(x+ y+ z)−2yz],
e2 = 2y[y(x+ y+ z)−2zx],
e3 = 2z[z(x+ y+ z)−2xy].

Proof. First we can verify that

4d2d3− e2
1 = 4(y2 +4yz+ z2)x4 +4(y+ z)2y2z2 +8(y+ z)3x3

+4(y2 +3yz+ z2)(y2 − yz+ z2)x2 +8(y+ z)xy2z2

Since y2 − yz+ z2 > 0, then 4d2d3 − e2
1 > 0. Analogously, we have 4d3d1 − e2

2 > 0,
4d1d2− e2

3 > 0. Thus, according to Lemma 2.6, to prove (2.23) we need to prove that

4d1d2d3− (d1e
2
1 +d2e

2
2 +d3e

2
3 + e1e2e3) > 0. (2.24)

It is easily verified that

4d1d2d3− (d1e
2
1 +d2e

2
2 +d3e

2
3 + e1e2e3) = 16xyz(Q1 +Q2), (2.25)

where

Q1 = (3y2−4yz+3z2)x4 +2(y+ z)(3y2−2yz+3z2)x3,

Q2 = (3y4 +2y3z+13y2z2 +2yz3 +3z4)x2

−2yz(y+ z)(2y2−3yz+2z2)x+3(y+ z)2y2z2.
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Note that 3y2−4yz+3z2 > 0 and 3y2−2yz+3z2 > 0, hence Q1 > 0. Again, it is easy
to compute the quadratic discriminant of Q2 on x :

Δ1 = −4y2z2(5y4 +18y3z+22z2y2 +18z3y+5z4)(y+ z)2 < 0.

Hence Q2 > 0. Therefore, we deduce (2.24) is true from (2.25). This completes the
proof of Lemma 2.7. �

LEMMA 2.8. For any positive real numbers x , y , z , u , v , w, we have

M2 ≡ f1u
2 + f2v

2 + f3w
2 − (g1vw+g2wu+g3uv) > 0, (2.26)

where

f1 = (y+ z)(y2 + xy+ zx+ z2),
f2 = (z+ x)(z2 + yz+ yx+ x2),
f3 = (x+ y)(x2 + zx+ zy+ y2),
g1 = 2x3 +2(y+ z)x2− (y2 + z2)x−2yz(y+ z),
g2 = 2y3 +2(z+ x)y2− (z2 + x2)y−2zx(z+ x),
g3 = 2z3 +2(x+ y)z2− (x2 + y2)z−2xy(x+ y).

Proof. In fact, inequality (2.26) is not valid for all real numbers u , v , w . So we
can not apply Lemma 2.6 directly to prove it. After analysing, we find the following
identity:

M2 = E1 +E2 +E3 +M1, (2.27)

where M1 is the same as in Lemma 2.7, and

E1 = 2yz(y+ z)vw+2zx(z+ x)wu+2xy(x+ y)uv,

E2 = vwx(y− z)2 +wuy(z− x)2 +uvz(x− y)2,

E3 = xyz[(v−w)2 +(w−u)2 +(u− v)2].

Clearly, E1 > 0, E2 � 0 and E3 � 0 hold for positive real numbers x , y , z , u , v ,
w . Therefore, by identity (2.27) and the inequality M1 � 0 of Lemma 2.7, we see that
M2 > 0 holds for the positive real numbers. Thus we complete the proof of Lemma
2.8. �

LEMMA 2.9. For any triangle ABC and positive real numbers x , y , z , we have

s−a
x

+
s−b

y
+

s− c
z

� s(xa+ yb+ zc)
yza+ zxb+ xyc

, (2.28)

with equality if and only if x = y = z.
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In [2], the author proved inequality (2.28) by using the polar moment of the inertia
inequality of M. S. Klamkin (for the latter see [14], [15], [16]). We give a direct proof
of Lemma 2.9 here.

Proof. It is not difficult to verify the identity:

(ax+by+ cz)[(b+ c−a)x+(c+a−b)y+ c(a+b− c)z]
−(a+b+ c)(ayz+bzx+ cxy)

=
1
2
(c+a−b)(a+b− c)(y− z)2+

1
2
(a+b− c)(b+ c−a)(z− x)2

+
1
2
(b+ c−a)(c+a−b)(x− y)2. (2.29)

Hence the following inequality holds for all real numbers x , y , z :

(ax+by+ cz)[(b+ c−a)x+(c+a−b)y+ c(a+b− c)z]
� (a+b+ c)(ayz+bzx+ cxy),

which is equivalent to

(ax+by+ cz)[(s−a)x+(s−b)y+ c(s− c)z]
� s(ayz+bzx+ cxy). (2.30)

If x > 0, y > 0, z > 0, by replacing x → 1
x , y → 1

y , z → 1
z in (2.30) and then

multiplying both sides by xyz , we get (2.28) immediately. From (2.29), it is seen that
the equality in (2.28) holds if and only if x = y = z . Lemma 2.9 is proved. �

REMARK 2.1. In a recent paper [17], the author established the following geo-
metric inequality:

Rk
1 +Rk

2 +Rk
3 � (2Rp)k +2(4rp)k, (2.31)

where k � 1. We also used Lemma 2.9 to prove this inequality there.

LEMMA 2.10. Under the K transformation in Lemma 2.4, we have the following
transformational relations:

S → S
2r1r2r3R

, R → R1R2R3

4r1r2r3R
, Sp → S

2R1R2R3Rp
.

In [2], the author has given the transformational relations for the elements S , R ,
Sp , Rp under the five transformations (including the above lemma 2.10). These can be
proved by using previous identities (2.2), (2.3), (2.15) and (2.20) etc.

We now prove Theorem 1.3.

Proof. First, we prove the right hand inequality of the double inequality (1.6):

1
2
(R1 +R2 +R3− r1− r2− r3) < R. (2.32)
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From inequality PE +PF > EF and the fact EF = R1 sinA , we get

R1 <
r2 + r3

sinA
, (2.33)

and have two analogues. Thus, it is enough to show that

r2 + r3

sinA
+

r3 + r1

sinB
+

r1 + r2

sinC
− r1− r2− r3 < 2R.

Namely,

r1

(
1

sinB
+

1
sinC

−1

)
+ r2

(
1

sinC
+

1
sinA

−1

)

+r3

(
1

sinA
+

1
sinB

−1

)
< 2R. (2.34)

Noticing identity ar1 +br2 + cr3 = 2S , it remains to prove that

1
R

(
1

sinB
+

1
sinC

−1

)
� a

S
(2.35)

and two analogous inequalities. Because of symmetry, we only need to prove (2.35).
Since a = 2RsinA and S = 2R2 sinAsinBsinC , thus (2.35) is equivalent to the follow-
ing trigonometric inequality:

1
sinB

+
1

sinC
−1 � 1

sinBsinC
,

i.e.,
sinBsinC− sinB− sinC+1 � 0,

which is equivalent to the evident inequality:

(1− sinB)(1− sinC) � 0.

This completes the proof of (2.32).
Secondly, we prove the left hand inequality of (1.6):

Rp <
1
2
(R1 +R2 +R3− r1− r2− r3). (2.36)

We shall first prove the following weighted inequality:

a
x

+
b
y

+
c
z
− a

y+ z
− b

z+ x
− c

x+ y

>
1
s

[
a(s−a)

x
+

b(s−b)
y

+
c(s− c)

z

]
. (2.37)
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where x > 0, y > 0, z > 0 and s = (a + b + c)/2. It is not difficult to obtain the
following identity:

a
x

+
b
y

+
c
z
− a

y+ z
− b

z+ x
− c

x+ y

−1
s

[
a(s−a)

x
+

b(s−b)
y

+
c(s− c)

z

]

=
m1a2 +m2b2 +m3c2− (n1bc+n2ca+n3ab)

xyz(y+ z)(z+ x)(x+ y)(a+b+ c)
, (2.38)

where

m1 = yz(z+ x)(x+ y)(2y+2z− x),
m2 = zx(x+ y)(y+ z)(2z+2x− y),
m3 = xy(y+ z)(z+ x)(2x+2y− z),
n1 = xyz(y+ z)(y+ z+2x),
n2 = xyz(z+ x)(z+ x+2y),
n3 = xyz(x+ y)(x+ y+2z).

Therefore, to prove (2.38) we need to prove that

M3 ≡ m1a
2 +m2b

2 +m3c
2− (n1bc+n2ca+n3ab) > 0. (2.39)

If we put s−a = u , s−b = v , s− c = w , then a = v+w , b = w+u , c = u+ v , and

M3 = m1(v+w)2 +m2(w+u)2 +m3(u+ v)2

−[n1(w+u)(u+ v)+n2(u+ v)(v+w)+n3(v+w)(w+u)].
(2.40)

Substituting m1 , m2 , m3 , n1 , n2 , n3 into (2.40), we obtain further

M3 = 2
[
k1u

2 + k2v
2 + k3w

2 − (t1vw+ t2wu+ t3uv)
]
, (2.41)

where

k1 = x2(y+ z)(y2 + xy+ zx+ z2),
k2 = y2(z+ x)(z2 + yz+ yx+ x2),
k3 = z2(x+ y)(x2 + zx+ zy+ y2),
t1 = yz[2x3 +2(y+ z)x2− (y2 + z2)x−2yz(y+ z)],
t2 = zx[2y3 +2(z+ x)y2− (z2 + x2)y−2zx(z+ x)],
t3 = xy[2z3 +2(x+ y)z2− (x2 + y2)z−2xy(x+ y)].

Therefore, we have to prove that

k1u
2 + k2v

2 + k3w
2 − (t1vw+ t2wu+ t3uv) > 0. (2.42)
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Replacing u → u/x , v → /y , w → /z in (2.42), the inequality turns into the inequality
(2.26) of Lemma 2.8. Hence, inequality M3 > 0 holds true and the inequality (2.37) is
proved.

We now make substitutions x → xa , y → yb , z → zc in (2.37), then

1
x

+
1
y

+
1
z
− a

yb+ zc
− b

zc+ xa
− c

xa+ yb

>
1
s

(
s−a

x
+

s−b
y

+
s− c

z

)
. (2.43)

This inequality and the inequality (2.28) of Lemma 2.9 imply that

1
x

+
1
y

+
1
z
− a

yb+ zc
− b

zc+ xa
− c

xa+ yb
>

xa+ yb+ zc
yza+ zxb+ xyc

. (2.44)

For x = r1 , y = r2 , z = r3 in (2.44), using identities (2.2), (2.3) and the previous
inequality (2.9) br2 + cr3 � aR1 etc., one has

1
r1

+
1
r2

+
1
r3

− 1
R1

− 1
R2

− 1
R3

>
S

2RSp
. (2.45)

Applying K transformation of Lemma 2.4 to inequality (2.45) and then using Lemma
2.10, we immediately obtain

R1 +R2 +R3− r1− r2− r3 > 2Rp.

Hence the desired inequality (2.36) is proved.
Finally, we show that the constant 1

2 in (1.6) is optimal.
Suppose that the following inequalities:

k1(R1 +R2 +R3− r1− r2− r3) < R (2.46)

and
Rp < k2(R1 +R2 +R3− r1− r2− r3) (2.47)

hold for any interior point P . Considering an isosceles triangle ABC whose sides are
1, 1, 2x (0 < x < 1) and AHa is the altitude of BC . If we let A → 0,B → π

2 ,C → π
2

and let P → A , then x → 0 and R → AHa = 1
2 , Rp → AHa = 1

2 , R1 +R2 +R3 → 2,
r1 + r2 + r3 → 1. In this case, (2.46) and (2.47) become k1 < 1

2 , 1
2 < k2 respectively.

The double inequality k1 < 1
2 < k2 means that the constant 1

2 in (2.32) and (2.36) are
both the best possible. The proof of Theorem 1.3 is completed. �

3. Some related conjectures

In this section, we propose some interesting related conjectures.
Considering the stronger inequalities of Rp < R , the author first conjectures that

the inequality Rp + 2rp � R holds. However, through verifying by the computer, we
find it is not true. But it is likely that the following strict inequality holds:
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CONJECTURE 3.1. For any interior point P of �ABC , we have

Rp +
√

2rp < R. (3.1)

On the other hand, we conjecture

R2
p +12r2

p � R2, (3.2)

which is clearly better than Rp < R . More generally, we propose the following expo-
nential generalization:

CONJECTURE 3.2. Let k � 2 be a real number, then we have

Rk
p +2k(2k −1)rk

p � Rk. (3.3)

For the inequality (1.4) of Theorem 1.2, we propose the following stronger con-
jecture:

CONJECTURE 3.3. For any interior point P of �ABC , we have

Rp +
sr1r2r3

4rSp
� R. (3.4)

The known inequality s � 3
√

3r shows (3.4) is stronger than (1.4). If (3.4) is true,
then by inequality (1.1) and S = rs we can get

Rp +
r1r2r3

r2 � R. (3.5)

This weaker inequality has not yet been proven and inspires the author to pose the
following similar inequality:

Rp +
R1R2R3

8R2
p

� R. (3.6)

(with equality only when P is the circumcenter of �ABC ). By the previous identity
(2.21) and the known formula:

S = 2R2 sinAsinBsinC, (3.7)

we see that (3.6) is equivalent to

R2
p +

Sp

S
R2 � RRp. (3.8)

Again, by Gergonne formula (1.2), the above inequality is equivalent to

4RRp � 4R2
p +R2−PO2.

Then the following interesting conjecture is arisen:
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CONJECTURE 3.4. For any interior point P of �ABC , we have

PO �| R−2Rp |, (3.9)

where O is the circumcenter of �ABC.

Comparing (3.5) with (3.6), we give the following conjecture:

CONJECTURE 3.5. For any interior point P of �ABC , we have

R1R2R3

r1r2r3
� 8

R2
p

r2 . (3.10)

By (2.20) and (3.7), we conclude that the inequality Rp < R is equivalent to

R1R2R3

8R3 <
Sp

S
, (3.11)

which prompts the author to present the stronger inequality:

CONJECTURE 3.6. For any interior point P of �ABC , we have

8r1r2r3 +R1R2R3

8R3 � Sp

S
. (3.12)

If (3.12) is valid, then by the area inequality (1.1) we get

8r1r2r3 +R1R2R3 � 2R3. (3.13)

The author further thinks that the sharp inequlaity (3.14) below also hods.

CONJECTURE 3.7. For any interior point P of �ABC , we have

(8r1r2r3)
4 +(R1R2R3)

4 � 2R12. (3.14)

For strict inequality (2.45), we propose the following:

CONJECTURE 3.8. For any interior point P of �ABC , we have

1
r1

+
1
r2

+
1
r3

− 1
R1

− 1
R2

− 1
R3

� 1
R

+
S

2RSp
. (3.15)

If the above inequality holds true, then using (1.1) we get

1
r1

+
1
r2

+
1
r3

− 1
R1

− 1
R2

− 1
R3

� 3
R

, (3.16)

which is also not proven till now. On the other hand, it makes the author to put forward
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CONJECTURE 3.9. For any interior point P of �ABC , we have

1
r1

+
1
r2

+
1
r3

− 1
R1

− 1
R2

− 1
R3

� 3
2r

. (3.17)

Euler’s inequality R � 2r shows that (3.17) is better than (3.16).
Finally, for Theorem 1.3, we propose the following conjecture:

CONJECTURE 3.10. Let k > 1 be a positive real number, then for any interior
point P of �ABC we have

Rk
p <

1
2k

(
Rk

1 +Rk
2 +Rk

3− rk
1− rk

2− rk
3

)
< Rk. (3.18)
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