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A CHARACTERIZATION OF THE STABILITY OF A SYSTEM OF
THE BANACH SPACE VALUED DIFFERENTIAL EQUATIONS
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(Communicated by J. Pecaric)

Abstract. We will consider the Banach space valued differential equation v'(#) = Ay(r), where
A is an n x n complex matrix. We give a necessary and sufficient condition in order that the
equation have the Hyers-Ulam stability. As a Corollary, we prove that the Banach space valued
linear differential equation with constant coefficients y (r) 4 a,_ 1y~ () + - + a1y (1) +
apy(t) = 0 has the Hyers-Ulam stability if and only if ReA # 0 for all the solutions A of the
equation 7" +ap 1?7+ tajz4ag=0.

1. Introduction

It seems that the stability problem of functional equations had been first raised
by S. M. Ulam (cf. [16, Chapter VI]). “For what metric groups G is it true that an €-
automorphism of G is necessarily near to a strict automorphism? (An € -automorphism
of G means a transformation f of G into itself such that p(f(x-y), f(x)- f(y)) < € for
all x,ye G.)”

D. H. Hyers [6] gave an affirmative answer to the problem as follows. Suppose
that f: E; — E, is a mapping between two real Banach spaces E; and E,. If there
exists € > 0 such that

[fx+y)—f)—fOl<e
for all x,y € Ey, then the limit

() = lim L2

Nn—soo 271

exists for each x € Ey, and T: E| — E; is the unique additive mapping such that

1f() =T <e

for all x € E;. If, in addition, the mapping R ¢ — f(zx) is continuous for each fixed
x € Eq, then T is linear.

This result is called the Hyers-Ulam stability of the additive Cauchy equation
g(x+y)=g(x)+g(v). Here we note that Hyers [6] calls any solution of this equation a
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“linear” function. Hyers considered only bounded Cauchy difference f(x+y)— f(x) —
Sf(y). T. Aoki [2] and Th.M Rassias [14] introduced unbounded Cauchy difference

1FGe+y) = () = fO)I < (llxll” + Iv1]7)

independently, where 0 < p < 1. They proved that there exists a unique additive map-
ping T: E| — Ej such that

2¢e
[f(x) =T < 2] [l <17

for all x € E;. Moreover, Rassias [14] proved that if the mapping R > 7 — f(tx) is
continuous for each fixed x € Ey, then T is linear.

This result is, what is called, the Hyers-Ulam-Rassias stability of the additive
Cauchy equation g(x+y) = g(x) +g(y). The stability of various functional equations
has been investigated [4, 5, 7, 8, 15].

Alsina and Ger [ 1] remarked that the Hyers-Ulam stability of the differential equa-
tion y’ =y holds. In fact, they proved that if € > 0 and if f is a differentiable function
on an open interval / into R with |f/(z) — f(¢)| < € for all 7 € I, then there exists a
differentiable function g: I — R such that g'(z) = g(¢) and |f(¢) — g(¢)| < 3¢ for all
t € 1. Since then, the stability of several differential equations has been studied (cf.
[3, 10, 11, 12, 13]). S.-M. Jung [9] studied the stability of a system of the first order lin-
ear differential equations of the form v'(r) = Ay(¢) +b(z),, where A is an n x n complex

matrix and
yi(t) by (t)
(1) = )’2:(1) ’ (1) = bz:(f)
yn(t) bn(t)

for some continuously differentiable functions y;: R — C and continuous functions
bj: R — C for 1 < j < n. He gave a sufficient condition in order that the equation
v/ () = Ap(t) + b(z) have the Hyers-Ulam stability in [9, Theorem 2]. In this paper, we
will consider the Banach space valued differential equation y'(z) = Ap(¢) and give a
necessary and sufficient condition in order that the equation have the Hyers-Ulam sta-
bility. As a direct consequence of our main theorem, we can prove that the Banach space
valued linear differential equation with constant coefficients y (1) + a,_ 1y~ (1) +
--++a1y (t) + apy(t) = 0 has the Hyers-Ulam stability if and only if Re A # 0 for all
the solutions A of the equation 2" +a,_ 12"~ +--- +ayz+ ayg = 0, which was proven
in [12, Theorem 1.3].

2. Main results

Let X be a complex Banach space with the norm || -||. Then the direct prod-
uct X" is a Banach space with respect to the norm ||x|| = max{||x ||, [|x2],- -, ||xal }
for x = (x1,x2,---,x,) € X". If A= (a;;) is an n x n complex matrix, then for x =
(x1,%2, 1 Xn), AX will mean (uy,uy,---,u,) € X", where u; = Yi_jaijxj. BEach nxn
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complex matrix A is a bounded linear operator from X" to itself with the operator
norm ||A]]. We write C"(R,X") for the set of all m-times strongly differentiable
functions f: R — X" such that the m-th derivative f”): R — X" is continuous. For
n x n complex matrix A, define Dy : C'(R,X") — C(R,X") by Da(f)(¢) = (¢) — Af(¢)
(f € C'(R,X™)). We say that the operator D has the Hyers-Ulam stability if there ex-
ists a constant K > 0 with the following property: for each € >0 and f € C'(R,X")
with sup,cg [[Da(f)(t)|| < € there exits g € C'(R,X") such that D4(g)(t) = 0 and
If(z) — g(¢)|| < Ke forall € R. We call such a K a HUS constant for D4 . The differ-
ential equation 1’ (r) = Ay(r) is said to have the Hyers-Ulam stability if the operator Dy
has the Hyers-Ulam stability. Namely, there exists a constant K > 0 with the follow-
ing property: for each € >0 and § € C'(R,X") with ||f'(t) — Af(t)|| < & there exists
g € C'(R,X") such that ¢'(r) = Ag(¢) and ||j(t) — g(¢)|| < Ke forall t € R.

LEMMA 2.1. Let J be an m x m complex matrix of the following form:

A1 0
= *

1

0 A

If = (fi,fo - fm) € CHR,X™) satisfies ' (t) = Jf(t) forall t € R, then

fj (t) _ mz_‘j fer]f!(O) tkelt

k=0

(Vt €R)

forall 1 < j<m.

Proof. Since f,(t) = A fu(t), we obtain that f,,(t) = fn(0)eM forall t € R. As-
sume that f;(z) = 4 fj14(0)r*e* /k!. We will show that

m—j+1

2 f/ 1+k t e)u/k'
Since /(1) =J§(r), fi_;(t) = A fj-1(t) + f;(t), and therefore
(S e™™) = fi (e ™ =2 fia()e ™
—pgein =3 O

It follows that

m—j f/+k

fjfl(t)e_}“:ffl +Z A

. D fi(0) ey E fima(0) 4
—fj— (O)-ﬁ-%mtJr = ]Zz) TI,
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which proves fj_(t) = qu;oj oy i 14£(0)t%e* k! as claimed. By induction, we obtain

that £j(r) = Sp—d £+ (0)ike k! forall 1 < j<m. O

LEMMA 2.2. Let A and B be n x n complex matrices. If A= P~'BP for some

invertible matrix P, then the following are equivalent.
(i) v'(t) = An(t) has the Hyers-Ulam stability.
(i) v'(t) = By(t) has the Hyers-Ulam stability.

Proof. 1t is enough to show that (i) implies (ii). Suppose that the equation y'(z) =
An(r) has the Hyers-Ulam stability. Thus, there exists K > 0 such that to each € >0
and f € C'(R,X") satisfying sup,.p ||f'(t) —Af(¢)|| < € there corresponds g € C' (R,X")
so that g'(r) = Ag(z) and ||f(r) — g(z)|| < Ke for all € R. We shall prove that
y'(¢) = By(t) has the Hyers-Ulam stability with a HUS constant ||[P~!||||P||K. Let

€>0and f € C!(R,X") satisfy ||f'(t) — Bf(¢)|| <& forall t € R. Set e(t) = P~ '§(r)
foreach t € R. Then ¢ € C'(R,X") and ¢/(t) = P~!'(¢). Thus

Ie'(e) = Ae(t)| = P77 (1) = (P~ BP)P (1))

<P (1)~ Bi() | < 1P~ le

for all # € R. By the hypothesis, there exists g € C' (R, X") such that g'(t) = Ag(¢) and
le(t) —g(t)|| < K||P~"||e forall r € R. If we define h(z) = Pg(t) for each t € R, then
we obtain that h € C!(R,X"),

b'(t) = Py'(t) = PAg(r) = PAP"'h(r) = Bh(1)
and that

1§(2) = b(@)]| = [|Pe(r) — Pg(e) ]| < [Pl lle(r) — g2l
<[Pl IIPlKe

for all € R. Consequently, y'(1) = By(r) has the Hyers-Ulam stability with a HUS
constant ||[P~!||||P||K, as claimed. [J

THEOREM 2.3. Let A be an n x n complex matrix. Then the following conditions
are equivalent.

(i) v'(t) = An(t) has the Hyers-Ulam stability.

(ii) For each eigenvalue A of A, Red #0.

Proof. Let {A1,A2,---,An} be the set of all eigenvalues of A. Suppose that the
real part of some eigenvalue of A is 0, say ReA; = 0. Choose an n X n matrix P so
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that P~'AP is the Jordan canonical form J of A. Without loss of generality, we may
assume that J is of the form

Ji (0]
J
J= . ,

(0] JN
where Jj is the Jordan block with respect to the eigenvalue A; for 1 < k < N. Note
that each Jordan block J is of the form

J(Agesmy 1) o
J(Agesmy2)
Ji . ; 2.1

0] J(z,k,kak)

where J(Ag,my ;) is a Jordan cell, that is J(Ax,my ;) is a my; x my; matrix of the form

M1l O
I (A y) = M (I1<kSN, 1K<y
0 A

(i) = (ii) Let € > 0 and choose x € X so that ||x|| = 1. Set m =m ;. Then
the Jordan cell J(A;,m) is an m x m matrix. We define fo(t) = (f1(¢), f2(t),- -, fu(2),
0,---,0) € X", where

gtmfjJrl

fi(t) =

=M 1<j<
g v sism

forall # € R. Then f, € C'(R,X"). On the one hand,

fo(t) = (eteMx) = eeM'x 4 Ayere*'x = e x + Ay fiu (1)
and, foreach 1 <j<m—1,
(ZZJ)! Mt (;#J;)u M= fia(6) + A fi(0).
On the other hand, we obtain that
Jio(t) = (M fi(t) + f2(0), A fa(t) + f3(2), -+, A1 fin(2), 0, -+, 0)
= (A1) £0),++, f(t) — £M'x,0,--,0)

and therefore, () — Jfo(t) = (0,---,0,e¢M'x,0,---,0) forall r € R. Since ReA; =0
and ||x|| =1,

fi) =

1§(1) = Jfo(e) | = max{||ee™ ][, [O],---. 0]} =
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for all # € R. We assert that sup,.g ||fo(t) — g(¢)|| = o for all g € C'(R,X") with
g'(r) = Jg(r) for all r € R. Let g(¢r) = (g1(¢),82(t),--,gn(t)). Then we see that
h € C'(R,X™), defined by h(t) = (g1(t),82(¢),--+,gm(t)) for t € R, satisfies b'(t) =
J(A1,m)h(t) forall r € R. By Lemma 2.1

m—Jjo. (0
gi)=Y %z"ew (vt €R)
i K

forall 1 < j < m. It follows that

1) = )] = letehs— 2 0)H]| = [t g 0]
> elt| = [|gm(0)|| = oo ast— oo,

here we have used ReA; =0 and ||x|| = 1. Consequently
sup [[fo(r) — a(1)|| = sup max ||fi(z) — gi(®)]|
€R teR 1<ksn

2 Sup || fin(t) — gm(t)[| = o
teR

as claimed. Thus, sup,cg ||fo(r) —Jfo(t)|| = € but sup,cg |[fo(t) — g(t)|| = o= for all
g € C'(R,X") with g'(r) = Jg(¢). This implies that v/(z) = Jy(¢) has no Hyers-Ulam
stability. By Lemma 2.2, v/(¢) = An(z) has no Hyers-Ulam stability.

(if) = (i) Suppose that ReA # 0 for every eigenvalue A of A. Let J be the
Jordan canonical form of A. According to Lemma 2.2, it is enough to prove that
y'(t) = Jy(t) has the Hyers-Ulam stability. To do this, let € > 0 and § € C'(R,X")
satisfy sup,cp ||f'(t) — Jf(t)|| < €. We prove that there exists g € C'(R,X") such that
g'(r) =Jg(z) and ||f(r) — g(z)|| < Ke forall r € R, where K >0 is a constant which is
independent to €. Recall that J is of the form

Ji o

J
J= ) ;

0 JIN
where J; is the Jordan block of the form (2.1) foreach 1 <k < N. Let f= (f1,f2,---,fn),
here f; € C'(R,X") for some n; € N with YN ng =n. Then sup,cp ||, () = Jifa (£) || <
€ for every 1 <k < N. If we find g; € C'(R,X") such that g () = Jyg(¢) and
Ifx(t) — gx(t)|| < Ke for all + € R, then g = (g1,92,--,g9n) € C'(R,X") satisfies
g'(r) = Jg(r) and ||f(r) — g(¢)|| < Ke for all € R. Thus, it is enough to consider

the case when J is a Jordan block. By the same reasoning, we may assume that J is a
Jordan cell. Consequently, we may assume that J is of the form

Al o
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If we write () = (f1(¢),-- -, fa(r)), then sup,cp ||f' (r) — J§(¢)|| < € implies that
supl|f;,(t) = Afu(t)| <& and  supllfj(t) = Afj(t) = fira(D)] <&
teR teR
foreach 1 < j<n—1.Set

h.(t)_{f}{l(t)_lf"(t) j=n

i\t = .

[i0) = Afi(t) = fj1(t) 1<j<n—1
for t € R, and then sup,cg ||7;(7)|| < € forall 1 < j<n.Then

—ReAs _ e—ReAt|

[Re 4|

Ele

/ “hy(t)e Mt de < 2.2)
t

S
<|[ e meiar

for all s,r € R. We have two possible cases to consider for A. First suppose that
ReA > 0. Then, by (2.2), [;*hj(t)e *TdT € X exists forall 1 < j <n. Set

(1) = / " ha(t)e A dt

foreach t € R. Letting s — oo in (2.2), we get

e—Re?Lt

ReA

€

lien (1)) < (¥ €R), (2.3)

Note, by the definition of 4, that

(fult)e ™) = fr(t)e™ = Afult)e ™ = hy(t)e ™.
It follows that .
Folt)e ™ = £,(0)+ /O ha(T)e AT dt

for all # € R. Define g, € C!(R,X) by
gn(t) =M ( £(0)+ /O : hn(r)e“dr>
foreach t € R. Then g/, (1) = Ag,(¢) and
Fult) = gult) — ¥ /t Cha()e Mt dT = gu(t) — My (1)

for all r € R. According to (2.3),

1f(2) = gn ()l = lle* un() | < €% Jun(1) |

—Re At
Reir €€
<e®

Re A ReA
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forall r € R.
Next, we will show that there exists g, € C!(R,X) such that
1
Goa) =R+ a0 for ()01 ()] <€ 3 s

for all + € R. By the definition of &,_|,

(o1 @0)e™™) = fr ()™ = Afur ()€™ = (huea (1) + falt))e ™,

and therefore,
frt @ = s+ [ a9+ (2)e .
Since (1) = ga(t) — My (1),
faer (e :f"*1(0>+/Ot(hnfl(f)e‘“—un(f))dr+/0tgn(r)e—“dr 2.4)

forall t € R. By (2.2), 5" hn_1(7)e *7d7 is well-defined and

oo i gefReM
hy— || < 2.5
/, 1(t)e*rdr Rel (2.5)
for all r € R. According to (2.3),
s e s £|e—ReAs _ e—ReAt‘
d < —Re}L‘L’d _
/t”"(” IS Rex /te ! (Re 1)
for all 5,7 € R, which shows the existence of [ u,(7)dt € X. Furthermore,
oo Se—Relt
dt|| < vt € R). 2.6
| wmar| <G eR) 2.6)
It follows from (2.5) and (2.6) that
oo gefReiLt gefReiLt
By 1(T)e ™ —u, (1)) d1|| < 2.7
[ @ —uar] < ot s @)

forall t € R. Define g, ;| € C'(R,X) by

oo t
gni1(r) =M ( fu1(0)+ /0 (hn-1(1)e ™ —un (1)) dT+ /0 gn(r)e—“dr)
forall 7 € R. Then we see that g/, (1) = Ag,—1(t) +gx(t) and, by (2.4),

frea(0) = g1 =¥ [y (2)e T () dw
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for all r € R. From (2.7)

1fa1(2) = gna (1) ]| =

M /[ (D) — uy (1)) d7

Re A
geet

/ (1 (T)e ™ — (7)) d
t
—Re At —Re At 2 1
< Re)Lt 86 86 _
¢ ( Red T (ReAP |~ 2 Rea )t
forall r e R.

By using induction, we will prove that for each 1 < j < n—2 there exits g; €
C!'(R,X) such that

n—j+1
G0 = A0+ ad 1G0-g0I<e X g CI

forall 1 € R. Let 2 < j <n— 1 and suppose that there exists g; € C!(R,X) satisfying
(2.8). Set v;(t) = fj(r) — g;(t) for each t € R and & = e¥;_{"'(ReA)™*. Then
sup,cg ||v;(1)|| < §;. By the definition of h;_y, (fj—1(t)e ") = (hj_1(t) + f;(t))e ™,
and thus

F106 ™ = f-10)+ [ (o1 (8) + 1y(e)e e
forall r € R. Since f;(t) =v;(r)+g;(t),
fia@)e ™ = f;-1(0) +/0 (hj—1(7)+"j(7))€7“d17+/0 gi(n)e *dr  (2.9)

forall r € R. By (2.2), fo hj—1(T)e *TdT exists and

oo gefReM
H/t hi_y(t)e T dr|| < R (2.10)
forall 1 € R. Since sup,cg ||v;(¢)]| < 6,
/[S vj(’L')efudT <6 /txe*Re“dT = 5j|e_Re;;;e_ReM
forall s,z € R. Thus [;"v;(t)e *Tdt € X exists and
oo 5,67Relt
[ vi(me tar| < Z——  (eR). @.11)

According to (2.10) and (2.11),
ge—Re)Lz 5je—ReAt

<
Re A + ReA

| i@ vy Fan

e~ Reat n—j+l1 i, ¢ Relt n—j+2 e Relt
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forall r € R. Define g;_; € C'(R,X) by

gj1(r) = M (f,,»l O+ [ thyr(0) +vene e+ [ g,-<r>e—“dr)
for each 7 € R. Then we see that g, (r) = 1g;-1(t) +g;(r) and, by (2.9),

fi10) = 8j1(0) =M [ (b1 (1) +vi()e  dr

forall # € R. From (2.12)

1fj-1(1) = gj1 (1)l =

M /[ C(hj1 (1) +vi(0))e M dr

_ Reki [ (i (7) £ vi(1)e M dr
< eReMsn—fz e Rekt i
- & (Red)k = Re)L
for all € R. By induction, we obtain that, for each 1 < j < n—1, there exists

gj € C'(X,R) such that g(1) = Ag;(r) +gj+1(r) and Hfj( ) g;j()| < &; for all
t € R. Therefore, g = (g1,82,---,8x) € C'(R,X") satisfies that g/(t) = Jg(¢) and
17(t) —g(t)|| < eXr_;(ReA)™* forall t € R, as claimed.

In the second case, ReA < 0. Define u € C'(R,X") by u(t) = fj(—t) for ¢ €
R. Then |w(z) 4+ Ju(?)| = |- (=) + Jf(—1)|| < € for all # € R. Moreover, the
eigenvalue of —J is —4, and thus Re (—A) > 0. Thus, v/(r) = —Jy(¢) has the Hyers-
Ulam stability, and therefore there exists v € C!'(R,X") such that v'(t) = —Jo(z) and
|u(t) —o(t)|| < Me forall t € R, where M = ¥}_, (—ReA)~*. If we set g(t) = v(—1)
for ¢ € R, then we obtain that g € C'(R,X"), g/(t) = —v'(—t) = Jo(—t) = Jg(t) and
I£(6) — 8(0)]| = llu(=1) — v(—1)]| < Me forall 1 € R.

From the above, we proved that if Re A # 0, then there exists g € C' (R,X™) such
that ¢/(¢) = Jg(t) and ||f(t) —g(¢)|| < €34, |[ReA|* forall r € R. Thus, v'(¢) = Jy(r)
has the Hyers-Ulam stability. By Lemma 2.2, we conclude that v/() = An(r) has the
Hyers-Ulam stability. [

Let ag,ay,---,a,—1 € C and C"(R,X) the set of all n-times strongly differentiable
mappings whose n-th derivative is continuous. Define the operator &2: C"(R,X) —
C(R,X) by

D)) = @) + a1 @0+ anf (1) + aof (1)

for f € C"(R,X) and r € R. We say that the operator & has the Hyers-Ulam sta-
bility if there exists a constant K > 0 with the following property: for each € > 0
and f € C"(R,X) with sup,cg [ Z(f)(t)]| < € there exists g € C"(R,X) such that
P(g)(t) =0 and [|f(r) —g(t)|| < Ke for all r € R. The n-th order linear differ-
ential equation y (1) +a,_1y" "D (r) +--- + a1y (t) + agy(t) = 0 is said to have the
Hyers-Ulam stability if the operator &7 has the Hyers-Ulam stability. As a Corollary
to Theorem 2.3, we have the following, which was proven in [12, Theorem 1.3].
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COROLLARY 2.4. Let n € N and ag,ay,---,a,—1 € C, where N is the set of all
natural numbers. Then the following conditions are equivalent.

(i) The differential equation y™(t) +ap_1y" V() + -+ a1y (1) +agy(t) = 0 has
the Hyers-Ulam stability.

(ii) ReA #0 for each A € C with A"+ ay_ A" ' +---+ajA +ag=0.

Proof. Let f € C"(R,X). Set f(r) = (f"=V(t),---, f'(t),f(r)) € X" foreach 1 €
R and

Q-1+ —a1 —ag
1 o 0
A=
0] 1 0

Then | Z2(f)@)| = ||f (t) — Af(z)|| for all ¢ € R. Moreover, Z(g)(t) =0 for all
t € R if and only if g'(r) = Ag(r) for all r € R, where g € C"(R,X) and g(r) =
" V@),---,¢(1),8(t )) € X” Consequently, the operator & has the Hyers-Ulam
stability if and only if v/(¢) = Ap(r) has the Hyers-Ulam stability. According to The-
orem 2.3, v/(¢) = Ay(r) has the Hyers-Ulam stability if and only if ReA # 0 for each
eigenvalue A of A. Finally, we note that A € C is an eigenvalue of A if and only if
A" a, A"V aA +ag = 0. In fact, the characteristic polynomial |zE — A| of
Ais 7' +a, 177+ +az+ag since

Zt+ap—1ap—2 -+ ao

—1 z 0]
|zE —A| =
0] -1 z
z o ap—2 *++ aj agp
-1 z -1 z (0]
=(z+ay1) +
(0] -1 z (0] -1 z

= (24 ap_1)2"  F ap 222+ 4 a1z + ao,

where we have used twice the induction. The proof is complete. [
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