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SCHUR POWER CONVEXITY OF THE DARÓCZY MEANS

ZHEN-HANG YANG

(Communicated by L. Losonczi)

Abstract. In this paper, the Schur convexity is generalized to Schur f -convexity, which contains
the Schur geometrical convexity, harmonic convexity and so on. When f : R+ →R is defined by
f (x) = (xm−1)/m if m �= 0 and f (x) = lnx if m = 0 , the necessary and sufficient conditions for
f -convexity (is called Schur m -power convexity) of Daróczy means are given, which improve,
generalize and unify Shi et al.’s results.

1. Introduction

Let a,b ∈ R+ := (0,∞) . The classical Heronian mean of a and b is defined as

H (a,b) =
a+

√
ab+b
3

. (1.1)

In 2001, this mean was generalized by Janous [16] as follows:

Hw (a,b) =

{
a+w

√
ab+b

w+2 , 0 � w < ∞,√
ab, w = ∞.

(1.2)

Recently, Jia and Cao [17] considered the p -order Heronian mean defined by

Hp(a,b) =

(
ap +(ab)p/2 +bp

3

)1/p

. (1.3)

Several variants as well as interesting applications of Heronian mean, generalized
Heronian mean and p -order Heronian mean can be found in the recent papers [20, 17,
42, 43, 36, 11, 37, 38, 39].

Shi et al. [28] generalized (1.3) into the weighted form, that is,

Hp,w(a,b) =

⎧⎪⎨
⎪⎩
(

ap +w(ab)p/2 +bp

w+2

)1/p

, p �= 0,

√
ab, p = 0,

(1.4)
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where w � 0. In an oral communication [3], Daróczy also defined this class of means
as the p -modification (see [31]) of Hw(a,b) for w �−1. Naturally, this class of means
Hp,w(a,b) was called Daróczy means by Burai.

It is easy to prove that Hp,w(a,b) for w � −1 is a mean of positive numbers a
and b indeed. If Hw(ap,bp) > 0 for all a,b > 0, however, then the value range of the
parameter w can be extended to (−2,∞) . Hence in what follows, we call Hp,w(a,b)
defined by (1.4) Daróczy means, where p ∈ R , w > −2. But it should be noted that
Hp,w(a,b) is not a mean of positive numbers a and b when −2 < w < −1.

In 2008, Burai [3] gave necessary as well as sufficient condition for the compara-
bility of Daróczy means for w � −1. Shi et al. [28] discussed the Schur convexity of
Daróczy means for w � 0 and proved the following results.

THEOREM 1. ([28, Theorem 3.1]) For fixed p ∈ R and w � 0 ,
1) Hp,w(a,b) is increasing for (a,b) ∈ R

2
+ ;

2) if (p,w) ∈ {p � 1,w � 0}∪ {1 < p � 3/2,w � 1}∪ {3/2 < p � 2,w � 2} ,
then, Hp,w(a,b) is Schur concave for (a,b) ∈ R

2
+ ;

3) if p � 2,0 � w � 2 , then, Hp,w(a,b) is Schur convex for (a,b) ∈ R
2
+ .

THEOREM 2. ([28, Theorem 3.2]) For fixed p ∈ R and w � 0 ,
1) if p < 0 , then Hp,w(a,b) is Schur-geometrically concave for (a,b) ∈ R

2
+ ;

2) if p > 0 , then Hp,w(a,b) is Schur-geometrically convex for (a,b) ∈ R
2
+ .

As far as the Schur convexity of Daróczy means is concerned, the above results
seem to be the best till now.

The purpose of this paper is to study Schur m-power convexity of Daróczy means
Hp,w(a,b) and give necessary and sufficient conditions for it, which improve, generalize
and unify Shi et al.’s results.

Our main results are as follows.

THEOREM 3. For fixed p ∈ R , m > 0 and w > −2 , Daróczy mean Hp,w(a,b) is
Schur m-power convex with respect to (a,b) ∈ R

2
+ if and only if (p,w) ∈ Ω1 , where

Ω1 =
{
−2 < w � 0, p � w+2

2
m

}
∪
{

w > 0, p � max

(
w+2

2
m,2m

)}
. (1.5)

THEOREM 4. For fixed p ∈ R , m > 0 and w > −2 , Daróczy mean Hp,w(a,b) is
Schur m-power concave with respect to (a,b) ∈ R

2
+ if and only if (p,w) ∈ Ω2 , where

Ω2 = {−2 < w < 0, p < 0}∪
{

w � 0, p � min

(
w+2

2
m,2m

)}
. (1.6)

THEOREM 5. For fixed p ∈ R , m < 0 and w > −2 , Daróczy mean Hp,w(a,b) is
Schur m-power convex with respect to (a,b) ∈ R

2
+ if and only if (p,w) ∈ E1 , where

E1 = {−2 < w < 0, p > 0}∪
{

w � 0, p � max

(
w+2

2
m,2m

)}
. (1.7)
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THEOREM 6. For fixed p ∈ R , m < 0 and w > −2 , Daróczy mean Hp,w(a,b) is
Schur concave with respect to (a,b) ∈ R

2
+ if and only if (p,w) ∈ E2 , where

E2 =
{
−2 < w � 0, p � w+2

2
m

}
∪
{

w > 0, p � min

(
w+2

2
m,2m

)}
. (1.8)

THEOREM 7. For fixed p ∈ R , m = 0 and w > −2 , Daróczy mean Hp,w(a,b) is
Schur m-power convex (Schur m-power concave) with respect to (a,b) ∈ R

2
+ if and

only if p � (�)0 .

The organization of the paper is as follows. In section 2, based on the notion and
lemmas of Schur convexity, we introduce the definition of Schur f -convex and Schur
f -concave function, and prove criterion theorem for Schur f -convexity. As a special
case, the definition and decision theorem of Schur power convexity are deduced. In
section 3, some lemmas are given. Our main results are proved in section 4.

2. Schur f -convexity and Schur Power convexity

Schur convexity was introduced by Schur in 1923 [21], and it has many important
applications in analytic inequalities [2, 13, 40], linear regression [30], graphs and ma-
trices [8], combinatorial optimization [15], information-theoretic topics [10], Gamma
functions [22], stochastic orderings [26], reliability [14], and other related fields.

Concerning the Schur convexities of well-known means such as Stolarsky means
and Gini means, we can refer to [4, 5, 6, 12, 19, 23, 24, 25, 27, 29].

For convenience of readers, we begin by recalling some definitions and lemmas of
Schur convexity.

DEFINITION 1. ([21, 32]) Let x = (x1,x2, ...,xn) and y = (y1,y2, ...,yn) ∈ R
n

(n � 2) .
(i) x is said to be majorized by y (in symbol x ≺ y ) if

k

∑
i=1

x[i] �
k

∑
i=1

y[i] for 1 � k � n−1,
n

∑
i=1

x[i] =
n

∑
i=1

y[i], (2.1)

where x[1] � x[2] · ·· � x[n] and y[1] � y[2] · ·· � y[n] are rearrangements of x and y in a
decreasing order.

(ii) x � y means xi � yi for all i = 1,2, · · ·,n . Let U ⊆ R
n (n � 2) . The function

φ : U 	→R is said to be increasing if x � y implies φ(x) � φ(y) . φ is said to be
decreasing if and only if −φ is increasing.

(iii) U ⊆ R
n is called a convex set if (αx1 + βy1, · · ·,αxn + βyn) ∈ U for all x , y

and all α,β ∈ [0,1] with α + β = 1.
(iv) Let U ⊆ R

n (n � 2) be a set with nonempty interior. Then φ : U 	→R is said
to be Schur convex if x ≺ y on U implies φ(x) � φ(y) . φ is said to be Schur concave
if −φ is Schur convex.
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DEFINITION 2. ([21]) (i) U ⊆ R
n (n � 2) is called symmetric set, if x ∈ U im-

plies xP ∈ U for every n×n permutation matrix P .
(ii) The function φ : U 	→R is called symmetric one if for every permutationmatrix

P , φ(xP) = φ(x) for all x ∈ U .

The following lemma gives a useful characterization of Schur-convexity [32, The-
orem 6.4 and Note] (also can refer to [21]).

LEMMA 1. Let U = In(I ⊆R) be a symmetric set with nonempty interior U0 and
let φ : U 	→R be continuous on U and differentiable in U0 . Then φ is Schur convex
(Schur concave) on U if and only if φ is symmetric on U and

(xi − x j)
(

∂φ (x)
∂xi

− ∂φ (x)
∂x j

)
� (�)0 (2.2)

holds for (x1,x2, ...,xn) ∈ U0 , i �= j , i, j = 1,2, ...,n.

Now we define the Schur f -convexity as follows.

DEFINITION 3. Let U = In (I ⊆ R) and let f be a strictly monotone function
defined on I . Denote by

f (x) = ( f (x1), f (x2), ..., f (xn)) and f (y) = ( f (y1), f (y2), ..., f (yn)).

(i) U is called a f -convex set if ( f−1(α f (x1)+β f (y1)), · · ·, f−1(α f (xn)+β f (yn)))
∈ U for all x,y ∈ U and all α,β ∈ [0,1] with α + β = 1.

(ii) Let U be a set with nonempty interior. Then function φ : U 	→R is said to be
Schur f -convex on U if f (x) ≺ f (y) on U implies φ(x) � φ(y) .

φ is said to be Schur f -concave if −φ is Schur f -convex.

REMARK 1. Let U = In (I ⊆ R) and let f be a strictly monotone function defined
on I and f (U) = { f (x) : x ∈ U} . Then function φ : U 	→R is Schur f -convex (Schur
f -concave) if and only if φ ◦ f−1 is Schur convex (Schur concave) on f (U) .

Indeed, if function φ : U 	→R is Schur f -convex, then ∀x′,y′ ∈ f (U) , there are
x,y ∈ U such that x′ = f (x),y′ = f (y) . If f (x) ≺ f (y) , that is, x′ ≺ y′ , then φ(x) �
φ(y) , that is, φ(( f−1(x′)) � φ(( f−1(y′)) . This shows that φ ◦ f−1 is Schur convex
on f (U) . Conversely, if φ ◦ f−1 is Schur convex on f (U) , then ∀x,y ∈ U such that
f (x) ≺ f (y) , we have φ(( f−1( f (x))) � φ(( f−1( f (y))) , that is, φ(x) � φ(y) . This
indicates φ is Schur f -convex on U .

In the same way, we can show that φ is Schur f -concave on U if and only if
φ ◦ f−1 is Schur concave on f (U) .

REMARK 2. Let U ⊆ R
n (n � 2) be a symmetric set and the function φ : U 	→R

be Schur f -convex (Schur f -concave). Then φ is symmetric on U .
In fact, for any x∈ U and every permutation matrix P , we have xP∈ U . Note xP

is another permutation of x , hence f (x) ≺ f (xP) ≺ f (x) . Since φ is Schur f -convex
(Schur f -concave), we have φ(x) � (�)φ(xP) � (�)φ(x) , that is, φ(xP) = φ(x) for
all x ∈ U . This shows that φ is symmetric on U .
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By Lemma 1 and Remark 1, 2, we have the following

THEOREM 8. Assume that U = In(I ⊆ R) is a symmetric set with nonempty in-
terior U0 , φ : U 	→R is continuous on U and differentiable in U0 , and f is a strictly
monotone and derivable function defined on I . Then φ is Schur f -convex (Schur f -
concave) on U if and only if φ is symmetric on U and

( f (xi)− f (x j))
(

1
f ′(xi)

∂φ (x)
∂xi

− 1
f ′(x j)

∂φ (x)
∂x j

)
� (�)0 (2.3)

holds for (x1,x2, ...,xn) ∈ U0 , i �= j , i, j = 1,2, ...,n.

Proof. We easily check that φ ◦ f−1 is symmetric on f (U) if and only if φ is
symmetric on U .

By Remark 1 and Lemma 1, φ ◦ f−1 is Schur convex (Schur concave) if and only
if φ ◦ f−1 is symmetric on f (U) and

(yi − y j)

(
∂
(
φ ◦ f−1

)
∂yi

− ∂ (φ ◦ f−1)
∂y j

)
� (�)0

holds for (y1,y2, ...,yn) ∈ f
(
U0
)
, i �= j , i, j = 1,2, ...,n . Making the substitution

x = f−1(y) yields desired result. �

Putting f (x) = 1, lnx,x−1 in Definition 3 yield the Schur convexity, Schur geomet-
rical convexity and Schur harmonic convexity. It is clear that the Schur f -convexity is
a generalization of the Schur convexity mentioned above. In general, we have

DEFINITION 4. Let f : R+ 	→R be defined by f (x) = (xm − 1)/m if m �= 0 and
f (x) = lnx if m = 0. Then function φ : U(⊆ R

n
+)	→R is said to be Schur m-power

convex on U if f (x) ≺ f (y) on U implies φ(x) � φ(y) .
φ is said to be Schur m-power concave if −φ is Schur m-power convex.

For Schur power convexity, by Theorem 8 we have

COROLLARY 1. Let U ⊆ R
n
+ be a symmetric set with nonempty interior U0 and

φ : U 	→R be continuous on U and differentiable in U0 . Then φ is Schur m-power
convex (Schur m-power concave) on U if and only if φ is symmetric on U and

xm
i − xm

j

m

(
x1−m
i

∂φ (x)
∂xi

− x1−m
j

∂φ (x)
∂x j

)
� (�)0 if m �= 0, (2.4)

(lnxi− lnx j)
(

xi
∂φ (x)

∂xi
− x j

∂φ (x)
∂x j

)
� (�)0 if m = 0 (2.5)

holds for (x1,x2, ...,xn) ∈ U0 , i �= j , i, j = 1,2, ...,n.
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3. Lemmas

LEMMA 2. For fixed p ∈ R , m > 0 and w > −2 , Daróczy mean Hp,w(a,b) is
Schur m-power convex (Schur m-power concave) with respect to (a,b) ∈ R

2
+ if and

only if g(t) � (�)0 for all t > 0 , where

g(t) := gp,w(t) = 2sinh((p−m)t)−wsinh(mt). (3.1)

Proof. Let m �= 0 and Hp,w := Hp,w(a,b) defined by (1.1).
For p �= 0 we get

∂ lnHp,w

∂a
=

1
Hp,w

∂Hp,w

∂a
=

ap−1 + w
2 a

p
2 −1b

p
2

ap +w(ab)p/2 +bp
,

∂ lnHp,w

∂b
=

1
Hp,w

∂Hp,w

∂b
=

w
2 a

p
2 b

p
2−1 +bp−1

ap +w(ab)p/2 +bp
,

thus the expression Δp,w corresponding to (2.4) in case of φ = Hp,w can be written as

Δp,w :=
am −bm

m

(
a1−m ∂Hp,w

∂a
−b1−m ∂Hp,w

∂b

)

=
am −bm

m
Hp,w

(ap−m−bp−m)+ w
2

(
a−m+p/2bp/2−ap/2b−m+p/2

)
ap +w(ab)p/2 +bp

.

Substituting ln
√

a/b = t and using sinhx = 1
2(ex − e−x) , coshx = 1

2(ex + e−x) lead to

Δp,w = Hp,w
am−bm

m
(ab)(p−m)/2 2sinh(p−m)t−wsinhmt

w+2cosh pt

:=
Hp,w

am−bm

m (ab)(p−m)/2

w+2cosh pt
gp,w(t). (3.2)

For p = 0, we have

Δ0,w :=
am −bm

m

(
a1−m ∂H0,w

∂a
−b1−m ∂H0,w

∂b

)

=
am −bm

m

(
a1−m

√
b

2
√

a
− b1−m√a

2
√

b

)

= −am−bm

m
(ab)(1−m)/2 sinh(mt). (3.3)

It is easy to verify that lim
p→0

Δp,w = Δ0,w , and then (3.2) holds for all p ∈ R .

Since Δp,w is symmetric with respect to a and b , without loss of generality we as-

sume a > b , then t = ln
√

a/b> 0. It is clear that
Hp,w

am−bm
m (ab)(p−m)/2

w+2cosh(pt) > 0 and therefore
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by Corollary 1 Hp,w(a,b) is Schur m-power convex (Schur m-power concave) with re-
spect to (a,b) ∈ R

2
+ if and only if Δp,w � (�)0 if and only if g(t) = gp,w(t) � (�)0

for all t > 0.
It is easy to check that for m = 0 this lemma is also true.
This lemma is proved. �

LEMMA 3. Let g(t) be defined by (3.1). Then

lim
t→0+

g(t)
t

= lim
t→0+

g′(t) = 2

(
p− w+2

2
m

)
, (3.4)

Proof. A simple calculation yields

g′(t) = 2(p−m)cosh(p−m)t−wmcoshmt. (3.5)

Since g(0) = 0, applying L’Hospital’s rule yields

lim
t→0+

g(t)
t

= lim
t→0+

g′(t) = 2

(
p− w+2

2
m

)
,

which proves the lemma. �

LEMMA 4. Let β =max(|p−m|, |m|) with m > 0 and let g(t) be defined by (3.1).
Then

lim
t→∞

2βg(t)
eβ t

=

⎧⎨
⎩

2(p−m) if p > 2m or p < 0,

2(p− w+2
2 m) if p = 2m or p = 0,

−wm if 0 < p < 2m.
(3.6)

Proof. (3.6) easily follows from the limit relation

lim
t→∞

2coshαt

eβ t
=
{

1 if β = |α|,
0 if β > |α|. (3.7)

We have

lim
t→∞

2βg(t)
eβ t

= lim
t→∞

2g′(t)
eβ t

= lim
t→∞

2
2(p−m)cosh((p−m)t)−wmcosh(mt)

eβ t

=

⎧⎨
⎩

2(p−m) if |p−m|> |m|, i.e. p(p−2m) > 0,

2(p− w+2
2 m) if |p−m|= |m|, i.e. p = 0 or p = 2m,

−wm if |p−m|< |m|, i.e. p(p−2m) < 0,

which implies (3.6). �
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4. Proof of Main Results

Proof of Theorem 3. By Lemma 3.1, to prove Theorem 3, it suffices to prove that
gp,w(t) � 0 for all t > 0 if and only if (p,w) ∈ Ω1 .
Necessity. We prove that (p,w) ∈ Ω1 is the necessary conditions for g(t) = gp,w(t) � 0
for all t > 0. It follows that

lim
t→0+

g(t)
t

� 0 and lim
t→∞

2βg(t)
eβ t

� 0. (4.1)

Now, we obtain the necessary conditions from (4.1) together with (3.4) and (3.6). To
this aim, we divide the proof of necessity into three cases.

Case 1: ⎧⎨
⎩

2(p− w+2
2 m) � 0,

2(p−m) � 0,
p > 2m or p < 0

=⇒
{

p � w+2
2 m,

p > 2m,

which implies (p,w) ∈ {w > −2, p � w+2
2 m, p > 2m} := Ω11 .

Case 2: ⎧⎨
⎩

2(p− w+2
2 m) � 0,

2(p− w+2
2 m) � 0,

p = 2m or p = 0
=⇒

{−2 < w � 2,
p = 2m,

which implies (p,w) ∈ {−2 < w � 2, p = 2m} := Ω12 .
Case 3: ⎧⎨

⎩
2(p− w+2

2 m) � 0,
−wm � 0,
0 < p < 2m

=⇒
{

w+2
2 m � p < 2m,

−2 < w � 0,

which implies (p,w) ∈ {−2 < w � 0, w+2
2 m � p < 2m} := Ω13 .

Summarizing the above three cases yield

(p,w) ∈ Ω11∪Ω12∪Ω13

=
{
−2 < w � 0, p � w+2

2
m

}
∪
{

w > 0, p � max

(
w+2

2
m,2m

)}
= Ω1.

Sufficiency. We prove the condition (p,w) ∈ Ω1 is sufficient for g(t) = gp,w(t) � 0 for
all t > 0. Since g(0) = 0, it is enough to prove g′(t) � 0 for all t > 0 if (p,w) ∈ Ω1 .
For this end, we need to write g′(t) given by (3.5) in the following form, too,

g′(t) = 2(p−m)cosh((p−m)t)−wmcosh(mt)
= (2(p−m)−wm)cosh((p−m)t)+wm(cosh((p−m)t)− cosh(mt))

= 2

(
p− w+2

2
m

)
cosh((p−m)t)+2wmsinh

pt
2

sinh

(
p−2m

2
t

)
. (4.2)

Next we divide the proof of sufficiency into three cases.
Case 1: −2 < w � 0, w+2

2 m � p < 2m . Since p− w+2
2 m � 0, w � 0, p > 0,

p−2m < 0, by (4.2) we have g′(t) � 0 for all t > 0.
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Case 2: −2 < w � 0, p � 2m . By (3.5) it is obvious that g′(t) � 0 for all t > 0.
Case 3: w > 0, p � max(w+2

2 m,2m) . Since p− w+2
2 m � 0, w > 0, p > 0, p−

2m � 0, by (4.2) we also have g′(t) � 0 for all t > 0.
Hence, g′(t) � 0 for all t > 0 if (p,w) ∈ Ω1 .
Thus the proof of Theorem 3 ends. �

Proof of Theorem 4. By Lemma 3.1, it is enough to show that gp,w(t) � 0 for all
t > 0 if and only if (p,w) ∈ Ω2 .
Necessity. We prove that (p,w) ∈ Ω2 is necessary. We start with

lim
t→0+

g(t)
t

� 0 and lim
t→∞

2βg(t)
eβ t

� 0 (4.3)

and divide the proof into three cases.
Case 1: ⎧⎨

⎩
2(p− w+2

2 m) � 0,
2(p−m) � 0,
p > 2m or p < 0

=⇒
{

w > −2,
p < 0,

which implies (p,w) ∈ {w > −2, p < 0} := Ω21 .
Case 2: ⎧⎨

⎩
2(p− w+2

2 m) � 0,

2(p− w+2
2 m) � 0,

p = 2m or p = 0
=⇒

{
w � 2,
p = 2m

or

{
w > −2,
p = 0,

which implies (p,w) ∈ {w � 2, p = 2m}∪{w > −2, p = 0} := Ω22 .
Case 3: ⎧⎨

⎩
2(p− w+2

2 m) � 0,
−wm � 0,
0 < p < 2m

=⇒
⎧⎨
⎩

p � w+2
2 m,

w � 0,
0 < p < 2m,

which implies (p,w) ∈ {w � 0,0 < p < 2m, p � w+2
2 m} := Ω23 .

Summarizing the above three cases yield

(p,w) ∈ Ω21∪Ω22∪Ω23

= {−2 < w < 0, p < 0}∪
{

w � 0, p � min

(
w+2

2
m,2m

)}
= Ω2.

Sufficiency. To prove the condition (p,w) ∈ Ω2 is sufficient, we only need to show that
g′(t) � 0 for all t > 0 if (p,w) ∈ Ω2 . We distinguish three cases.

Case 1: −2 < w < 0, p < 0. Since p− w+2
2 m < 0, w < 0, p < 0, p− 2m < 0,

from (4.2) we have g′(t) < 0 for all t > 0.
Case 2: w � 0,0 � p � min(w+2

2 m,2m) . Since p− w+2
2 m � 0, w � 0, p � 0,

p−2m � 0, from (4.2) we also have g′(t) < 0 for all t > 0.
Case 3: w � 0, p < 0. By (3.5), clearly, g′(t) < 0 for all t > 0.
To sum up, g′(t) � 0 for all t > 0 if (p,w) ∈ Ω2 .
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This completes the proof of Theorem 4. �

Proof of Theorem 5. Let gp,w,m(t) := gp,w(t) defined by (3.1) and

p′ = −p, m′ = −m.

We easily verify that, for p, p′,m,m′ ∈ R,

gp,w,m(t) = −gp′,w,m′(t).

From this and Lemma 2, for m < 0, Hp,w(a,b) is Schur m-power convex if and only
if Hp′,w,m′(a,b) is Schur m′ -power concave with respect to (a,b) ∈ R

2
+ , which, by

Theorem 4, if and only if

−2 < w < 0, p′ < 0 or w � 0, p′ � min

(
w+2

2
m′,2m′

)
,

which is equivalent to

−2 < w < 0, p > 0 or w � 0, p � max

(
w+2

2
m,2m

)
,

that is, (p,w) ∈ E1 , which proves Theorem 5. �

Proof of Theorem 6. Similarly to the proof of Theorem 5, we see that, for m < 0,
Hp,w(a,b) is Schur m-power concave if and only if Hp′,w(a,b) is Schur m′ -power
convex with respect to (a,b) ∈ R

2
+ , which, by Theorem 3, if and only if

−2 < w � 0, p′ � w+2
2

m′ or w > 0, p′ � max

(
w+2

2
m′,2m′

)
,

which is equivalent to

−2 < w � 0, p � w+2
2

m or w > 0, p � min

(
w+2

2
m,2m

)
,

that is, (p,w) ∈ E2 . Thus the proof of Theorem 6 is finished. �

Proof of Theorem 7. If m = 0, then

g(t) := gp,w(t) = 2sinh(pt).

Obviously, sgn(g(t))= sgn(p) , and so Hp,w(a,b) is Schur m-power convex (Schur
m-power concave) if and only if p � (�)0. �
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