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OPTIMAL POLYNOMIAL BOUNDS FOR THE EXPONENTIAL FUNCTION

JAEGUG BAE

(Communicated by T. Erdélyi)

Abstract. We find polynomial lower and upper bounds of e* on some respective intervals. To
be specific, for each natural number n, we construct polynomials p,(x) and g,(x) of de-
gree n so that p,(x) < ppr1(x) <€ and €' < gup1(x) < gn(x) on some intervals, respec-
tively. These polynomials are optimal in the sense that if p(x) (or g(x)) is a polynomial of
degree n with po_1(x) < p(x) < e (ore* < g(x) < ga_1(x)) then p(x) < pu(x) (0r gu(x) <
q(x)). The fact that 1/p,(—x) works as an upper bound of ¢* on a switched interval is inter-
esting. We also provide the size comparison between two upper bounds ¢, (x) and 1/p,(—x).

1. Introduction

Starting from the trivial bound of the exponential function

I+x<e' or e < (x<1), (1.1)

1
1—x
various acute bounds or generalizations of (1.1) have been researched (see [3], [5] and
[6]). Most recent results are Kim [2], [4] and Bae [1]. In [1], we have constructed the
following polynomial lower bounds of arbitrary degree for the exponential function.

THEOREM 1.1. For n> 1, let

n .
pn(x) =1+ opx+ 2 Ocsz(x—|— 1)/_2
=

where oy =1 and

o2 2] N 1
= — — e —
" e \/S ! (n—2)le

n=?2.

Then pp(x) < ppp1(x) < € for x > —1. Furthermore, these bounds are optimal in
the sense that if p(x) is a polynomial of degree n with p,_1(x) < p(x) < €' for x>
—1, then p(x) < pp(x) for x> —1.

Note the inequality holds on the ray [—1,c0). In §3, we generalize Theorem 1.1
so that the constructed polynomial lower bounds for the exponential function are valid
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on an arbitrary ray [u,e). In Theorem 1.1, one may observe that we used p;(x) =
1+x, thetangentline of ¢* at x=0, as the base linear bound for ¢*. That will be
generalized to an arbitrary tangent line of ¢* at x =v > u. So, with the base linear
bound p;(x) =e"+e"(x—v), we construct optimal polynomials p,(x) of degree
n satisfying p,(x) < ppy1(x) < e on [u,eo).
In §4, the same idea is applied for the upper bounds of ¢* on [u,Vv]. Here the
base linear bound is
eV — et
V—Hu
the secant line connecting two points (u,e”) and (v,e"). Then we are to find opti-
mal polynomials g, (x) of degree n satisfying ¢* < g,11(x) < gu(x) on [u,v].
Changing variable to —x in the polynomial lower bounds p,(x) in §3 and
taking reciprocals, we have rational upper bounds m such that

q1(x):e“—|— (X—‘U),

&< 1 P 1
= purt(=x) T pa(—x)
on (—oo,—u]. If weset u=—Vv,v=—u, we obtain two sorts of upper bounds g, (x)
and —= for ¢ on [u,v]. In §5, we try to offer a size comparison between these

Prl(*x)
bounds of which methods are quite technical.

We introduce some preliminaries in the next section. For the simplification of
the argument, we assume that all functions in this paper are real valued on R and
analyticon C. Also, when we talk about the number of zeros of a function, that number
includes all the multiplicities.

2. Preliminaries

This section is exactly the same as [1, §2]. Because it is short and simple, we
include it in this paper for reader’s convenience.

PROPOSITION 2.1. Let a be a fixed real number. Suppose f)(a)=0 (0 < j <
k—1) and % (a) >0 for some positive integer k.

(i) If k is even, then there exists an interval around a on which f(x) achieves
the unique minimum f(a) = 0.

(ii) If k is odd, then there exists an interval around a on which f(x) is strictly
increasing.

Proof. Let h(x) be a function defined on an open interval I containing a. We
say that &(x) hasunique minimum (UM) property when h(a) =0 and it is the unique
minimum on [, and h(x) has strictly increasing (SI) property when h(a) =0 and
h(x) is strictly increasing on I. Itis easy to see that if h'(x) has UM-property and
h(a) =0 then h(x) has Sl-property. On the other hand, if #’(x) has SI-property
and h(a) =0 then h(x) has UM-property. Since f®¥)(a) >0, by the continuity
of f®(x), there exists an open interval I containing a on which f®)(x) > 0.
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Hense, on the interval I, f*~1(x) has SI-property, f*~2)(x) has UM-property,
f (k‘3)(x) has SI-property, ---, and so on. Pursuing these alternations k times, we
have the conclusions of the proposition. [

PROPOSITION 2.2. Let p(x) be apolynomial of degree n. Then ¢*— p(x) has
atmost n+1 zeros.

Proof. Suppose a function f(x) has k zeros. Applying Rolle’s Theorem, we
know that its derivative f’(x) has at least k—1 zeros. In other words, if f’(x) has
k—1 zeros, then f(x) has at most k zeros. Now the proof is straightforward by
using induction on n, the degree of p(x). O

DEFINITION 2.3. We say that a is a zero of f(x) of multiplicity m when
fW(a)=0 for j=0,1,2,---,m—1 and £ (a)+#0. Inthiscase, Z(a,f)=m is
called the multiplicity of the zero a of f.

We will introduce one more proposition for the proof of which we need the fol-
lowing lemma.

LEMMA 2.4. Suppose there exists an interval [a,a+ 6| onwhich f(x) >0 and
f(a) =0. Then there exists 2 (0 <A <38) suchthat f'(x) >0 on [a,a+A].

Proof. We may assume that f(x) is not constantand Z(a,f) =m > 1. Then the
Taylor series of f and its derivative at x = a have the form

RS fY Y —a) (x) = < f(j)(a) Y—a)!
=3 5oy rw=3 ot

If x is close enough to a, then the first terms dominate both series. Therefore
£ (a) has to be positive and we can find a small enough A >0 so that f'(x) >0 on
[a,a+A]. O

PROPOSITION 2.5. Suppose 0< f(x) < g(x) for x>a and Z(a,g) =m. Then
Z(a,f)=m and ") (a) < g™ (a).

Proof. By the definition of a multiple zero, g (a)=0 for j=0,1,2,---,m—1.
Hence, for each j € {0,1,2,---,m}, it suffices to show that 0 < fU)(x) < g/)(x) on
the interval [a,a+A;] forsome A;>0. We use aninductionon j. Assume that 0 <
FUD(x) <gU=Y(x) ontheinterval [a,a+2;_1]. Thennote fU~1(a)=gl=V(a)=
0. Now applying Lemma 2.4 twice, one for fU~D(x) and another for gU/=1(x)—
fU=Y(x), we can find an interval [a,a+A;] on which 0 < fU)(x) <gW(x). O
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3. Polynomial lower bounds of ¢*

In this section we prove the following result.
THEOREM 3.1. For n>1, let
pn(x) =" +e'on(x—v)+e* Y aj(x— V2 —u) (3.1)
j=2

—u

where o =e" " and

(v—u)"

n—1—v+u (& (v—u) v 1

Then pp(x) < pnr1(x) < e for x > u. Furthermore, these bounds are optimal in the
sense that if p(x) is a polynomial of degree n with p,_1(x) < p(x) < ' for x>
u, then p(x) < pn(x) for x > u.

REMARK. Examining the proof of the theorem, one may weaken the condition
for the optimality a little: If p(x) is a polynomial of degree n with p,_1(x) < p(x) <
e for u<x<v, then p(x) < pn(x) for x> u.

When we take u= —1,v=0, we have exactly Theorem 1.1. For the proof of this
theorem, we need some properties of the sequence ¢, defined by equation (3.2).

LEMMA 3.2. For n> 1, we have

i o, >0

. 1
i) (v— u)2an+2 =2(v—u)0p+1 — O+ ]
(iii) i o (v—u)t = l(v—u)zev_“
~ 2 '
n=2
Proof. Forany 0 <t <n+1, note that
n—1 .j n 2
ot t t
-y —=—[(1+ + +) 33
.ZZ)]! n! ( n+1 (m+1)(n+2) (3-3)
_ 1" LA 12 N _ "(n+1)
n! n+1  (n+1)?2 Conl(n+1-1)
For v—u>n—1, observe that

_n—1—(v—u) "*2(\1—14)1'_6%” 1
R AT (2 i >+(n—2)!(v—u)>0'

Jj=0
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Andfor v—u<n—1, (3.3)gives

_n—1—v+u "_z(v—u)j_ev_u 1
R AT (ZO ! >+(n—2)!(v—u)

n—1—-v+u —(v—u)"tn 1
—w = D)li—vtw) (=2 (r—u)
1
p— >O~

(n—1)!(n—v+u)

For (ii), a direct calculation shows that

1
2(v—u) 0ty — 0 + ]

_ 2(n—v+u) ”_1(v—u)~"_evfu 2
(=) (2 ' >+(n—l)!

=
n—1-—vtu("Fv-u ., 1 1
(v—u)" (ZE) J! ¢ (n—=2)'(v—u) * n!
n—|—1—v+u & (v—u)! —u V—u
= 2 ( + = (V—M)zan+2.
(v— o) n!
For (iii), let 6, =Y}_;(k—v+n)= "(";1) —n(v—u) with 0p=0. Then we have
n+1
2 OCk v—u
n+1 k=2 (V _ u)j n+1 (V _ u)kfl
=) (k—1—v+u —— " |+ ) T
Se-1vna (205 e
n—1 (v _ u)k n+1 (v _ u)kfl
B N Gl M SN Ul i
Pt k! = (k—2)!
n—1 (v _ u)k n—1 (v_ I/L)k n+l (v _ u)k—l
=0, —e" ") =Y ok + .
" (,;E) k! ) & k! = (k=2)!

Note that, by (3.3), the first term of the last expression tends to zero as n tends to
infinity. Thus we obtain

ian(v—u)": v—1u)e ZG,,
—

—v—ue%”—m L’H—l)—n V—u L_u)n:lv—uze%”.
~—uer= 3 (M >) o-w)

For the last equality, one may use the identity

- 2
@2t +12)e =Y nEZ e
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which follows from the differentiation of %' = ¥;> ( Lr"™2. [

LEMMA 3.3. For n> 1, let g,(x) =¢"— py(x). Then
(i) gn(v) =g,(v) =0 and
gi(v)=e"—2¢"3, aj(v—u)=2 >0 (with g|(v)=e").
(ii) For n>2, gu(x) has zero of multiplicity n—1 at u and

gg,"il)(u) e(n—1)(v—u)o, 1 > 0.

Proof. Note that

Pl = '+ 26 3 aglr—)(x— )2+ 3 (- Doyle— v ),

Jj=2 j=3
Pl(x) = 2¢" ﬁzaxx Cuy i}(j ey v)(x—u)
j= j=
S (-2 Byl Py
=4

Invoking Lemma 3.2, (i) is immediate now. For k> 2, let us define fi(x) = og(x—

V)2 (x — u)k_z. Then we observe that

(u) 0 if 0<j<k—2 or j>k

(X)Zk'ak

)(x) (k—1)1205(x — v) + (k— 1) (k — 2) oge(x — )
) = (k= 2)lou(x =)+ (k—2)12(k — 2)on(x — v) (x— u)

+ 5(k—2)!(k—2)(k—3)ock(x—u)2.

Note that by Lemma 3.2 (ii) g5(u) = e“(1 — oy —20p(u—v)) = (v —u)?

n >3, since
n
ax)=e"—e"—eoy(x—v)—e" 2 Sir(x)
k=2

we have

Rl Tt AR () B L (1)
= l—(n— D!0g—1+ (n—1)120,(v—u)

=(n—1)! <2cxn(v—u) — Ot ﬁ)

=n—D!v—u)op >0

(3.4)

o3. Next, for

(3.5)
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by (3.4) and Lemma 3.2 (ii). Finally, it remains to show g,(qj )(u) =0, for 0<j<
n — 2. Direct calculation gives p,(u) = ¢" and by Lemma 3.2 (ii) pl,(u) = €“(0y —
200(v—u)+ o5(v—u)?) = . Hence g,(u) = g,(ql)(u) = 0. Using (3.5) and Lemma
3.2 (ii) again for 2 < j<n—2, we obtain

()

90 Y 0wy = 1= £ w) — 1) ) — ()
k=2

eu

=1—jloj+ 120 (v—u)— jloja(v—u)?

1
=]! (—q/+2(v—u)2+2q/+1(v—u)—aj+ F) =0 0O

Now we prove Theorem 3.1.

Proof of Theorem 3.1. Since by Lemma 3.2 o, is a positive sequence and (x —
v)?2(x—u)/=2 >0 for x >u, j>2, itis clear from equation (3.1) that p,(x) <
Pus1(x) for x > u. We are to show g,(x) >0 for x> u. Lemma 3.3 shows that
gn(x) hasdouble zeroat x=v and (n— 1)-multiple zero at x =u. By Proposition
2.2, these are all the zeros of g,(x). Lemma 3.3 (i) implies that g,(v) =0 is a
local minimum. Moreover, combining Lemma 3.3 (ii) with Proposition 2.1, we realize
that g,(«) =0 is a local minimum for odd n(> 1) and g,(x) is increasing in
some neighborhood of x =u for even n. Based on this analysis, we may conclude
that g,(x) >0 for x> u. Finally, suppose p(x) is a polynomial of degree n with
Pn—1(x) < p(x) < €' for x > u. This means 0 < p(x) — pp—1(x) < gu—1(x) for x>
u. Let f(x) = p(x) — py—1(x). Then f(x) is a polynomial of degree n and by
Lemma 3.3 and Proposition 2.5, it has double zero at v and n — 2-multiple zero at

u. Hence
fx)=alx— v)2(x— u)"72 (3.6)

for some o € R. By Proposition 2.5 with Lemma 3.3 (ii), we obtain

(n—2)

(n—2)a(u—v)?>= "2 (w) < ¢" W)= (n—2)1(v—u)*e oy,

which implies o < e"a,. Therefore by equation (3.1), (3.2), and (3.6) we have
Palx) = P(x) = pu(x) = a1 (5) = F(3) = (€00 — o) (r— ) (x— )" 2 > 0

for x>u. O

In Proposition 5.6, we will show that p,(x) convergesrapidly to ¢* in the sense
that ' — p,(x) isnegligibleif n is large enough. Therefore for all sufficiently large
n, pu(x) is positive on [u,e). Changing variable to —x and taking reciprocals,
we obtain a (rational) upper bound version of Theorem 3.1.

THEOREM 3.4. For all sufficiently large n, p,(x) >0 on [u,e) and

. 1 1
e < <
Pr+1(=x) ~ pa(—x)
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for x < —u. Furthermore, these bounds are optimal in the sense that if p(x) is a poly-
nomial of degree n with €* < ( 5 < < ﬁ for x < —u, then pn(l_ ;<
X< —uU.

4. Polynomial upper bounds of ¢*

Consider the secant line connecting two points (,e*) and (v,e"). One can
ask for the best quadratic polynomial approximation of ¢* that is between the secant
line and the curve y = ¢*. If there exists such quadratic polynomial, then one can
ask for the best cubic polynomial between the quadratic and y =¢*, and so on. The
following theorem answers these questions. We assume that y < v through the paper.

THEOREM 4.1. For n> 1, let

n—1 oM

gn(x) = Y, — (=) + Bulx— )" (4.1)

=0 J!

where

Bi=Y (v

j=0 (n+j)!

Then € < gpi1(x) < gn(x) on [W,V]. Furthermore, these bounds are optimal in the
sense that if q(x) is a polynomial of degree n with € < q(x) < gu—1(x) on [u,V],
then gu(x) < q(x) on [,

We need a simple observation for the proof of the theorem.

LEMMA 4.2. For n> 1,

(@) Bu>0
eH
u(B”_E>'

Proof. These properties are obvious from the definition. []

(i) Pur1= "

Proof of Theorem 4.1. Let

X < el j n X
gn(X) = gn(x) =" = 3 F(X—M)Wﬁn(x—#) —e (4.2)
=0 J:
Note ggj)(;,t)—o for 0<j<n—1 and by Lemma 4.2 (ii), gn ( )=n!B,—et =

n!(v—u)B,+1 > 0. Hence gn( ) has n-multiple zero at x = ¢ and it is increasing
on a small neighborhood of x = . Also note g,(v) = 0 by the definition of f,.
Invoking Proposition 2.2, these are all the zeros of g,(x). Therefore we conclude that
gn(x) =0 or ¢ <gu(x) on [u,v]. Let

o) = 20 C) g, Basx- )
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Then 7},(x) = —Pu+1 <0, hy(pt) =B —e /n! = (v—u)But1 >0 and h,(v) =B, —
e /n!—B,11(v—u) =0 which means that h,(x) isdecreasingtozeroon [u,V]. So,
hu(x) =0 or gui1(x) < gu(x) on [u,v]. Now it remains to show the optimality of
the polynomials. Suppose ¢(x) is a polynomial of degree n such that ' < g(x) <
gn—1(x) on [u,v]. Then 0< g,—1(x) —g(x) < gn—1(x) —e*=gu—1(x) on [u,Vv]. Let
S(x) = gp_1(x) — q(x). We know that g,_;(x) has (n— 1)-multiple zero at x =
and a simple zero at x=v. By Proposition 2.5, f(x) alsohas (n— 1)-multiple zero
at x=y and at least a simple zero at x=v and f"~D(u) < gin:ll)(u) . Since
deg(f(x)) =n, x=v must be a simple zero. Hence f(x) = B(x—u)" !(x—v) for
some real B and by Lemma 4.2 (ii), (n—1)!B(u—v) < (n—1)!(v —u)B, which
implies 3+ B, > 0. Then for x € [u,V],

q(x) = qn(x) = gu-1(x) — gn(x) — f(x)
n—1 et
— o) (Bror = 5~ Bl 10 Bl ) )
= ) By )~ Bl v)

= (=)' (v=x)(B+B,) 0. O

5. A size comparison

Let u=—v, v=—pu through this section. According to Theorem 3.4 and Theo-
rem 4.1, m and gn(x) are both upper bounds for ¢* on [u,V]. Then one may
ask which bound is the more precise. The following theorem tells us that there is no

uniform inequality between them but shows an interesting result.

THEOREM 5.1. For all sufficiently large integers n,

(i) The equation gn(x)— =0 has only one root A, on (U,v) and

pn(—x)

) {@, if x€ 1A,

Pn(—=x) | =0, if x€[Ay,V].

Giy lim A, = #Y

n—oo

Roughly speaking, the theorem exposes that ¢,(x) is the sharper bound on the
first half of the interval [u,v] and ﬁ is the sharper bound on the second half.
The proof of the theorem is quite complicated and technical. First, we wish to establish
another expression for the number ¢, defined by (3.2) whose proof needs the lemma
below.
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LEMMA 5.2. Forintegers n,k with 0 <k <n,

o 0= ()

n+1 n—1
@ g (7).

Proof. We use the induction on k. The equations are trivial for £k =0. Next

2 )= ()5t ) - 660 - ()

J=0

where the second equality holds by the induction hypothesis. Similarly, by the induction
hypothesis for (ii) and by (i)

ﬁ(—l)i@u)(’;f;) ("7 —';2;<—1>~f<j+z> ()
(-2 )
() -GG - ()-Go) () o

PROPOSITION 5.3. For n > 2, the numbers o, defined by (3.2) satisfy (with
u=-—v and v=—U)

:evfﬂm 1 n+j—2 > g .
o .,za(n+j)!< j ) Eo v =n
Proof. Note that by (3.2)

n—14+u—v [ oV 1
%=y (Z “>+<n—z>!<v—u>

n—l+u—v - )/ 1

T (v—p)n (121 ! ) (n=2)!(v—pu)

1—n 1
_<v—u )Z n+J—1> MCEDICEN

. Vo (C)ia-vy
~(1+5) “Z FER YR ey e i T TR
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Using Lemma 5.2 (i), it is easy to see that

°°uv'°" Di(p—v) & 1 n+j—2 :
2 2 (CEvE _Z(n+j—1)!< j )(”_vy'

j:

Thus we obtain

Also by using Lemma 5.2 (ii), one can show that

" “2 n+1 <n+j:_2)(“_v)j

[ Sy T

j=0(n+j)! J

=0
DEFINITION 5.4. For integers n > 2, we define
& 1 n+j— 1) :
Yo = — < . u—v),
! ZO CES A AL

_ - 1 n+j—2 ;
on=e"a, ,,':20 I ( i )(u V).

LEMMA 5.5. Forintegers n > 2,

. v (v—p)
— ohV
1) m=e ZE) (l’l—|—])'

(i) 0, — (V “)6n+1

773
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(i) <8 <
n!
Proof. (i) Using Lemma 5.2 again, we see that

MV z ((n

j=0

15
e

(ii) This assertion is clear because ("*fl) — (”*572) = ("eri 12)
(iii) Note that

i (v—p) e vl e
A+ j)n+j-Djtn=2)! “Tals jt al
and using o, defined by (3.2), we have

S, —l—vtu ("Z(v—p) 1

v~ On = : n £ 2 ( .'.U) e |

e vour \& ! (n—2)-(v—u)

1 n—l—v+u 2
n=2)(v—u)  (v—pyr 4,

Here Z;f’:n_l i - > (;771;,71 andif n>v—yu, then

S (vew) (vt v—u  (v—u)?

D I R (” z +n<n+1>+“'>
vourta fvepN eyt
ST %( n >‘<n—1> v )’

Thusif n—1<v—u then

Sn 1 vep—n+tl (v—p)! 1

P T Ty R (TR L e s ey e

andif n—12> v —u then

o 1 n—1-viu  n(v—p)!
] R (T R R ) R
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PROPOSITION 5.6. For any real number x,

() — & = & (x— 1)"(v—x) g Yo o1 (v — )/,

¢ = pa(x) = €"(x—v)? (x—u)" Ez)an-w-&-l( —u)!

and

0 < gn(x)—e' < L(x—u)”(v—x), for p<x<v,

(n+1)!
ex+2(v—u)

(n+1)!

0<e —pnlx) < (x—u)" Yx—v)?, for x>u

Proof. First, observe that

nfle . hd e .
) - =3 if(x—u)f B = Y (e
j=0J° j=0J:

(v uy —(x—p)’)

G

—_

s

—_

™

~
I
—_
—

=ex—pu)"(v—ux)

_|_

n+ )5

Mg

— o (x— )" (v —)
J

8 |l

=e"(x—u)"(v—x) Z Yot (x—p)’

which gives equation (5.3). Since by definition 5.4 and Lemma 5.5 (i)

=

! j
0<n = Y <

“ = n!

we have

0 < gul®) — & =¥ (x— )" (V=) 3 s o1 (x — 1)/

=0
) S (x—w)
<eM(x—p) W‘”%W
)j
el (x—p)"(v— x)(,H_l gg) J'”
__“ (x—p)"(v—x)

(n+1)!

DSt

v (v—w* :
.O<Z(n+1+1+k)>(x_“)j

2 (H—v)/ v)/ le

775

(5.3)

(5.4)

(5.5)

(5.6)
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for u < x < v. On the other hand, note that

-2
ef=e"+e'(x—v)+e'( —v22

=" +e'(x—v)+e'(x—v) N—IJzJ_Z u—v) 72K (x —u)k
Felmmre ,:22] H( k )( e
=e' +e'(x—v)
z‘” z‘*’ 24k . i
B ( k=0 J+k ( k )(u—V)>(x .

=e'+e'(x—v) e (x—v)? Z oj(x—u)—?

which implies (5.4) by definition (3.1) of p,(x). Again by definition 5.4 and Lemma

. 2(v—u
5.5 (iii) with v = —u, u = —v, we know that o, < ¢ ( ) Therefore

& = pul¥) = " (x V20— )Y O (v — )

j=0
i AV
<e'(x— 20 \n—1_2(v—u) (X I/L)
x—v)(x—u)"" e Zﬁn—kj—kl)!
ex+2(v—u) ol 5
S GapreTWT ey

for x> u. O

The proof of Theorem 5.1 will be presented step by step. By equation (5.4) with
—xand u=—-v,v=—U,

e pa(x) =V PV - Y (V)

j=0
:eiﬂ(x_.u) (v—x)" 2671+j+1 V- x)
Jj=0
[1,V]. Therefore
1 g1
QH(X)_pn(_x) =4 ( )—6 + pn(_x)
= gn(x) — " = —— (e~ = pu(—x))
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Vv n . J
=¥ (x— )" (v =x) Y Yarjr1(x— 1)
J=0

pn(—x)(x_'u) (v—x)" 12,6n+j+1 V- x)j

where
T(3) = (v — )" 2f() — (v =22 x),
F0) =€ 3 ot (v ),
Pt
€)= 5 imm (v—x).
And let

0= 3 8y
=0
) = (v 2" () = e Pl

(x = 1)?(vV =x) pu(—x)’

Then g(x) = %gl(x) and e — pp(—x) = e H(x—u)*(v —x)""g1(x).

We assume that n is sufficiently large. Then f(x) >0, g(x) >0 on [u,v] and
T(u)=—(v—u)"2g(u) <0, T(v)=(v—u)""2f(v) >0. Hence the first assertion
of the theorem would follow if we show that 7 (x) isincreasingon [u,Vv]. But, to see
that T(x) is increasing, it is enough to show that A(x) = (v —x)""2g(x) is decreasing
because (x— )" 2f(x) is clearly increasing.

LEMMA 5.7. gi(x) > |g{(x)| on [u,V].

Proof. Note that [g/ (x)| = X7_(j+ 1)1 j42(v —x)/. Invoking Proposition 5.3,

e _'u(6n+j+l - (.]+ 1)6n+j+2)
= Ot jrt — (J+ 1) g2

i+1 P D+
— v_ — A —
CEST TSI Zé(n+i+j+2)!
(i+1)(n+i+1)
= (ntitj+2)!

1

(v—p)

(v—pu)' >0.

2
-3

Then g;(x) > |g}(x)| isobviousnow. O
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LEMMA 5.8. If n is sufficiently large, then
i) pl(—x)>0 and g'(x)>0 on [u,V]

e = py(=x)

(i) o= (x =) (v —x)""2g1(x)

<) (V=) + (= 1)(r— 1) —2(v—x)

(i) < (e @)V =) +2(v—x) — (1~ 1) (x— p).

Proof. Note that

D) e (v ),
% = 2(x—p)(v—x)""g1(x)

—(n—1)(x—)*(v —x)" g1 (x) + (x — p)*(v —0)"" gl ().

Since g (x) is negative, by deleting the last term of the second equation and adding
them side by side, we obtain (iii). And (ii) follows if we replace g}(x) by —gi(x).
Finally, by Lemma 5.5 (iii),

oo ) oo eV H .
_ . Y/ Y
g1(x) ZZ)(SH/H(V x) \,Z() (n+j+1)!(v x)
i — (v—x) = e g e 7
=R ~ (n+1)! S (n+1)!

on [u,v]. Therefore for sufficiently large n,

pu(=x) = e +2e7H(x— ) (v —2)""'g1(x)

—e Hn—1)(x—p)’(v—0)"g1(x) + e H(x—p)*(v—x)"""g\ (x)
e2(v—u)

Se Vet —u)'——— >0.
>e e Hn+2)(v—u) (n+1)!>0

By this result and Lemma 5.7, we conclude that

_ Pa(=X)(81(0) +81(x) + 81(X) Py (=)
et pi(—x)

g (x)
is positive. [
LEMMA 5.9. If n is sufficiently large and x € [, V], then

< ex+2e4v—3u (V_”)n+l
pu(—x) (n+1)!
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Proof. Using (5.7), we see that
2(v—n)

¢ pul) = e e (v = ) <) T
Therefore
1 & _ &
0 I—ele =) S YO
P9 T=ele = pu(=0) = 1 g
= (1+e+e*+--)<e(1+2e) < 42ee.

where & = 3(V-H) (v(;ﬂ’;l . O
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Proof of Theorem 5.1. (i) It suffices to show that h( )= (v—x)""2g(x) is de-

creasing on [u,v]. Note that 7'(x) = A(x)/e *(x — u)*(v —x)? p2(—x) where

A(x) = (3x = =2v)pu(—x) (e = pu(—x))

(=
+ (=) (v=x)(e P (—x) = pi(—x))
= Bx =1 =2v)pu(=x)(e™" = pu(—x))
+ (= p) (v =x) (e + pu(—x)) (P (%) — Pu(—x))
+ (@ =) (v —x)pa(—x) (e = py(—x)).

Applying the inequalities in Lemma 5.8, we have

A(x)
e Hx—p)*(v—x)"lg1(x)
< pu(—x)(Bx—u—2v)
+ (€ + pa(—2) (x— ) (v =x) +2(v—x) — (n— 1) (x— )
+ pu(=x) (k= ) (v —x) + (n = 1) (x — ) = 2(v —x))
= pn(—x)01(x) + e *02(x) =: B(x)

where

O1(x) =3x—p—2v+2(x—p)(v—x)

Q2 (x) = (x =) (v=x) +2(v—x) = (n = 1) (x — ).
Because p,(—x) <e™ ,if Q;(x) >0, then

B(x) <e ¥ (Q1(x) + Qa(x)) =e *(x—u)3(v—x)+2—-n)<0

for sufficiently large n. Now assume that Q;(x) < 0. Since

eZ(V—[J)

n

e = pa(=0) = e M p (V=) () e - v =) Ty
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we have
B(x) = pn(—x)01(x) + e 02 (x)

2v _
<<e"‘—(x—u) \ ’,)Q1<>+e-@z<x>

eAtn+1)
€2v _ n

= Q) + 02~ (- ) g 01

=e¢ (x—p) (3(v—x)+2—n— 63“((n+1>)7 Oi1(x )) <0

on the open interval (i, v). Therefore #'(x) <0 andso h(x) isdecreasing.
(i) Now T'(x) has the unique zero A, on (i,v). Let 7= 43 and no=

YSE sothat Tp— g =v—1T=1o. Then,since ﬁ > e,
T(TO)_eviy+,+l_nj_eT0—ﬂ 1 i5+.+1.n~f
n— - n n
2 ~ J 0 Pul—10) J 0
< €'Y (Wtje1 — urjr)) M
j=0
—e"(V—1) Y Surjia-my < 0
=0
which means that 7(1p) < 0. Let
LZ
o - v J— u v J— u n—.
T =1(n) = 5 <1+e2(/~‘—")(n+2)—v+y> )
Note that 7| > ’“‘TJ’V =1 and lim 7y(n) = 5. Thus, if T(7) >0, then 7)< A, <
Nn—oo
71(n) and we can conclude that lim A, = 19 = “T“' It remains to show that T'(7) >
n—o0

0. Because T(x) = (x —u)" 2f(x) —h(x) and f(x) is increasing while h(x) is
decreasing, we know that T(t) > (11 — )" 2f (1) — h(%). Let ;=7 —u and
M =mn1/1no sothat 19 <n;. Then

eTO_IJ o

2 6n+j+1 77(; (5.8)

T(1) > 0% Y Yoejrr M) — MG P ———
1 EE) J 0 0 Pn(—TO) par

Combining (5.8) with Lemma 5.9, we have

T(1) >nj %" 27’n+/+1 770 ny e Z6n+j+l 770
J=0 Jj=0

n—2 7 +4(v—u)( _”)n+1 S
=21, “e? (HT 2 Ontj+1- no
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hind . eVTHtM
Since (5.7) implies that 2 Bnji1- Mg < m, we obtain
j=0 '
T(1) _ & (ones 26V (y— )
2 " n+j - 6}1 j J—
e %(’7 ejo1 = Busgin) (n+ D)1+ 1)!

Now we complete the proof of the positivity of 7'(7;) by showing that
T Yot jr1 — s js1 =0 (5.9)
forall j >0 and by showing that the first term of the infinite sum

265(\’7”)(\/ _ ‘u)nJrl
i+ D+ 1)!

=n—2
77" Ya+1— 6n+1 >

By the definition of 7;, we see that

and by Lemma 5.5, we have

Ot i Ot i Opti
+—J+1:1_|_(v_ +—J+2:1+(V_IJ) +j+2
Yotj+l Yot j+1 Ontjr1— (V—M)0nt ji2
eV M/ (n+j+2)!
<1 — - -
V) S D = (= e F 2!
<1+ v—£ 72

V) (n+2)—v+u -

from which (5.9) follows. Finally, by inequality (5.2), if n—1> v —pu then 6, >
et V/((n—1)!(n—v+pu)). Therefore

1" Y1 — Sutt

_ VU o )
_<1—i_ez(l“l_v)(n-l—Z)—v-|-IJ)(&H_1 (V—=1)81+2) = Ont1
vV—u veu

_ 61— (1 s

UV (n42)—v+pu +1 ( +62(“")(n+2)—v+u) (V—U)0nt2
> V—U ) etV
> e2(ﬂ*V)(n+2)—v+‘u n!(n+1—v+‘u)

vV—U eV H

{1 B

( +ez(u—v)(n+2)_v+“) (v H)(n+2)!

V(v —p)?

T (@E 2 v ) (it DI+ L —v+p)

which is obviously greater than the right side of (5.10) for all sufficiently large n. [
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