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A CHARACTERIZATION OF THE STABILITY OF A SYSTEM OF

THE BANACH SPACE VALUED DIFFERENTIAL EQUATIONS

TAKESHI MIURA, GO HIRASAWA, SIN-EI TAKAHASI AND TAKAHIRO HAYATA

Abstract. We will consider the Banach space valued differential equation y′(t) = Ay(t) , where
A is an n× n complex matrix. We give a necessary and sufficient condition in order that the
equation have the Hyers-Ulam stability. As a Corollary, we prove that the Banach space valued
linear differential equation with constant coefficients y(n)(t) + an−1y(n−1)(t) + · · ·+ a1y′(t) +
a0y(t) = 0 has the Hyers-Ulam stability if and only if Reλ �= 0 for all the solutions λ of the
equation zn +an−1zn−1 + · · ·+a1z+a0 = 0 .
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