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Abstract. We will consider the Banach space valued differential equation y′(t) = Ay(t) , where
A is an n× n complex matrix. We give a necessary and sufficient condition in order that the
equation have the Hyers-Ulam stability. As a Corollary, we prove that the Banach space valued
linear differential equation with constant coefficients y(n)(t) + an−1y(n−1)(t) + · · ·+ a1y′(t) +
a0y(t) = 0 has the Hyers-Ulam stability if and only if Reλ �= 0 for all the solutions λ of the
equation zn +an−1zn−1 + · · ·+a1z+a0 = 0 .

1. Introduction

It seems that the stability problem of functional equations had been first raised
by S. M. Ulam (cf. [16, Chapter VI]). “For what metric groups G is it true that an ε -
automorphism of G is necessarily near to a strict automorphism? (An ε -automorphism
of G means a transformation f of G into itself such that ρ( f (x ·y), f (x) · f (y)) < ε for
all x,y ∈ G .)”

D. H. Hyers [6] gave an affirmative answer to the problem as follows. Suppose
that f : E1 → E2 is a mapping between two real Banach spaces E1 and E2 . If there
exists ε � 0 such that

‖ f (x+ y)− f (x)− f (y)‖� ε

for all x,y ∈ E1 , then the limit

T (x) = lim
n→∞

f (2nx)
2n

exists for each x ∈ E1 , and T : E1 → E2 is the unique additive mapping such that

‖ f (x)−T (x)‖ � ε

for all x ∈ E1 . If, in addition, the mapping R � t �→ f (tx) is continuous for each fixed
x ∈ E1 , then T is linear.

This result is called the Hyers-Ulam stability of the additive Cauchy equation
g(x+y) = g(x)+g(y) . Here we note that Hyers [6] calls any solution of this equation a
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“linear” function. Hyers considered only bounded Cauchy difference f (x+y)− f (x)−
f (y) . T. Aoki [2] and Th.M Rassias [14] introduced unbounded Cauchy difference

‖ f (x+ y)− f (x)− f (y)‖� ε(‖x‖p +‖y‖p)

independently, where 0 � p < 1. They proved that there exists a unique additive map-
ping T : E1 → E2 such that

‖ f (x)−T (x)‖ � 2ε
|2−2p| ‖x‖

p

for all x ∈ E1 . Moreover, Rassias [14] proved that if the mapping R � t �→ f (tx) is
continuous for each fixed x ∈ E1 , then T is linear.

This result is, what is called, the Hyers-Ulam-Rassias stability of the additive
Cauchy equation g(x+ y) = g(x)+g(y) . The stability of various functional equations
has been investigated [4, 5, 7, 8, 15].

Alsina and Ger [1] remarked that the Hyers-Ulam stability of the differential equa-
tion y′ = y holds. In fact, they proved that if ε � 0 and if f is a differentiable function
on an open interval I into R with | f ′(t)− f (t)| � ε for all t ∈ I , then there exists a
differentiable function g : I → R such that g′(t) = g(t) and | f (t)− g(t)| � 3ε for all
t ∈ I . Since then, the stability of several differential equations has been studied (cf.
[3, 10, 11, 12, 13]). S.-M. Jung [9] studied the stability of a system of the first order lin-
ear differential equations of the form y′(t) = Ay(t)+b(t) , where A is an n×n complex
matrix and

y(t) =

⎛
⎜⎜⎜⎝

y1(t)
y2(t)

...
yn(t)

⎞
⎟⎟⎟⎠ , b(t) =

⎛
⎜⎜⎜⎝

b1(t)
b2(t)

...
bn(t)

⎞
⎟⎟⎟⎠

for some continuously differentiable functions y j : R → C and continuous functions
b j : R → C for 1 � j � n . He gave a sufficient condition in order that the equation
y′(t) = Ay(t)+b(t) have the Hyers-Ulam stability in [9, Theorem 2]. In this paper, we
will consider the Banach space valued differential equation y′(t) = Ay(t) and give a
necessary and sufficient condition in order that the equation have the Hyers-Ulam sta-
bility. As a direct consequence of our main theorem, we can prove that the Banach space
valued linear differential equation with constant coefficients y(n)(t)+ an−1y(n−1)(t)+
· · ·+ a1y′(t)+ a0y(t) = 0 has the Hyers-Ulam stability if and only if Reλ �= 0 for all
the solutions λ of the equation zn +an−1zn−1 + · · ·+a1z+a0 = 0, which was proven
in [12, Theorem 1.3].

2. Main results

Let X be a complex Banach space with the norm ‖ · ‖ . Then the direct prod-
uct Xn is a Banach space with respect to the norm ‖x‖ = max{‖x1‖,‖x2‖, · · · ,‖xn‖}
for x = (x1,x2, · · · ,xn) ∈ Xn . If A = (ai j) is an n× n complex matrix, then for x =
(x1,x2, · · · ,xn) , Ax will mean (u1,u2, · · · ,un) ∈ Xn , where ui = ∑n

j=1 ai jx j . Each n×n
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complex matrix A is a bounded linear operator from Xn to itself with the operator
norm ‖A‖ . We write Cm(R,Xn) for the set of all m-times strongly differentiable
functions f : R → Xn such that the m-th derivative f(m) : R → Xn is continuous. For
n×n complex matrix A , define DA : C1(R,Xn)→C(R,Xn) by DA(f)(t) = f′(t)−Af(t)
(f ∈C1(R,Xn)) . We say that the operator DA has the Hyers-Ulam stability if there ex-
ists a constant K � 0 with the following property: for each ε � 0 and f ∈ C1(R,Xn)
with supt∈R ‖DA(f)(t)‖ � ε there exits g ∈ C1(R,Xn) such that DA(g)(t) = 0 and
‖f(t)−g(t)‖� Kε for all t ∈ R . We call such a K a HUS constant for DA . The differ-
ential equation y′(t) = Ay(t) is said to have the Hyers-Ulam stability if the operator DA

has the Hyers-Ulam stability. Namely, there exists a constant K � 0 with the follow-
ing property: for each ε � 0 and f ∈ C1(R,Xn) with ‖f′(t)−Af(t)‖ � ε there exists
g ∈C1(R,Xn) such that g′(t) = Ag(t) and ‖f(t)−g(t)‖� Kε for all t ∈ R .

LEMMA 2.1. Let J be an m×m complex matrix of the following form:

J =

⎛
⎜⎜⎜⎜⎝

λ 1 O

λ
. . .
. . . 1

O λ

⎞
⎟⎟⎟⎟⎠ .

If f = ( f1, f2, · · · , fm) ∈C1(R,Xm) satisfies f′(t) = Jf(t) for all t ∈ R , then

f j(t) =
m− j

∑
k=0

f j+k(0)
k!

tkeλ t (∀t ∈ R)

for all 1 � j � m.

Proof. Since f ′m(t) = λ fm(t) , we obtain that fm(t) = fm(0)eλ t for all t ∈ R . As-
sume that f j(t) = ∑m− j

k=0 f j+k(0)tkeλ t/k! . We will show that

f j−1(t) =
m− j+1

∑
k=0

f j−1+k(0)tkeλ t/k!.

Since f′(t) = Jf(t) , f ′j−1(t) = λ f j−1(t)+ f j(t) , and therefore

( f j−1(t)e−λ t)′ = f ′j−1(t)e
−λ t −λ f j−1(t)e−λ t

= f j(t)e−λ t =
m− j

∑
k=0

f j+k(0)
k!

tk.

It follows that

f j−1(t)e−λ t = f j−1(0)+
m− j

∑
k=0

∫ t

0

f j+k(0)
k!

τk dτ

= f j−1(0)+
m− j

∑
k=0

f j+k(0)
(k+1)!

tk+1 =
m− j+1

∑
k=0

f j−1+k(0)
k!

tk,
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which proves f j−1(t) = ∑m− j+1
k=0 f j−1+k(0)tkeλ t/k! as claimed. By induction, we obtain

that f j(t) = ∑m− j
k=0 f j+k(0)tkeλ t/k! for all 1 � j � m . �

LEMMA 2.2. Let A and B be n× n complex matrices. If A = P−1BP for some
invertible matrix P, then the following are equivalent.

(i) y′(t) = Ay(t) has the Hyers-Ulam stability.

(ii) y′(t) = By(t) has the Hyers-Ulam stability.

Proof. It is enough to show that (i) implies (ii). Suppose that the equation y′(t) =
Ay(t) has the Hyers-Ulam stability. Thus, there exists K � 0 such that to each ε � 0
and f∈C1(R,Xn) satisfying supt∈R ‖f′(t)−Af(t)‖� ε there corresponds g∈C1(R,Xn)
so that g′(t) = Ag(t) and ‖f(t)− g(t)‖ � Kε for all t ∈ R . We shall prove that
y′(t) = By(t) has the Hyers-Ulam stability with a HUS constant ‖P−1‖‖P‖K . Let
ε � 0 and f ∈C1(R,Xn) satisfy ‖f′(t)−Bf(t)‖ � ε for all t ∈ R . Set e(t) = P−1f(t)
for each t ∈ R . Then e ∈C1(R,Xn) and e′(t) = P−1f′(t) . Thus

‖e′(t)−Ae(t)‖= ‖P−1f′(t)− (P−1BP)P−1f(t)‖
� ‖P−1‖‖f′(t)−Bf(t)‖� ‖P−1‖ε

for all t ∈ R . By the hypothesis, there exists g∈C1(R,Xn) such that g′(t) = Ag(t) and
‖e(t)−g(t)‖ � K‖P−1‖ε for all t ∈ R . If we define h(t) = Pg(t) for each t ∈ R , then
we obtain that h ∈C1(R,Xn) ,

h′(t) = Pg′(t) = PAg(t) = PAP−1h(t) = Bh(t)

and that

‖f(t)−h(t)‖= ‖Pe(t)−Pg(t)‖� ‖P‖‖e(t)−g(t)‖
� ‖P−1‖‖P‖Kε

for all t ∈ R . Consequently, y′(t) = By(t) has the Hyers-Ulam stability with a HUS
constant ‖P−1‖‖P‖K , as claimed. �

THEOREM 2.3. Let A be an n×n complex matrix. Then the following conditions
are equivalent.

(i) y′(t) = Ay(t) has the Hyers-Ulam stability.

(ii) For each eigenvalue λ of A, Reλ �= 0 .

Proof. Let {λ1,λ2, · · · ,λN} be the set of all eigenvalues of A . Suppose that the
real part of some eigenvalue of A is 0 , say Reλ1 = 0. Choose an n× n matrix P so
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that P−1AP is the Jordan canonical form J of A . Without loss of generality, we may
assume that J is of the form

J =

⎛
⎜⎜⎜⎝

J1 O
J2

. . .
O JN

⎞
⎟⎟⎟⎠ ,

where Jk is the Jordan block with respect to the eigenvalue λk for 1 � k � N . Note
that each Jordan block Jk is of the form

Jk =

⎛
⎜⎜⎜⎝

J(λk,mk,1) O
J(λk,mk,2)

. . .
O J(λk,mk,rk )

⎞
⎟⎟⎟⎠ , (2.1)

where J(λk,mk,l) is a Jordan cell, that is J(λk,mk,l) is a mk,l ×mk,l matrix of the form

J(λk,mk,l) =

⎛
⎜⎜⎜⎜⎝

λk 1 O

λk
. . .
. . . 1

O λk

⎞
⎟⎟⎟⎟⎠ (1 � k � N, 1 � l � rk).

(i) ⇒ (ii) Let ε > 0 and choose x ∈ X so that ‖x‖ = 1. Set m = m1,1 . Then
the Jordan cell J(λ1,m) is an m×m matrix. We define f0(t) = ( f1(t), f2(t), · · · , fm(t),
0, · · · ,0) ∈ Xn , where

f j(t) =
εtm− j+1

(m− j +1)!
eλ1t x (1 � j � m)

for all t ∈ R . Then f0 ∈C1(R,Xn) . On the one hand,

f ′m(t) = (εteλ1t x)′ = εeλ1t x+ λ1εteλ1t x = εeλ1t x+ λ1 fm(t)

and, for each 1 � j � m−1,

f ′j(t) =
εtm− j

(m− j)!
eλ1t x+ λ1

εtm− j+1

(m− j +1)!
eλ1t x = f j+1(t)+ λ1 f j(t).

On the other hand, we obtain that

Jf0(t) = (λ1 f1(t)+ f2(t),λ1 f2(t)+ f3(t), · · · ,λ1 fm(t),0, · · · ,0)

= ( f ′1(t), f ′2(t), · · · , f ′m(t)− εeλ1t x,0, · · · ,0)

and therefore, f′0(t)− Jf0(t) = (0, · · · ,0,εeλ1t x,0, · · · ,0) for all t ∈ R . Since Reλ1 = 0
and ‖x‖ = 1,

‖f′0(t)− Jf0(t)‖ = max{‖εeλ1t x‖,‖0‖, · · · ,‖0‖} = ε
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for all t ∈ R . We assert that supt∈R ‖f0(t)− g(t)‖ = ∞ for all g ∈ C1(R,Xn) with
g′(t) = Jg(t) for all t ∈ R . Let g(t) = (g1(t),g2(t), · · · ,gn(t)) . Then we see that
h ∈ C1(R,Xm) , defined by h(t) = (g1(t),g2(t), · · · ,gm(t)) for t ∈ R , satisfies h′(t) =
J(λ1,m)h(t) for all t ∈ R . By Lemma 2.1

g j(t) =
m− j

∑
k=0

g j+k(0)
k!

tkeλ1t (∀t ∈ R)

for all 1 � j � m . It follows that

‖ fm(t)−gm(t)‖ = ‖εteλ1t x−gm(0)eλ1t‖ = ‖εtx−gm(0)‖
� ε|t|−‖gm(0)‖→ ∞ as t → ∞,

here we have used Reλ1 = 0 and ‖x‖ = 1. Consequently

sup
t∈R

‖f0(t)−g(t)‖= sup
t∈R

max
1�k�n

‖ fk(t)−gk(t)‖

� sup
t∈R

‖ fm(t)−gm(t)‖ = ∞

as claimed. Thus, supt∈R ‖f′0(t)− Jf0(t)‖ = ε but supt∈R ‖f0(t)− g(t)‖ = ∞ for all
g ∈C1(R,Xn) with g′(t) = Jg(t) . This implies that y′(t) = Jy(t) has no Hyers-Ulam
stability. By Lemma 2.2, y′(t) = Ay(t) has no Hyers-Ulam stability.

(ii) ⇒ (i) Suppose that Reλ �= 0 for every eigenvalue λ of A . Let J be the
Jordan canonical form of A . According to Lemma 2.2, it is enough to prove that
y′(t) = Jy(t) has the Hyers-Ulam stability. To do this, let ε � 0 and f ∈ C1(R,Xn)
satisfy supt∈R ‖f′(t)− Jf(t)‖ � ε . We prove that there exists g ∈ C1(R,Xn) such that
g′(t) = Jg(t) and ‖f(t)−g(t)‖� Kε for all t ∈ R , where K � 0 is a constant which is
independent to ε . Recall that J is of the form

J =

⎛
⎜⎜⎜⎝

J1 O
J2

. . .
O JN

⎞
⎟⎟⎟⎠ ,

where Jk is the Jordan block of the form (2.1) for each 1 � k � N . Let f = (f1, f2, · · · , fN) ,
here fk ∈C1(R,Xnk) for some nk ∈N with ∑N

k=1 nk = n . Then supt∈R ‖f′k(t)−Jkfk(t)‖�
ε for every 1 � k � N . If we find gk ∈ C1(R,Xnk) such that g′k(t) = Jkgk(t) and
‖fk(t)− gk(t)‖ � Kε for all t ∈ R , then g = (g1,g2, · · · ,gN) ∈ C1(R,Xn) satisfies
g′(t) = Jg(t) and ‖f(t)− g(t)‖ � Kε for all t ∈ R . Thus, it is enough to consider
the case when J is a Jordan block. By the same reasoning, we may assume that J is a
Jordan cell. Consequently, we may assume that J is of the form

J =

⎛
⎜⎜⎜⎜⎝

λ 1 O

λ
. . .
. . . 1

O λ

⎞
⎟⎟⎟⎟⎠ .
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If we write f(t) = ( f1(t), · · · , fn(t)) , then supt∈R ‖f′(t)− Jf(t)‖ � ε implies that

sup
t∈R

‖ f ′n(t)−λ fn(t)‖ � ε and sup
t∈R

‖ f ′j(t)−λ f j(t)− f j+1(t)‖ � ε

for each 1 � j � n−1. Set

h j(t) =

{
f ′n(t)−λ fn(t) j = n

f ′j(t)−λ f j(t)− f j+1(t) 1 � j � n−1

for t ∈ R , and then supt∈R ‖h j(t)‖ � ε for all 1 � j � n . Then

∥∥∥∥
∫ s

t
h j(τ)e−λ τ dτ

∥∥∥∥�
∣∣∣∣
∫ s

t
‖h j(τ)‖e−Reλ τ dτ

∣∣∣∣� ε|e−Reλ s− e−Reλ t |
|Reλ | (2.2)

for all s, t ∈ R . We have two possible cases to consider for λ . First suppose that
Reλ > 0. Then, by (2.2),

∫ ∞
0 h j(τ)e−λ τ dτ ∈ X exists for all 1 � j � n . Set

un(t) =
∫ ∞

t
hn(τ)e−λ τ dτ

for each t ∈ R . Letting s → ∞ in (2.2), we get

‖un(t)‖ � εe−Reλ t

Reλ
(∀t ∈ R). (2.3)

Note, by the definition of hn , that

( fn(t)e−λ t)′ = f ′n(t)e
−λ t −λ fn(t)e−λ t = hn(t)e−λ t .

It follows that

fn(t)e−λ t = fn(0)+
∫ t

0
hn(τ)e−λ τ dτ

for all t ∈ R . Define gn ∈C1(R,X) by

gn(t) = eλ t
(

fn(0)+
∫ ∞

0
hn(τ)e−λ τ dτ

)

for each t ∈ R . Then g′n(t) = λgn(t) and

fn(t) = gn(t)− eλ t
∫ ∞

t
hn(τ)e−λ τ dτ = gn(t)− eλ tun(t)

for all t ∈ R . According to (2.3),

‖ fn(t)−gn(t)‖ = ‖eλ tun(t)‖ � eReλ t‖un(t)‖

� eReλ t εe−Reλ t

Reλ
=

ε
Reλ
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for all t ∈ R .
Next, we will show that there exists gn−1 ∈C1(R,X) such that

g′n−1(t) = λgn−1(t)+gn(t) and ‖ fn−1(t)−gn−1(t)‖ � ε
2

∑
k=1

1
(Reλ )k

for all t ∈ R . By the definition of hn−1 ,

( fn−1(t)e−λ t)′ = f ′n−1(t)e
−λ t −λ fn−1(t)e−λ t = (hn−1(t)+ fn(t))e−λ t ,

and therefore,

fn−1(t)e−λ t = fn−1(0)+
∫ t

0
(hn−1(τ)+ fn(τ))e−λ τ dτ.

Since fn(t) = gn(t)− eλ tun(t) ,

fn−1(t)e−λ t = fn−1(0)+
∫ t

0
(hn−1(τ)e−λ τ −un(τ))dτ +

∫ t

0
gn(τ)e−λ τ dτ (2.4)

for all t ∈ R . By (2.2),
∫ ∞
0 hn−1(τ)e−λ τ dτ is well-defined and∥∥∥∥
∫ ∞

t
hn−1(τ)e−λ τ dτ

∥∥∥∥� εe−Reλ t

Reλ
(2.5)

for all t ∈ R . According to (2.3),∥∥∥∥
∫ s

t
un(τ)dτ

∥∥∥∥� ε
Reλ

∣∣∣∣
∫ s

t
e−Reλ τ dτ

∣∣∣∣= ε|e−Reλ s− e−Reλ t |
(Reλ )2

for all s, t ∈ R , which shows the existence of
∫ ∞
0 un(τ)dτ ∈ X . Furthermore,∥∥∥∥

∫ ∞

t
un(τ)dτ

∥∥∥∥� εe−Reλ t

(Reλ )2 (∀t ∈ R). (2.6)

It follows from (2.5) and (2.6) that∥∥∥∥
∫ ∞

t
(hn−1(τ)e−λ τ −un(τ))dτ

∥∥∥∥ � εe−Reλ t

Reλ
+

εe−Reλ t

(Reλ )2 (2.7)

for all t ∈ R . Define gn−1 ∈C1(R,X) by

gn−1(t) = eλ t
(

fn−1(0)+
∫ ∞

0
(hn−1(τ)e−λ τ −un(τ))dτ +

∫ t

0
gn(τ)e−λ τ dτ

)

for all t ∈ R . Then we see that g′n−1(t) = λgn−1(t)+gn(t) and, by (2.4),

fn−1(t) = gn−1(t)− eλ t
∫ ∞

t
(hn−1(τ)e−λ τ −un(τ))dτ
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for all t ∈ R . From (2.7)

‖ fn−1(t)−gn−1(t)‖ =
∥∥∥∥eλ t

∫ ∞

t
(hn−1(τ)e−λ τ −un(τ))dτ

∥∥∥∥
� eReλ t

∥∥∥∥
∫ ∞

t
(hn−1(τ)e−λ τ −un(τ))dτ

∥∥∥∥
� eReλ t

(
εe−Reλ t

Reλ
+

εe−Reλ t

(Reλ )2

)
= ε

2

∑
k=1

1
(Reλ )k

for all t ∈ R .
By using induction, we will prove that for each 1 � j � n− 2 there exits g j ∈

C1(R,X) such that

g′j(t) = λg j(t)+g j+1(t) and ‖ f j(t)−g j(t)‖ � ε
n− j+1

∑
k=1

1
(Reλ )k

(2.8)

for all t ∈ R . Let 2 � j � n−1 and suppose that there exists g j ∈C1(R,X) satisfying

(2.8). Set v j(t) = f j(t)− g j(t) for each t ∈ R and δ j = ε ∑n− j+1
k=1 (Reλ )−k . Then

supt∈R ‖v j(t)‖� δ j . By the definition of h j−1 , ( f j−1(t)e−λ t)′ = (h j−1(t)+ f j(t))e−λ t ,
and thus

f j−1(t)e−λ t = f j−1(0)+
∫ t

0
(h j−1(τ)+ f j(τ))e−λ τ dτ

for all t ∈ R . Since f j(t) = v j(t)+g j(t) ,

f j−1(t)e−λ t = f j−1(0)+
∫ t

0
(h j−1(τ)+ v j(τ))e−λ τ dτ +

∫ t

0
g j(τ)e−λ τ dτ (2.9)

for all t ∈ R . By (2.2),
∫ ∞
0 h j−1(τ)e−λ τ dτ exists and∥∥∥∥
∫ ∞

t
h j−1(τ)e−λ τ dτ

∥∥∥∥� εe−Reλ t

Reλ
(2.10)

for all t ∈ R . Since supt∈R ‖v j(t)‖ � δ j ,∥∥∥∥
∫ s

t
v j(τ)e−λ τ dτ

∥∥∥∥� δ j

∣∣∣∣
∫ s

t
e−Reλ τ dτ

∣∣∣∣= δ j|e−Reλ s− e−Reλ t |
Reλ

for all s, t ∈ R . Thus
∫ ∞
0 v j(τ)e−λ τ dτ ∈ X exists and∥∥∥∥
∫ ∞

t
v j(τ)e−λ τ dτ

∥∥∥∥� δ je−Reλ t

Reλ
(∀t ∈ R). (2.11)

According to (2.10) and (2.11),∥∥∥∥
∫ ∞

t
(h j−1(τ)+ v j(τ))e−λ τ dτ

∥∥∥∥� εe−Reλ t

Reλ
+

δ je−Reλ t

Reλ

= (ε + δ j)
e−Reλ t

Reλ
= ε

(
1+

n− j+1

∑
k=1

(Reλ )−k)

)
e−Reλ t

Reλ
= ε

n− j+2

∑
k=1

e−Reλ t

(Reλ )k (2.12)
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for all t ∈ R . Define g j−1 ∈C1(R,X) by

g j−1(t) = eλ t
(

f j−1(0)+
∫ ∞

0
(h j−1(τ)+ v j(τ))e−λ τ dτ +

∫ t

0
g j(τ)e−λ τ dτ

)

for each t ∈ R . Then we see that g′j−1(t) = λg j−1(t)+g j(t) and, by (2.9),

f j−1(t) = g j−1(t)− eλ t
∫ ∞

t
(h j−1(τ)+ v j(τ))e−λ t dτ

for all t ∈ R . From (2.12)

‖ f j−1(t)−g j−1(t)‖ =
∥∥∥∥eλ t

∫ ∞

t
(h j−1(τ)+ v j(τ))e−λ t dτ

∥∥∥∥
= eReλ t

∥∥∥∥
∫ ∞

t
(h j−1(τ)+ v j(τ))e−λ t dτ

∥∥∥∥
� eReλ tε

n− j+2

∑
k=1

e−Reλ t

(Reλ )k
= ε

n− j+2

∑
k=1

1
(Reλ )k

for all t ∈ R . By induction, we obtain that, for each 1 � j � n− 1, there exists
g j ∈ C1(X ,R) such that g′j(t) = λg j(t) + g j+1(t) and ‖ f j(t)− g j(t)‖ � δ j for all
t ∈ R . Therefore, g = (g1,g2, · · · ,gn) ∈ C1(R,Xn) satisfies that g′(t) = Jg(t) and
‖f(t)−g(t)‖� ε ∑n

k=1(Reλ )−k for all t ∈ R , as claimed.
In the second case, Reλ < 0. Define u ∈ C1(R,Xn) by u(t) = f(−t) for t ∈

R . Then ‖u′(t) + Ju(t)‖ = ‖−f′(−t) + Jf(−t)‖ � ε for all t ∈ R . Moreover, the
eigenvalue of −J is −λ , and thus Re(−λ ) > 0. Thus, y′(t) = −Jy(t) has the Hyers-
Ulam stability, and therefore there exists v ∈C1(R,Xn) such that v′(t) = −Jv(t) and
‖u(t)−v(t)‖ � Mε for all t ∈ R , where M = ∑n

k=1(−Reλ )−k . If we set g(t) = v(−t)
for t ∈ R , then we obtain that g ∈C1(R,Xn) , g′(t) = −v′(−t) = Jv(−t) = Jg(t) and
‖f(t)−g(t)‖= ‖u(−t)−v(−t)‖� Mε for all t ∈ R .

From the above, we proved that if Reλ �= 0, then there exists g ∈C1(R,Xn) such
that g′(t) = Jg(t) and ‖f(t)−g(t)‖� ε ∑n

k=1 |Reλ |−k for all t ∈R . Thus, y′(t) = Jy(t)
has the Hyers-Ulam stability. By Lemma 2.2, we conclude that y′(t) = Ay(t) has the
Hyers-Ulam stability. �

Let a0,a1, · · · ,an−1 ∈C and Cn(R,X) the set of all n -times strongly differentiable
mappings whose n -th derivative is continuous. Define the operator P : Cn(R,X) →
C(R,X) by

P( f )(t) = f (n)(t)+an−1 f (n−1)(t)+ · · ·+a1 f ′(t)+a0 f (t)

for f ∈ Cn(R,X) and t ∈ R . We say that the operator P has the Hyers-Ulam sta-
bility if there exists a constant K � 0 with the following property: for each ε � 0
and f ∈ Cn(R,X) with supt∈R ‖P( f )(t)‖ � ε there exists g ∈ Cn(R,X) such that
P(g)(t) = 0 and ‖ f (t)− g(t)‖ � Kε for all t ∈ R . The n -th order linear differ-
ential equation y(n)(t)+ an−1y(n−1)(t)+ · · ·+ a1y′(t)+ a0y(t) = 0 is said to have the
Hyers-Ulam stability if the operator P has the Hyers-Ulam stability. As a Corollary
to Theorem 2.3, we have the following, which was proven in [12, Theorem 1.3].
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COROLLARY 2.4. Let n ∈ N and a0,a1, · · · ,an−1 ∈ C , where N is the set of all
natural numbers. Then the following conditions are equivalent.

(i) The differential equation y(n)(t)+an−1y(n−1)(t)+ · · ·+a1y′(t)+a0y(t) = 0 has
the Hyers-Ulam stability.

(ii) Reλ �= 0 for each λ ∈ C with λ n +an−1λ n−1 + · · ·+a1λ +a0 = 0 .

Proof. Let f ∈Cn(R,X) . Set f(t) = ( f (n−1)(t), · · · , f ′(t), f (t)) ∈ Xn for each t ∈
R and

A =

⎛
⎜⎜⎜⎝

−an−1 · · · −a1 −a0

1 O 0
. . .

...
O 1 0

⎞
⎟⎟⎟⎠ .

Then ‖P( f )(t)‖ = ‖f′(t)− Af(t)‖ for all t ∈ R . Moreover, P(g)(t) = 0 for all
t ∈ R if and only if g′(t) = Ag(t) for all t ∈ R , where g ∈ Cn(R,X) and g(t) =
(g(n−1)(t), · · · ,g′(t),g(t)) ∈ Xn . Consequently, the operator P has the Hyers-Ulam
stability if and only if y′(t) = Ay(t) has the Hyers-Ulam stability. According to The-
orem 2.3, y′(t) = Ay(t) has the Hyers-Ulam stability if and only if Reλ �= 0 for each
eigenvalue λ of A . Finally, we note that λ ∈ C is an eigenvalue of A if and only if
λ n +an−1λ n−1 + · · ·+a1λ +a0 = 0. In fact, the characteristic polynomial |zE −A| of
A is zn +an−1zn−1 + · · ·+a1z+a0 since

|zE −A|=

⎛
⎜⎜⎜⎝

z+an−1 an−2 · · · a0

−1 z O
. . .

. . .
O −1 z

⎞
⎟⎟⎟⎠

= (z+an−1)

∣∣∣∣∣∣∣∣∣

z O
−1 z

. . .
. . .

O −1 z

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣

an−2 · · · a1 a0

−1 z O
. . .

. . .
O −1 z

∣∣∣∣∣∣∣∣∣
= (z+an−1)zn−1 +an−2z

n−2 + · · ·+a1z+a0,

where we have used twice the induction. The proof is complete. �
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