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COMMUTATORS FOR MULTIPLIERS ON BESOV DUNKL SPACES

SALLAM HASSANI AND MOHAMED SIFI

(Communicated by J. Pečarić)

Abstract. In this paper, we first study the boundedness properties of the Dunkl multiplier of the
interval [a,b] associated with the reflection group Z2 . Next, we prove that the commutator
[T,Tμ ] is bounded on the Besov Dunkl spaces BDσ ,q

p , if T is a bounded linear operator on

BD
σ j ,q j
p ( j = 0,1 and 0 < σ1 < σ < σ0) and Tμ is a dyadic admissible multiplier. These

results are obtained for the multi-dimensional Dunkl transform associated to the reflection group
Z

d
2 .

1. Introduction

Dunkl operators provide an essential tool to extend Fourier analysis on Euclidean
spaces. Since their invention in 1989, these operators have largely contributed in the
setting of root systems and associated reflection groups, to the development of harmonic
analysis. One of the most important issues related to the harmonic analysis is the prob-
lem of multipliers and commutators. In [15], Rochberg and Weiss developed the study
of the commutators of bounded linear operators and certain operators, generally un-
bounded and nonlinear, associated with the complex interpolation method, with very
interesting application to estimates for commutators of singular integrals with point-
wise multipliers. A similar construction was done in [12] by Jawerth, Rochberg and
Weiss for the real method, and further results and applications to classical analysis have
been obtained in [5], [7] and [8], among others.

Let m be a bounded measurable function, the Dunkl multiplier Pm associated with
m is defined, for a suitable function f , by

Pm f (x) = Fκ(mFκ f )(−x),

where Fκ denotes the Dunkl transform (for more details see the next section). This
operator reduces to the well-known Fourier multiplier in the case where the multiplicity
function κ is equal to 0.

Several results in classical Fourier multipliers have been extended to the setting
of Dunkl transform. In the particular case, when m = χ[−1,1] , where χA denotes the
characteristic function of the set A , Betancor, Ciaurri and Varona give a condition en-
suring the boundedness of P[−1,1] (cf. [4]). The same conclusion is obtained by Nowak
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and Stempak in [13] via the Dunkl transplantation operator. More generally, they have
successfully linked Fourier multipliers to the Dunkl one. The first part of this paper
is devoted to the study of Lp boundedness of the Dunkl multiplier associated with all
interval [a,b] .

In the second part of the paper, we prove a commutator theorem. To be more
precise, we study the boundedness of the commutator [T,Tμ ] = TTμ −TμT , where T is
any bounded linear operator on Besov Dunkl spaces BD

σ j ,q j
p ( j = 0,1 and 0< σ1 < σ0)

and Tμ is an admissible dyadic multiplier.
The description of Besov Dunkl classes as approximation spaces, the calculation

of almost optimal approximation elements in combination with real interpolation and
the cancelation properties of the commutators will be the main tools used in the proof
of the commutator theorem.

2. Preliminaries

This section is devoted to the preliminaries and background. We recall some nota-
tions and results in Dunkl theory (cf. [9], [10], [11], [17], [18], [20]).

Let e1, ...,ed be the standard basis of Rd . We denote by σ j (for each j from 1 to
d ) the reflection with respect to the hyperplane perpendicular to e j , that is to say for
every x = (x1, ...,xd) ∈ Rd

σ j(x) = x−2
〈x,e j〉
‖e j‖2 e j,

of course 〈., .〉 is the usual inner product on R
d ×R

d and ‖.‖ is the associated norm.
Let G be the finite reflection group generated by {σ j : j = 1, ...,d} , so G is isomorphic
to Zd

2 .
Let κ1, ...,κd be nonnegative real numbers. Associated with these objects are the

Dunkl operators Dj, j = 1, ...,d which have been introduced in [10] by Dunkl. They
are given for x ∈ Rd , by

Dj f (x j) = ∂ j f (x j)+ κ j
f (x j)− f (−x j)

x j
,

where ∂ j denotes the usual partial derivative.
The Dunkl operators are antisymmetric with respect to the measure h2

κ(x)dx with
density

h2
κ(x) =

d

∏
j=1

|x j|2κ j , κ = (κ1,κ2, ...,κd). (1)

Let us note that hκ is homogeneous of degree γκ =
d

∑
j=1

κ j .

For y ∈ C and j ∈ {1, ...,d} , the simultaneous eigenfunction problem

Dj f (x) = y f (x), x ∈ R,



COMMUTATORS FOR MULTIPLIERS 731

has a unique solution f (x) = Eκ j (x,y) such that Eκ j(λ ,0) = 1, which is given in terms
of Bessel functions (cf. [16]).

Specifically

Eκ j(x,y) = jκ j− 1
2
(ixy)+

xy
2κ j +1

jκ j+ 1
2
(ixy),

where

jα (z) = 2αΓ(α +1)
Jα(z)
zα = Γ(α +1) ∑

n�0
(−1)n (z/2)2n

n!Γ(n+ α +1)
,

are the normalized Bessel functions (cf. [19]).
For x ∈ Rd and y ∈ Cd , let

Eκ(x,y) =
d

∏
j=1

Eκ j (x j,y j), (2)

then the map (x,y) �→ Eκ(x,y) can be extended to a holomorphic function on Cd ×Cd

and the following properties hold:
(i) Eκ(x,y) = Eκ(y,x), x,y ∈ Cd .
(ii) |Eκ(ix,y)| � 1, x,y ∈ Rd .
(iii) Eκ(λx,y) = Eκ(x,λy), x,y ∈ Cd ,λ ∈ C.
The Dunkl kernel Eκ is of particular interest as it gives rise to an integral trans-

form which is taken with respect to the measure h2
κ(x)dx . More precisely, for f ∈

L1(Rd ,h2
κ) , the Dunkl transform of f , denoted by Fκ f , is defined by

Fκ f (x) = cκ

∫
Rd

f (y)Eκ(x,−iy)h2
κ(y)dy, x ∈ R

d ,

where cκ is the Mehta-type constant

c−1
κ =

∫
Rd

e−
‖x‖2

2 h2
κ(x)dx =

d

∏
j=1

c−1
κ j

.

Let us point out that the Dunkl transform coincides with the Euclidean Fourier trans-
form when κ1 = ... = κd = 0 and that it is more or less a Hankel transform when d = 1.

We list some known properties of the Dunkl transform:
(i) The Dunkl transform is a topological automorphism of the Schwartz space

S (Rd) .
(ii) (Plancherel Theorem) The Dunkl transform extends to an isometric automor-

phism of L2(Rd ,h2
κ) .

(iii) (Inversion formula) For every f ∈ S (Rd) , and more generally for every f ∈
L1(Rd ,h2

κ) such that Fκ f ∈ L1(Rd ,h2
κ) , we have

f (x) = F 2
κ f (−x), x ∈ R

d .
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3. Dunkl multipliers

In order to study the boundedness of the Dunkl multiplier P[a,b] we need the fol-
lowing lemma, where Lp(Rd ,h2

κ) , p ∈ [1,+∞] , denotes the space of measurable func-
tions on Rd such that

‖ f‖p,κ =
(∫

Rd
| f (y)|ph2

κ(y)dy
) 1

p
< +∞, if 1 � p < +∞,

‖ f‖∞,κ = ess sup
y∈Rd

| f (y)| < +∞, otherwise,

and we use the shorter notation ‖.‖p,κ instead of ‖.‖Lp(Rd ,h2
κ ) .

LEMMA 1. Let κ > 0 , a < b and f ∈ L2(R,h2
κ)∩Lp(R,h2

κ) . Then

P[a,b] f (x) = c2
κ

∫
R

Kκ(x,y) f (y)h2
κ (y)dy,

where

Kκ(x,y) = |b|2κ+1sgn(b)
∫ 1

0
Eκ(ibr,x)Eκ(−ibr,y)h2

κ(r)dr

− |a|2κ+1sgn(a)
∫ 1

0
Eκ(iar,x)Eκ(−iar,y)h2

κ(r)dr. (3)

Proof. By the definition of the Dunkl multiplier, we have

P[a,b] f (x) = Fκ

(
χ[a,b](r)Fκ f (r)

)
(−x)

= cκ

∫ b

a
Eκ(ir,x)Fκ f (r)h2

κ (r)dr

= c2
κ

∫ b

a
Eκ(ir,x)

(∫
R

Eκ(−ir,y) f (y)h2
κ (y)dy

)
h2

κ(r)dr

= c2
κ

∫
R

(∫ b

a
Eκ(ir,x)Eκ(−ir,y)h2

κ(r)dr
)

f (y)h2
κ (y)dy,

where in the last step we have used Fubini’s theorem. Then, the multiplier P[a,b] can be
written as :

P[a,b] f (x) = c2
κ

∫
R

Kκ(x,y) f (y)h2
κ (y)dy

with kernel

Kκ(x,y) =
∫ b

a
Eκ(ir,x)Eκ (−ir,y)h2

κ(r)dr. (4)

Let us decompose (4) as a difference of two terms K 1
κ (x,y)−K 2

κ (x,y) where

K 1
κ (x,y) =

∫ b

0
Eκ(ir,x)Eκ (−ir,y)h2

κ(r)dr (5)
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and

K 2
κ (x,y) =

∫ a

0
Eκ(ir,x)Eκ (−ir,y)h2

κ(r)dr. (6)

After performing a change of variables in (5) and (6), we obtain (3). Thus the lemma is
proved. �

Our first result will be the following one.

THEOREM 1. Let κ > 0 and a < b. If 1+2κ
1+κ < p < 1+2κ

κ , then

‖P[a,b] f‖p,κ � C‖ f‖p,κ , f ∈ Lp(R,h2
κ)

where C is a positive constant.

Proof. Take f ∈ L2(R,h2
κ)∩Lp(R,h2

κ) , by using Lemma 1 and Fubini’s theorem,
we have

P[a,b] f (x) = c2
κ

(
|b|2κ+1sgn(b)

∫ 1

0
Eκ(ibr,x)

∫
R

Eκ(−ibr,y) f (y)h2
κ(y)dyh2

κ(r)dr

− |a|2κ+1sgn(a)
∫ 1

0
Eκ(iar,x)

∫
R

Eκ(−iar,y) f (y)h2
κ(y)dyh2

κ(r)dr
)

= cκ |b|2κ+1sgn(b)
∫ 1

0
Eκ(ibr,x)Fκ f (br)h2

κ(r)dr

− cκ |a|2κ+1sgn(a)
∫ 1

0
Eκ(iar,x)Fκ f (ar)h2

κ(r)dr.

After performing a change of variables, we obtain

Fκ f (ξ r) = |ξ |−(2κ+1)Fκ fξ (r), ξ = a,b,

where fξ (r) = f ( r
ξ ). Then we can reformulate P[a,b] as follows

P[a,b] f (x) = cκsgn(b)
∫ 1

0
Eκ(ibr,x)Fκ fb(r)h2

κ(r)dr

− cκsgn(a)
∫ 1

0
Eκ(iar,x)Fκ fa(r)h2

κ(r)dr

= sgn(b)Fκ

(
χ[0,1](r)Fκ fb(r)

)
(−bx)

− sgn(a)Fκ

(
χ[0,1](r)Fκ fa(r)

)
(−ax)

= sgn(b)(P[0,1] fb)(bx)− sgn(a)(P[0,1] fa)(ax). (7)

Using that, for 1 < p < ∞ and α ∈R , the condition −1 < α < p−1 is sufficient to en-
sure the boundedness of the Fourier multiplier associated with χ[0,1] from Lp(R, |x|αdx)
into itself. Choosing α = 2κ(1− p

2 ) and applying Corollary 3.3 and Proposition 3.4 in
[13], then, for 1+2κ

1+κ < p < 1+2κ
κ the Dunkl multiplier P[0,1] is bounded from Lp(R,h2

κ)
into itself.
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As L2(R,h2
κ)∩Lp(R,h2

κ) is dense in Lp(R,h2
κ) , then P[a,b] can be extended to a

bounded operator from Lp(R,h2
κ) into itself and the equality (7) is still valid for all

f ∈ Lp(R,h2
κ) .

Taking Lp norm, we obtain

‖P[a,b] f‖p,κ � |b| −2κ−1
p ‖P[0,1] fb‖p,κ + |a| −2κ−1

p ‖P[0,1] fa‖p,κ .

Hence, we have

‖P[a,b] f‖p,κ � C
(|b| −2κ−1

p ‖ fb‖p,κ + |a| −2κ−1
p ‖ fa‖p,κ

)
.

Since,

‖ fξ ‖p,κ = |ξ | 2κ+1
p ‖ f‖p,κ , ξ = a,b.

We deduce that
‖P[a,b] f‖p,κ � C‖ f‖p,κ .

Thus, we get the proof of the theorem. �

NOTATIONS. For κ = (κ1,κ2, ...,κd) ∈ Rd
+ , we denote by

p1(κ) =
1+2max(κ1, ...,κd)
1+max(κ1, ...,κd)

; p2(κ) =
1+2min(κ1, ...,κd)

min(κ1, ...,κd)
.

THEOREM 2. Let Qa,b = [a1,b1]× [a2,b2]× ...× [ad ,bd ] be such that a j < b j ,
j = 1, ...,d . Then, if p1(κ) < p < p2(κ), we have

‖PQa,b f‖p,κ � C‖ f‖p,κ , f ∈ Lp(Rd ,h2
κ),

where C is a positive constant.

REMARK 1. We note that Betancor, Ciaurri and Varona [4], obtained the same
result in the case when d = 1 and [a,b] = [−1,1] . Next, Nowak and Stempak [13], have
successfully linked Fourier multipliers to the Dunkl ones, via the Dunkl transplantation
operator. However, this approach is heavily connected to the weighted estimates and
can be applied in the case when d = 1 and [a,b] = [−r,r] .

Proof. Using Fubini’s theorem, the Dunkl multiplier PQa,b f can be written as:

PQa,b f (x) = c2
κ

∫
Rd

Kκ(x,y) f (y)h2
κ (y)dy,

where

Kκ(x,y) =
∫

Qa,b

Eκ(−iy,r)Eκ (ix,r)h2
κ(r)dr.
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Using (1) and (2), it is easy to show that

PQa,b = P(1)
[a1,b1]

◦P(2)
[a2,b2]

◦ ...◦P(d)
[ad,bd ],

where P( j)
[a j ,b j ]

,1 � j � d, denotes the Dunkl multiplier applied to the j− th coordinate.

According to Theorem 1, if
1+2κ j
1+κ j

< p <
1+2κ j

κ j
, then the mapping f → P( j)

[a j ,b j ]
f

can be extended to a bounded operator from Lp(R,h2
κ) into itself. This concludes the

proof of the theorem. �

4. The commutator theorem

In this section, we study the commutators of bounded linear operator in Besov
Dunkl spaces and an admissible dyadic multiplier, associated with the real interpolation
method. Before recalling some results about real interpolation theory (cf. [2], [3]) and
Besov Dunkl spaces (cf. [1]), we specify few notations. If A and B are two Banach
spaces, we write T : A → B to mean that T is a bounded linear operator between A
and B , while by P 
 Q we mean that P � cQ and Q � cP for some constant c > 0
independent of the variables involved.

Let A = (A0,A1) be a couple of Banach spaces and for any x ∈ Σ(A) = A0 +A1

and t > 0, let us denote

K(t,x) = K(t,x;A) = inf{‖x0‖A0 + t‖x1‖A1; x = x0 + x1},

the Peetre’s K-functional.
If 0 < θ < 1 and 1 � q � ∞, we denote Aθ ,q the corresponding interpolation

space defined by the real K-method, endowed with the norm

‖x‖Aθ ,q
= ‖t−θ K(t,x)‖Lq( dt

t ).

If A , B are two Banach couples, we denote by L (A;B) the set all linear operator
T : Σ(A) → Σ(B) such that

(i) T (Aj) ⊂ Bj ( j = 0,1).
(ii) ‖T‖ = max(‖T‖A0,B0 ;‖T‖A1,B1) < ∞ .

If T ∈ L (A;B) , then T : Aθ ,q → Bθ ,q.
If

S f (t) =
∫ t

0
f (s)

ds
s

+ t
∫ ∞

t
f (s)

ds
s2

is the Calderòn operator, we set

σ(A) = {x ∈ Σ(A); ‖x‖σ(A) = S(K(.,x))(1) < ∞}.

Observe that σ(A) is a linear subspace of Σ(A) which contain all real interpolation
space Aθ ,q and moreover ‖Tx‖σ(B) � ‖T‖ ‖x‖σ(A) , (T ∈ L (A;B)).
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Let W be a Hausdorff topological linear space and A a Banach subspace of W ,
with continuous embedding A ↪→W . Let us also consider a fixed approximation family
{V(r)}r>0 (cf. [5]), which is a family of nonempty subsets of W , with the following
properties V (s) ⊂V (r) when s < r , −V(r) = V (r) and V (s)+V (r) ⊂V (s+ r) .

It is clear that 0 ∈
⋂
r>0

V (r) and that V =
⋃
r>0

V (r) is an abelian group that will be

endowed with the semi-norm

‖x‖V = inf{r > 0;x ∈V (r)}.

Then, as in ([14]), we can define the approximation spaces Et,q of all f ∈V +A by the
condition

‖ f‖Et,q = ‖r1/tE(r, f )‖Lq( dr
r ) < ∞,

with
E(r, f ) = inf

g∈V (r)
‖ f −g‖A 
 ‖ f − fr‖A

if fr ∈ V (r) and ‖ f − fr‖A � cE(r, f ) for some constant c > 1 independent of r > 0
and f .

Let σ , p,q be such that 0 < σ < ∞ and 1 � p,q < ∞ . The Besov Dunkl space

BDσ ,q
p

(
or BDσ ,q

p (Rd ,h2
κ)

)
, is the approximation space E1/σ ,q when A = Lp(Rd ,h2

κ)

and V (r) = {g ∈ S ′(Rd), suppFκg ⊂ [−r,r]d} , where Fκg is the Dunkl transform
of the distribution g . Hence,

BDσ ,q
p =

{
f ∈ Lp(Rd ,h2

κ);‖ f‖BDσ ,q
p

=
(∫ ∞

0
[rσ E(r, f )]q

dr
r

) 1
q

< ∞
}

.

In order to give the proof of a commutator theorem, we need two lemmas. The
first one is just a description of real interpolation for couples of Besov Dunkl spaces
which has been recently proved by Abdelkefi, Anker, Sassi and Sifi (cf. [1]).

LEMMA 2. Let 0 < σ0, σ̃0 < ∞ , 1 � p,q,q0,q1 < ∞ , 0 < θ < 1 and σ = (1−
θ )σ0 + θσ̃0 . Then

(BDσ0,q0
p ,BDσ̃0,q1

p )θ ,q = BDσ ,q
p .

The second lemma give us a quasi-optimal decomposition for the K functional for
a couple of Besov Dunkl spaces. More precisely, we have

LEMMA 3. Let 0 < σ0, σ̃0 < ∞ , 1 � q0, q̃0 < ∞ , p1(κ) < p < p2(κ) and assume
that ρ = σ0− σ̃0 > 0 . Then

K(tρ , f ;BDσ0,q0
p ,BDσ̃0,q̃0

p ) 
 ‖Pt f‖BD
σ0,q0
p

+ tρ‖ f −Pt f‖BD
σ̃0,q̃0
p

,

where Pt f is the Dunkl multiplier of [−t,t]d .
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Proof. We proceed in the same manner as in [6]. Let gt ∈ S
′
(Rd) , satisfying

suppFκgt ⊂ [−t,t]d; and ‖ f −gt‖p,κ � 2E(t, f ).

For p1(κ) < p < p2(κ), we have that

‖ f −Pt f‖p,κ � ‖ f −gt‖p,κ +‖gt −Pt f‖p,κ

= ‖ f −gt‖p,κ +‖Pt(gt − f )‖p,κ

� CE(t, f ).

Hence, we can write thanks to Theorem 4 of [5]

K(tρ , f ;BDσ0,q0
p ,BDσ̃0,q̃0

p ) 
 ‖Pt f‖BD
σ0,q0
p

+ tρ‖ f −Pt f‖BD
σ̃0,q̃0
p

,

and the lemma is therefore proved. �
The following proposition, whose proof follows by combining Theorem 3 and

Corollary 1 of [5], will be useful in order to prove our main result.

PROPOSITION 1. Let {t j} j∈Z ⊂]0,+∞[ be an increasing sequence such that t j �
1 if j < 0 and t j � 1 if j � 0 , t j ↑ +∞ as j ↑ +∞ and t j ↓ 0 as j ↓ −∞ , and let
{μk}k∈Z be any sequence of complex numbers such that

sup
n∈Z

∑
tk∈[2n−1,2n[

|μk+1 − μk| < +∞.

For a given couple of Banach spaces X and for every t j let x = x0(t j)+ x1(t j) be a
decomposition such that

‖x0(t j)‖X0 + t j‖x1(t j)‖X1 � CK(t j,x), (x ∈ σ(X))

where C > 1 is a constant.
Let us define

Tμx =
∞

∑
k=1

μk(x0(tk)− x0(tk−1)).

Then, if Tμ : σ(X)) → Σ(X) , Tμ : σ(Y )) → Σ(Y ) there exists a constant C > 0 such
that

K(t, [T,Tμ ](x)) � C‖T‖S(
K(.,x)

)
for any x ∈ σ(X) and T ∈ L (X ;Y )) .

Let now introduce the dyadic admissible multiplier.

DEFINITION 1. Let {μ j} j�0 be any sequence of complex numbers. A dyadic
multiplier will be a function

μ = {μ j} j�0 =
∞

∑
j=0

μ jχCj
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which is constant on every Cj = Qj \Qj−1 where Qj = [−2 j,2 j] .
A dyadic multiplier is said to be admissible if

sup
j�0

|μ j − μ j−1| < ∞ (μ−1 = 0).

We now state the commutator theorem, whose proof is based on the abstract
method of [12].

THEOREM 3. Let 1 � q,q0,q1, q̃0, q̃1 < ∞ , σ0 > σ̃0 > 0 , σ1 > σ̃1 > 0 such that
σ0 − σ̃0 = σ1 − σ̃1 , σ = (1− θ )σ0 + θσ̃0 , σ̃ = (1− θ )σ1 + θσ̃1 (0 < θ < 1) , and
assume that p1(κ) < p < p2(κ) .

If μ is an admissible dyadic multiplier, then

‖[T,Tμ ]‖
L (BDσ ,q

p ;BDσ̃ ,q
p ) � C‖T‖,

where T is any bounded linear operator between (BDσ0,q0
p ;BDσ̃0,q̃0

p ) and (BDσ1,q1
p ;

BDσ̃1,q̃1
p ) , and

‖T‖ = max
(‖T‖

L (BD
σ0,q0
p ;BD

σ1,q1
p ),‖T‖L (BD

σ̃0,q̃0
p ;BD

σ̃1,q̃1
p )

)
.

Proof. Let μ be a dyadic admissible multiplier, i.e. μ =
∞

∑
k=0

μkχCk , with μ0 = 0

and supk |μk+1− μk| < ∞. We obtain

Tμ f =
∞

∑
k=1

μk(P2k f −P2k−1 f ).

Indeed,
μkFκ(P2k f −P2k−1 f ) = μk(χQk − χQk−1)Fκ f = μkχCkFκ f ,

Now, by denoting

λ0 = μ1 − μ0 = μ1, λ1 = μ2− μ1, ..., λk = μk+1 − μk, ...

we obtain
‖λ‖∞ = sup

k
|λk| = sup

k
|μk+1− μk| < ∞,

since

λ0 = μ1, λ0 + λ1 = μ2, ...,
k

∑
j=0

λ j = μk+1, ...

We are led to

Tμ f =
∞

∑
k=1

(
k−1

∑
j=0

λ j)(P2k f −P2k−1 f ) =
∞

∑
j=0

λ j ∑
k> j

(P2k f −P2k−1 f ),
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that is to say

Tμ f =
∞

∑
j=0

λ j( f −P2 j f ).

Moreover
Tμ : σ(A) → Σ(A), if A = (BDσ0,q0

p ;BDσ̃0,q̃0
p ),

Indeed, by Lemma 3, if ρ = σ0− σ̃0 , then we have

‖Tμ f‖∑(A) � ‖λ‖∞ ∑
j�0

‖ f −P2 j f‖
BD

σ̃0,q̃0
p

� C‖λ‖∞ ∑
j�0

K(2ρ j, f ;A)
2ρ j

� C‖λ‖∞
2ρ

ρ ln2

∫ ∞

1

K(s, f ;A)
s

ds
s

� C‖λ‖∞
2ρ

ρ ln2
‖ f‖σ(A).

Similarly
Tμ : σ(B) → Σ(B), if B = (BDσ1,q1

p ;BDσ̃1,q̃1
p ).

Now, given T ∈L (A;B) and f ∈σ(A) , let ρ = σ0− σ̃0 , and we consider the sequence
tk = 2ρk (k � 0) by Lemma 3, (P2k f , f −P2k f ) is an almost optimal decomposition of
f for the couple (BDσ0,q0

p ;BDσ̃0,q̃0
p ) and we obtain

‖P2k f‖
BD

σ0,q0
p

+ tk‖ f −P2k f‖
BD

σ̃0,q̃0
p

� cK(tk, f ;A).

The Dunkl multiplier can be reformulated as follows

Tμ f =
∞

∑
k=1

μk(x0(tk)− x0(tk−1)),

where
x0(tk) = P2k f .

On the other hand since 2ρ > 1, Remark 3 in [5], yields to

sup
n∈Z

∑
tk∈[2n−1,2n[

|μk+1 − μk| 
 sup
n∈Z

∑
tk∈[2ρ(n−1),2ρn[

|μk+1 − μk|

= sup
k
|μk+1− μk| = c < +∞.

Thanks to Proposition 1, we are led to

K(t, [T,Tμ ] f ;B) � C‖T‖S(K(., f ;A)).
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If in Hardy’s inequalities for averages [2], we have

‖t−θ
∫ t

0
g(s)ds‖Lq( dt

t ) � 1
θ
‖t1−θg(t)‖Lq( dt

t ), (θ > 0)

and

‖t1−θ
∫ ∞

t
g(s)

ds
s
‖Lq( dt

t ) � 1
1−θ

‖t1−θg(t)‖Lq( dt
t ), (θ < 1),

we take g(s) = K(., f ;A)
s , then

‖[T,Tμ ] f‖Bθ ,q
= ‖t−θK(t, [T,Tμ ] f ;B)‖Lq( dt

t )

� C‖t−θS(K(., f ;A))‖Lq( dt
t )

� C‖t−θ
∫ t

0
K(s, f ;A))

ds
s
‖Lq( dt

t )

+ C‖t−θ t
∫ ∞

t

K(s, f ;A))
s

ds
s
‖Lq( dt

t )

� M‖t1−θ K(s, f ;A))
t

‖Lq( dt
t )

= M‖ f‖Aθ ,q
,

where M = C
θ(1−θ) and C = C(ρ ,‖λ‖∞,‖T‖) .

Lemma 2 gives Aθ ,q = BDσ ,q
p and Bθ ,q = BDσ̃ ,q

p . Then the theorem is proved. �
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