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Abstract. The C∗ -valued norm is defined on a Hilbert C∗ -module by its standard inner product.
In this short note, we will prove that |x+ y| � |x|+ |y| holds for all x , y ∈ E which is a Hilbert
A –module if and only if J = 〈E,E〉 , the closed two-sided ideal in A , is a commutative
C∗ -algebra.

1. Introduction

Let A be a C∗ -algebra and let a , b be in A . Set |a| = (a∗a)1/2 , |b| = (b∗b)1/2

and |a+b|= ((a+b)∗(a+b))1/2 . Does the following triangle inequality

|a+b|� |a|+ |b| (1.1)

hold ? R. Harte (cf. [4]) shows that for certain a and b , (1.1) does not hold. But if A
has a unit e , then for every a , b ∈ A and ε > 0, there are unitaries u , v ∈ A such
that |a+b|� u|a|u∗+ v|b|v∗+ εe(cf. [1]).

Recall that a (right) A –module E is called the Hilbert C∗ -module over a C∗ -
algebra A if there is an A –valued mapping (a A –valued “inner product”) 〈·, ·〉 on
E ×E such that

(1) 〈x,αy+ β z〉 = α〈x,y〉+ β 〈x,z〉 , ∀x,y,z ∈ E and ∀α , β ∈ C ,

(2) 〈x,ya〉 = 〈x,y〉a and 〈x,y〉 = 〈y,x〉∗ , ∀x,y ∈ E and ∀a ∈ A ,

(3) 〈x,x〉 � 0, ∀x ∈ E ; if 〈x,x〉 = 0, then x = 0,

and E is completed with respect to the norm ‖x‖ = ‖〈x,x〉‖ 1
2 , ∀x ∈ E . For x ∈ E ,

put |x| = (〈x,x〉)1/2 (cf. [6]). Lj. Arambas̆ić and R. Rajić(cf. [2]) proved that if A
is a C∗ -algebra with a unit e and E is a Hilbert C∗ -module over A , then for every
x , y ∈ E and ε > 0, there are a , b ∈ A satisfying ‖a‖ � 1 and ‖b‖ � 1 such that
|x+ y|� a|x|a∗+b|y|b∗+ εe . Now we consider the following problem: when does

|x+ y|� |x|+ |y| (1.2)
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hold for x, y ∈ E ? B. Kolarec (cf. [5]) proves that if x , y ∈ E and |x| , |y| ∈ Z(A ) ,
then (1.2) holds, where Z(A ) is the center of A .

We say that E has the property of C∗ -valued triangle inequality, denoted as (TIP)
if (1.2) holds for all x, y ∈ E .

In this short note we will prove that E has (TIP) if and only if 〈E,E〉= span{〈x,y〉|
x,y ∈ E} is a commutative C∗ -subalgebra of A . Throughout the paper, A is always
a C∗ -algebra, Asa = {a ∈ A |a∗ = a} and A+ = {a ∈ A |a � 0} .

2. The triangle inequality on a C∗ -algebra

Given a C∗ -algebra A , A
′′

is the enveloping Von Neumann algebra of A . For
convenience, we assume that A is the C∗ -subalgebra of B(H) for certain complex
Hilbert space H such that {aξ |a ∈ A , ξ ∈ H} is dense in H , where B(H) is the C∗ -
algebra consisting of all bounded linear operators from H to H . Then A is strongly
dense in A ′′ (cf. [7, Lemma 4.1.4]). For T ∈ B(H) , let Ran(T ) (resp. KerT ) denote
the range (resp. null space) of T .

We say that the net {Aλ}λ∈Λ ⊆ B(H) converges ∗–strongly to an operator A ∈
B(H) , if {Aλ}λ∈Λ converges strongly to A and {A∗

λ}λ∈Λ converges strongly to A∗ .
Recall that a continuous function f : R → C is called to be strongly continuous if

for every Hilbert space H and each net {Aλ}λ∈Λ ⊆ B(H)sa converging strongly to an
operator A ∈ B(H)sa , we have { f (Aλ )}λ∈Λ converges strongly to f (A) .

The following lemma comes from [7, Theorem 4.3.2].

LEMMA 2.1. If f : R → C is a continuous bounded function, then f is strongly
continuous.

LEMMA 2.2. Suppose that |a + b| � |a|+ |b| , ∀a, b ∈ A . Then for any a, b ∈
A ′′ , |a+b|� |a|+ |b| .

Proof. Let a, b ∈ A ′′ . By Kaplansky’s density theorem (cf. [7, Theorem 4.3.3]),
there are four nets {a′

λ}λ∈Λ , {a′′
λ}λ∈Λ , {b′

λ}λ∈Λ and {b′′
λ}λ∈Λ in Asa with ‖a′

λ‖ ,

‖a′′
λ‖ � ‖a‖ and ‖b′

λ‖ , ‖b′′
λ‖ � ‖b‖ , ∀λ ∈ Λ such that a

′
λ converges strongly to

Re(a) ; a
′′
λ converges strongly to Im(a) ; b

′
λ converges strongly to Re(b) and b

′′
λ con-

verges strongly to Im(b) . Set aλ = a
′
λ + ia

′′
λ and bλ = b

′
λ + ib

′′
λ . Thus aλ converges

∗–strongly to a and bλ converges ∗–strongly to b . So {a∗λaλ}λ∈Λ , {b∗λbλ}λ∈Λ
and {(a∗λ + b∗λ )(aλ + bλ )}λ∈Λ are bounded nets of A with s− limλ a∗λ aλ = a∗a ,
s− limλ b∗λ bλ = b∗b and

(a∗ +b∗)(a+b) = s− lim
λ

(a∗λ +b∗λ )(aλ +bλ ).

Set M = 100(‖a‖2 +‖b‖2)1/2 and define a continuous real-valued function f on R by

f (x) =

⎧⎪⎨⎪⎩
0 x � 0√

x 0 < x � M2

M x > M2

.
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Since 0 � ‖a‖, ‖b‖, ‖a+b‖� M and 0 � ‖aλ‖, ‖bλ‖, ‖aλ +bλ‖� M , ∀λ ∈ Λ ,
we have

f (a∗a) = |a|, f (b∗b) = |b|, f (a∗λ aλ ) = |aλ |, f (b∗λ bλ ) = |bλ |, (2.1)

f ((a∗ +b∗)(a+b)) = |a+b|, f ((a∗λ +b∗λ )(aλ +bλ )) = |aλ +bλ |. (2.2)

Note that f (a∗λ aλ ) converges strongly to f (a∗a) , f (b∗λ bλ ) converges strongly to f (b∗b)
and f ((a∗λ + b∗λ )(aλ + bλ )) converges strongly to f ((a∗ + b∗)(a+ b)) by Lemma 2.1
and |aλ +bλ |� |aλ |+ |bλ | , ∀λ ∈Λ . So |a+b|� |a|+ |b| by using (2.1) and (2.2). �

PROPOSITION 2.3. For the C∗ -algebra A , the following statements are equiva-
lent:

(1) A is not commutative;

(2) A ′′ is not commutative;

(3) There exists a C∗ -subalgebra B in A ′′ such that B is ∗–isomorphic to M2(C) .

Proof. The implications (1) ⇔ (2) and (3) ⇒ (2) are obvious. We now prove (2)
⇒ (3).

Since A ′′ is not commutative, it follows from [3, 2.12.21] that A ′′ contains a
non–zero nilpotent element a (i.e., a2 = 0 �= a ). Thus, Ran(a) ⊂ Kera .

Let a = u(a∗a)
1
2 be the polar decomposition of a in A ′′ , where u ∈ A ′′ is a

partial isometry with Ran(u) = Ran(a) and Keru = Kera (cf. [7, Theorem 4.1.10]).
Let B be the C∗ -algebra generated by u and u∗ . Put p1 = u∗u and p2 = uu∗ . From
Ran(a) ⊂ Kera , we have u2 = 0 and hence p1p2 = 0. Note that p1u = 0, up1 = u ,
p2u = u and up2 = 0. So B has the form B = span{u,u∗, p1, p2} .

Define a mapping ψ : B → M2(C) by

ψ(λ1u+ λ2u
∗ + λ3p1 + λ4p2) =

(
λ3 λ2

λ1 λ4

)
.

It is easy to check that ψ is a ∗–isomorphism. �

As a consequence of Proposition 2.3 and Lemma 2.2, we have the following result.

COROLLARY 2.4. If for all a, b ∈ A , |a + b| � |a|+ |b| , then A must be a
commutative C∗ -algebra.

Proof. By Lemma 2.2, |a+b|� |a|+ |b| , ∀a, b ∈ A ′′ . So if A is not commuta-
tive, then A ′′ has a C∗ -subalgebra B which is ∗–isomorphic to M2(C) by Proposition
2.3. It implies that

|a+b|� |a|+ |b|, ∀a, b ∈ M2(C).
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But it is not true. Set a =
(

0 0
1 0

)
and b =

(
0 0
0 1

)
. We may obtain

|a| =
(

1 0
0 0

)
, |b|= b =

(
0 0
0 1

)
, |a+b|=

(√
2

2

√
2

2√
2

2

√
2

2

)

and |a|+ |b|− |a+b|=
(

1−
√

2
2 −

√
2

2

−
√

2
2 1−

√
2

2

)
is not a positive matrix. �

3. The C∗ -valued triangle inequality in a C∗ -module

If E is a Hilbert B–module and A is a C∗ -algebra containing 〈E,E〉 as an ideal,
then there is a way to make E into a Hilbert A –module without changing the “inner
product”. Namely, let {μi} be an approximate unit for 〈E,E〉 . If a ∈ A , e ∈ E , then
the identity

〈eμ ja− eμia,eμ ja− eμia〉 = a∗μ j〈e,e〉μ ja+a∗μi〈e,e〉μia

−a∗μ j〈e,e〉μia−a∗μi〈e,e〉μ ja

shows that {eμia} converges in E . We can define ea = limi eμia , and it is straight-
forward to check that this makes E into a Hilbert A –module. (In fact, it is the only
possible way to make E into a Hilbert A –module with the same “inner product”.) So
every Hilbert A –module is also a Hilbert Ã –module, where Ã is the unitization of
A .

LEMMA 3.1. Let E be a Hilbert A –module with (TIP). Put I = 〈E,E〉 . Then
for each nonzero element e in E , |e|I |e| is a commutative C∗ -algebra.

Proof. For convenience, we assume A has the unit 1 . (Otherwise, E can be
regarded as a Hilbert Ã –module.)

Set xn = e(|e|2 +n−2)−
1
2 (n ∈ N). Then

cn = 〈xn,xn〉 = |e|2(|e|2 +n−2)−1 � 1

and

(1− cn) | e |2 (1− cn) = n−4 | e |2 (| e |2 +n−2)−2 � 1
4
n−2. (3.1)

From (3.1), we get that lim
n→∞

‖(1− cn)|e|‖ = 0. Hence for every a ∈ | e | I | e | ,
lim
n→∞

a∗(1− cn)a = 0. Since
√

x is a continuous mapping on A+ , we have lim
n→∞

|xna| =
|a| , ∀a ∈ | e | I | e | .

Since E has (TIP), it follows that

|xn(a+b)|� |xna|+ |xnb|, ∀a, b ∈ | e | I | e |. (3.2)
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Note that lim
n→∞

|xna| = |a| and lim
n→∞

|xnb| = |b| . So we have |a+b|� |a|+ |b| by letting

n → ∞ in (3.2), ∀a, b ∈ | e | I | e | .
Therefore, |e|I |e| is a commutative C∗ -algebra by Corollary 2.4. �

Let E be a Hilbert A –module and f : A →B be a surjective ∗–homomorphism
of C∗ -algebras. Define a Hilbert submodule Nf of E by Nf = {x ∈ E| f (〈x,x〉) = 0} .
Set E

′
f = E/Nf and let q : E → E

′
f denote the quotient mapping. Then E

′
f is a right

B–module by defining q(x) f (a) = q(xa) , x ∈ E , a ∈ A . With a B–valued “inner
product” defined by

〈q(x),q(y)〉 = f (〈x,y〉), x, y ∈ E,

E
′
f becomes a pre–Hilbert B–module. Let Ef denote the Hilbert B–module obtained

from E
′
f by completion. The next lemma is clear.

LEMMA 3.2. Let E be a Hilbert A –module and let f : A → B be a surjective
∗–homomorphism. If E has (TIP), then Ef must have (TIP).

LEMMA 3.3. Let A be a C∗ -algebra. Then the following conditions are equiva-
lent:

(1) A is commutative.

(2) Every nonzero irreducible representation of A is one–dimensional.

Proof. (1) ⇒ (2). Let (H,π) be a nonzero irreducible representation of A , and
let ξ be a nonzero element of H . So B = π(A ) is a commutative C∗ -subalgebra of
B(H) . B′ , the set of all elements of B(H) that commute with all the elements of B ,
must be CI , where I is the unit of B(H) . But B ⊆ B′ = CI , and Bξ = H which
follows from [7, Theorem 5.1.5]. So we have H = span{ξ} , H is one–dimensional.

(2) ⇒ (1). Let a , b be two nonzero elements of A . Then by [7, Theorem 5.1.12],
there is an irreducible representation (H,π) of A such that ‖ab− ba‖ = ‖π(ab−
ba)‖= ‖π(a)π(b)−π(b)π(a)‖ . If (H,π) is zero, then ab = ba . Otherwise H is one–
dimensional, which means π is a ∗–homomorphism from A to C , and ‖π(a)π(b)−
π(b)π(a)‖= 0. Consequently, ab = ba . �

THEOREM 3.4. Let E be a Hilbert A –module. If E has (TIP), then I = 〈E,E〉
is a commutative C∗ -algebra.

Proof. It is obvious that every Hilbert A –module is also a Hilbert I –module.
So for convenience, we assume A = I .

Let (H,π) be a nonzero irreducible representation of I and put B = π(I ) .
Then we get the Hilbert B–module Eπ . Let q : E → E

′
π denote the quotient map-

ping. By polarization identity, there is x ∈ E such that π(〈x,x〉) �= 0 (i.e. q(x) �= 0).
For convenience, we assume that ‖q(x)‖ = 1. Since D = |x|I |x| is a hereditary C∗ -
subalgebra of I , it follows from [7, Theorem 5.5.2] that the restriction (H,π)D of
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the representation (H,π) to D is an irreducible representation of D . Note that D is a
commutative C∗ -algebra by Lemma 3.1. So K = π(D)H must be one–dimensional by
Lemma 3.3 and 〈q(x),q(x)〉 = π(〈x,x〉) is a rank–one projection of H .

We now show that dimH = 1. From the above, 0 �= π(〈x,x〉)∈B∩K(H) , so B∩
K(H) �= {0} , where K(H) is the C∗ -algebra consisting of all compact linear operators
from H to H . B acts irreducibly on H , so B ⊇ K(H) by [7, Theorem 2.4.9]. If
dimH � 2, we can find a rank–one projection p ∈ K(H) such that p|q(x)| = 0. Then
there is a non-zero nilpotent element v ∈ K(H) ⊆ B such that v∗v = |q(x)| , vv∗ = p .
Set a = q(x) , b = q(x)v∗ ∈ Eπ . By Lemma 3.2,

|q(x)+q(x)v∗| = |a+b|� |a|+ |b|= |q(x)|+ |q(x)v∗|. (3.3)

Since |q(x)|+ |q(x)v∗| = |q(x)|+ p is a projection and

1
2
|q(x)+q(x)v∗|2 =

1
2

(|q(x)|+ p+ v+ v∗)

is also a projection, we have ‖|a + b|‖ =
√

2 > 1 = ‖|a|+ |b|‖, which contradicts to
(3.3). So dimH = 1.

We conclude from above that every nonzero irreducible representation of I is
one–dimensional and consequently, I is a commutative C∗ -algebra by Lemma 3.3. �

LEMMA 3.5. Let E be a Hilbert A –module, and x,y ∈ E . Then there is an
element c ∈ 〈E,E〉′′ with ‖c‖ � 1 such that 〈x,y〉 = |x|c|y| .

Proof. Assume that 〈E,E〉′′ acts on a Hilbert space H . For x , y ∈ E , set

cn = (|x|+n−1)−1〈x,y〉(|y|+n−1)−1(n ∈ N).

Then for any n � 1,

‖cn‖2 = ‖c∗ncn‖
= ‖〈y(|y|+n−1)−1,x(|x|+n−1)−1〉〈x(|x|+n−1)−1,y(|y|+n−1)−1〉‖
� ‖x(|x|+n−1)−1‖2‖y(|y|+n−1)−1‖2

= ‖|x|(|x|+n−1)−1‖2‖|y|(|y|+n−1)−1‖2

� 1,

that is, {cn} is bounded. Thus, it has a weakly limit point in the unit ball of B(H) , say,
c . Since |x| = lim

n→∞
(|x|+ n−1) , |y| = lim

n→∞
(|y|+ n−1) in norm and (|x|+ n−1))cn(|y|+

n−1) = 〈x,y〉 , it follows that |x|c|y| = 〈x,y〉 . �

Finally, we characterize (TIP) in Hilbert C∗ -modules as follows.

THEOREM 3.6. Let E be a Hilbert A –module. Then the following conditions
are equivalent:
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(1) E has (TIP).

(2) I = 〈E,E〉 is a commutative C∗ -algebra.

Proof. (1) ⇒ (2) is Theorem 3.4. We now prove (2) ⇒ (1).
Condition (2) implies that I ′′ is commutative by Proposition 2.3. Thus, by

Lemma 3.5, for x,y ∈ E we get

|x+ y|2 = |x|2 + |y|2 + 〈x,y〉+ 〈y,x〉
= |x|2 + |y|2 + |x|c|y|+ |y|c∗|x|
= |x|2 + |y|2 + c|x||y|+ c∗|x||y|
� |x|2 + |y|2 +2|x||y|
= (|x|+ |y|)2

and consequently, |x+ y|� |x|+ |y| . �
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