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OPTIMAL POLYNOMIAL BOUNDS FOR THE EXPONENTIAL FUNCTION
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(Communicated by T. Erdélyi)

Abstract. We find polynomial lower and upper bounds of ex on some respective intervals. To
be specific, for each natural number n, we construct polynomials pn(x) and qn(x) of de-
gree n so that pn(x) � pn+1(x) � ex and ex � qn+1(x) � qn(x) on some intervals, respec-
tively. These polynomials are optimal in the sense that if p(x) (or q(x)) is a polynomial of
degree n with pn−1(x) � p(x) � ex (or ex � q(x) � qn−1(x)) then p(x) � pn(x) (or qn(x) �
q(x)). The fact that 1/pn(−x) works as an upper bound of ex on a switched interval is inter-
esting. We also provide the size comparison between two upper bounds qn(x) and 1/pn(−x).

1. Introduction

Starting from the trivial bound of the exponential function

1+ x � ex or ex � 1
1− x

(x < 1), (1.1)

various acute bounds or generalizations of (1.1) have been researched (see [3], [5] and
[6]). Most recent results are Kim [2], [4] and Bae [1]. In [1], we have constructed the
following polynomial lower bounds of arbitrary degree for the exponential function.

THEOREM 1.1. For n � 1, let

pn(x) = 1+ α1x+
n

∑
j=2

α j x
2(x+1) j−2

where α1 = 1 and

αn =
n−2

e

(
n−2

∑
j=0

1
j!
− e

)
+

1
(n−2)!e

, n � 2.

Then pn(x) � pn+1(x) � ex for x � −1. Furthermore, these bounds are optimal in
the sense that if p(x) is a polynomial of degree n with pn−1(x) � p(x) � ex for x �
−1, then p(x) � pn(x) for x � −1.

Note the inequality holds on the ray [−1,∞). In §3, we generalize Theorem 1.1
so that the constructed polynomial lower bounds for the exponential function are valid
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on an arbitrary ray [u,∞). In Theorem 1.1, one may observe that we used p1(x) =
1+ x, the tangent line of ex at x = 0, as the base linear bound for ex. That will be
generalized to an arbitrary tangent line of ex at x = v > u. So, with the base linear
bound p1(x) = ev + ev(x− v), we construct optimal polynomials pn(x) of degree
n satisfying pn(x) � pn+1(x) � ex on [u,∞).

In §4, the same idea is applied for the upper bounds of ex on [μ ,ν]. Here the
base linear bound is

q1(x) = eμ +
eν − eμ

ν − μ
(x− μ),

the secant line connecting two points (μ ,eμ) and (ν,eν ). Then we are to find opti-
mal polynomials qn(x) of degree n satisfying ex � qn+1(x) � qn(x) on [μ ,ν].

Changing variable to −x in the polynomial lower bounds pn(x) in §3 and
taking reciprocals, we have rational upper bounds 1

pn(−x) such that

ex � 1
pn+1(−x)

� 1
pn(−x)

on (−∞,−u]. If we set u =−ν,v =−μ , we obtain two sorts of upper bounds qn(x)
and 1

pn(−x) for ex on [μ ,ν]. In §5, we try to offer a size comparison between these
bounds of which methods are quite technical.

We introduce some preliminaries in the next section. For the simplification of
the argument, we assume that all functions in this paper are real valued on R and
analytic on C. Also, when we talk about the number of zeros of a function, that number
includes all the multiplicities.

2. Preliminaries

This section is exactly the same as [1, §2]. Because it is short and simple, we
include it in this paper for reader’s convenience.

PROPOSITION 2.1. Let a be a fixed real number. Suppose f ( j)(a) = 0 (0 � j �
k−1) and f (k)(a) > 0 for some positive integer k.

(i) If k is even, then there exists an interval around a on which f (x) achieves
the unique minimum f (a) = 0.

(ii) If k is odd, then there exists an interval around a on which f (x) is strictly
increasing.

Proof. Let h(x) be a function defined on an open interval I containing a. We
say that h(x) has unique minimum (UM) property when h(a)= 0 and it is the unique
minimum on I, and h(x) has strictly increasing (SI) property when h(a) = 0 and
h(x) is strictly increasing on I. It is easy to see that if h′(x) has UM-property and
h(a) = 0 then h(x) has SI-property. On the other hand, if h′(x) has SI-property
and h(a) = 0 then h(x) has UM-property. Since f (k)(a) > 0, by the continuity
of f (k)(x), there exists an open interval I containing a on which f (k)(x) > 0.
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Hense, on the interval I, f (k−1)(x) has SI-property, f (k−2)(x) has UM-property,
f (k−3)(x) has SI-property, · · · , and so on. Pursuing these alternations k times, we
have the conclusions of the proposition. �

PROPOSITION 2.2. Let p(x) be a polynomial of degree n. Then ex− p(x) has
at most n+1 zeros.

Proof. Suppose a function f (x) has k zeros. Applying Rolle’s Theorem, we
know that its derivative f ′(x) has at least k−1 zeros. In other words, if f ′(x) has
k− 1 zeros, then f (x) has at most k zeros. Now the proof is straightforward by
using induction on n, the degree of p(x). �

DEFINITION 2.3. We say that a is a zero of f (x) of multiplicity m when
f ( j)(a) = 0 for j = 0,1,2, · · · ,m−1 and f (m)(a) �= 0. In this case, Z(a, f ) = m is
called the multiplicity of the zero a of f .

We will introduce one more proposition for the proof of which we need the fol-
lowing lemma.

LEMMA 2.4. Suppose there exists an interval [a,a+δ ] on which f (x) � 0 and
f (a) = 0. Then there exists λ (0 < λ < δ ) such that f ′(x) � 0 on [a,a+ λ ].

Proof. We may assume that f (x) is not constant and Z(a, f ) = m � 1. Then the
Taylor series of f and its derivative at x = a have the form

f (x) =
∞

∑
j=m

f ( j)(a)
j!

(x−a) j , f ′(x) =
∞

∑
j=m

f ( j)(a)
( j−1)!

(x−a) j−1.

If x is close enough to a, then the first terms dominate both series. Therefore
f (m)(a) has to be positive and we can find a small enough λ > 0 so that f ′(x) � 0 on
[a,a+ λ ]. �

PROPOSITION 2.5. Suppose 0� f (x) � g(x) for x � a and Z(a,g)= m. Then
Z(a, f ) � m and f (m)(a) � g(m)(a).

Proof. By the definition of a multiple zero, g( j)(a) = 0 for j = 0,1,2, · · · ,m−1.
Hence, for each j ∈ {0,1,2, · · · ,m}, it suffices to show that 0 � f ( j)(x) � g( j)(x) on
the interval [a,a+λ j] for some λ j > 0. We use an induction on j. Assume that 0 �
f ( j−1)(x) � g( j−1)(x) on the interval [a,a+λ j−1]. Then note f ( j−1)(a) = g( j−1)(a) =
0. Now applying Lemma 2.4 twice, one for f ( j−1)(x) and another for g( j−1)(x)−
f ( j−1)(x), we can find an interval [a,a+ λ j] on which 0 � f ( j)(x) � g( j)(x). �
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3. Polynomial lower bounds of ex

In this section we prove the following result.

THEOREM 3.1. For n � 1, let

pn(x) = ev + euα1(x− v)+ eu
n

∑
j=2

α j (x− v)2(x−u) j−2 (3.1)

where α1 = ev−u and

αn =
n−1− v+u

(v−u)n

(
n−2

∑
j=0

(v−u) j

j!
− ev−u

)
+

1
(n−2)!(v−u)

, n � 2. (3.2)

Then pn(x) � pn+1(x) � ex for x � u. Furthermore, these bounds are optimal in the
sense that if p(x) is a polynomial of degree n with pn−1(x) � p(x) � ex for x �
u, then p(x) � pn(x) for x � u.

REMARK. Examining the proof of the theorem, one may weaken the condition
for the optimality a little: If p(x) is a polynomial of degree n with pn−1(x) � p(x) �
ex for u � x � v, then p(x) � pn(x) for x � u.

When we take u =−1,v = 0, we have exactly Theorem 1.1. For the proof of this
theorem, we need some properties of the sequence αn defined by equation (3.2) .

LEMMA 3.2. For n � 1, we have

(i) αn > 0

(ii) (v−u)2αn+2 = 2(v−u)αn+1−αn +
1
n!

(iii)
∞

∑
n=2

αn(v−u)n =
1
2
(v−u)2ev−u.

Proof. For any 0 < t < n+1, note that

et −
n−1

∑
j=0

t j

j!
=

tn

n!

(
1+

t
n+1

+
t2

(n+1)(n+2)
+ · · ·

)
(3.3)

<
tn

n!

(
1+

t
n+1

+
t2

(n+1)2 + · · ·
)

=
tn(n+1)

n!(n+1− t)
.

For v−u � n−1, observe that

αn =
n−1− (v−u)

(v−u)n

(
n−2

∑
j=0

(v−u) j

j!
− ev−u

)
+

1
(n−2)!(v−u)

> 0.
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And for v−u < n−1, (3.3) gives

αn =
n−1− v+u

(v−u)n

(
n−2

∑
j=0

(v−u) j

j!
− ev−u

)
+

1
(n−2)!(v−u)

>
n−1− v+u

(v−u)n

−(v−u)n−1n
(n−1)!(n− v+u)

+
1

(n−2)!(v−u)

=
1

(n−1)!(n− v+u)
> 0.

For (ii), a direct calculation shows that

2(v−u)αn+1−αn +
1
n!

=
2(n− v+u)

(v−u)n

(
n−1

∑
j=0

(v−u) j

j!
− ev−u

)
+

2
(n−1)!

− n−1− v+u
(v−u)n

(
n−2

∑
j=0

(v−u) j

j!
− ev−u

)
− 1

(n−2)!(v−u)
+

1
n!

=
n+1− v+u

(v−u)n

(
n

∑
j=0

(v−u) j

j!
− ev−u

)
+

v−u
n!

= (v−u)2αn+2.

For (iii), let σn = ∑n
k=1(k− v+n) = n(n+1)

2 −n(v−u) with σ0 = 0. Then we have

n+1

∑
k=2

αk(v−u)k

=
n+1

∑
k=2

(k−1− v+u)

(
k−2

∑
j=0

(v−u) j

j!
− ev−u

)
+

n+1

∑
k=2

(v−u)k−1

(k−2)!

=
n−1

∑
k=0

(σn −σk)
(v−u)k

k!
−σne

v−u +
n+1

∑
k=2

(v−u)k−1

(k−2)!

=σn

(
n−1

∑
k=0

(v−u)k

k!
− ev−u

)
−

n−1

∑
k=1

σk
(v−u)k

k!
+

n+1

∑
k=2

(v−u)k−1

(k−2)!
.

Note that, by (3.3), the first term of the last expression tends to zero as n tends to
infinity. Thus we obtain

∞

∑
n=2

αn(v−u)n = (v−u)ev−u−
∞

∑
n=1

σn
(v−u)n

n!

=(v−u)ev−u−
∞

∑
n=1

(
n(n+1)

2
−n(v−u)

)
(v−u)n

n!
=

1
2
(v−u)2ev−u.

For the last equality, one may use the identity

(2t + t2)et =
∞

∑
n=0

n+2
n!

tn+1
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which follows from the differentiation of t2et = ∑∞
n=0

1
n! t

n+2. �

LEMMA 3.3. For n � 1, let gn(x) = ex − pn(x). Then

(i) gn(v) = g′n(v) = 0 and

g′′n(v) = ev −2eu ∑n
j=2 α j(v−u) j−2 > 0 (with g′′1(v) = ev).

(ii) For n � 2, gn(x) has zero of multiplicity n−1 at u and

g(n−1)
n (u) = eu(n−1)!(v−u)2αn+1 > 0.

Proof. Note that

p′n(x) = ev +2eu
n

∑
j=2

α j(x− v)(x−u) j−2 + eu
n

∑
j=3

( j−2)α j(x− v)2(x−u) j−3,

p′′n(x) = 2eu
n

∑
j=2

α j(x−u) j−2 +4eu
n

∑
j=3

( j−2)α j(x− v)(x−u) j−3

+ eu
n

∑
j=4

( j−2)( j−3)α j(x− v)2(x−u) j−4.

Invoking Lemma 3.2, (i) is immediate now. For k � 2, let us define fk(x) = αk(x−
v)2(x−u)k−2. Then we observe that

f ( j)
k (u) = 0 if 0 � j < k−2 or j > k

f (k)
k (x) = k!αk

f (k−1)
k (x) = (k−1)!2αk(x− v)+ (k−1)!(k−2)αk(x−u) (3.4)

f (k−2)
k (x) = (k−2)!αk(x− v)2 +(k−2)!2(k−2)αk(x− v)(x−u)

+
1
2
(k−2)!(k−2)(k−3)αk(x−u)2.

Note that by Lemma 3.2 (ii) g′2(u) = eu(1−α1−2α2(u− v)) = (v−u)2α3. Next, for
n � 3, since

gn(x) = ex − ev− euα1(x− v)− eu
n

∑
k=2

fk(x), (3.5)

we have

g(n−1)
n (u)

eu = 1− f (n−1)
n−1 (u)− f (n−1)

n (u)

= 1− (n−1)!αn−1+(n−1)!2αn(v−u)

= (n−1)!
(

2αn(v−u)−αn−1 +
1

(n−1)!

)
= (n−1)!(v−u)2αn+1 > 0
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by (3.4) and Lemma 3.2 (ii). Finally, it remains to show g( j)
n (u) = 0, for 0 � j �

n− 2. Direct calculation gives pn(u) = eu and by Lemma 3.2 (ii) p′n(u) = eu(α1 −
2α2(v− u)+ α3(v− u)2) = eu. Hence gn(u) = g(1)

n (u) = 0. Using (3.5) and Lemma
3.2 (ii) again for 2 � j � n−2, we obtain

g( j)
n (u)
eu = 1−

n

∑
k=2

f ( j)
k (u) = 1− f ( j)

j (u)− f ( j)
j+1(u)− f ( j)

j+2(u)

= 1− j!α j + j!2α j+1(v−u)− j!α j+2(v−u)2

= j!

(
−α j+2(v−u)2 +2α j+1(v−u)−α j +

1
j!

)
= 0. �

Now we prove Theorem 3.1.

Proof of Theorem 3.1. Since by Lemma 3.2 αn is a positive sequence and (x−
v)2(x− u) j−2 � 0 for x � u, j � 2, it is clear from equation (3.1) that pn(x) �
pn+1(x) for x � u. We are to show gn(x) � 0 for x � u. Lemma 3.3 shows that
gn(x) has double zero at x = v and (n−1)-multiple zero at x = u. By Proposition
2.2, these are all the zeros of gn(x). Lemma 3.3 (i) implies that gn(v) = 0 is a
local minimum. Moreover, combining Lemma 3.3 (ii) with Proposition 2.1, we realize
that gn(u) = 0 is a local minimum for odd n(> 1) and gn(x) is increasing in
some neighborhood of x = u for even n. Based on this analysis, we may conclude
that gn(x) � 0 for x � u. Finally, suppose p(x) is a polynomial of degree n with
pn−1(x) � p(x) � ex for x � u. This means 0 � p(x)− pn−1(x) � gn−1(x) for x �
u. Let f (x) = p(x)− pn−1(x). Then f (x) is a polynomial of degree n and by
Lemma 3.3 and Proposition 2.5, it has double zero at v and n− 2-multiple zero at
u. Hence

f (x) = α(x− v)2(x−u)n−2 (3.6)

for some α ∈ R. By Proposition 2.5 with Lemma 3.3 (ii), we obtain

(n−2)!α(u− v)2 = f (n−2)(u) � g(n−2)
n−1 (u) = (n−2)!(v−u)2euαn

which implies α � euαn. Therefore by equation (3.1), (3.2), and (3.6) we have

pn(x)− p(x) = pn(x)− pn−1(x)− f (x) = (euαn −α)(x− v)2(x−u)n−2 � 0

for x � u. �
In Proposition 5.6, we will show that pn(x) converges rapidly to ex in the sense

that ex − pn(x) is negligible if n is large enough. Therefore for all sufficiently large
n, pn(x) is positive on [u,∞). Changing variable to −x and taking reciprocals,
we obtain a (rational) upper bound version of Theorem 3.1.

THEOREM 3.4. For all sufficiently large n, pn(x) > 0 on [u,∞) and

ex � 1
pn+1(−x)

� 1
pn(−x)
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for x �−u. Furthermore, these bounds are optimal in the sense that if p(x) is a poly-
nomial of degree n with ex � 1

p(−x) � 1
pn−1(−x) for x � −u, then 1

pn(−x) � 1
p(−x) for

x � −u.

4. Polynomial upper bounds of ex

Consider the secant line connecting two points (μ ,eμ) and (ν,eν ). One can
ask for the best quadratic polynomial approximation of ex that is between the secant
line and the curve y = ex. If there exists such quadratic polynomial, then one can
ask for the best cubic polynomial between the quadratic and y = ex, and so on. The
following theorem answers these questions. We assume that μ < ν through the paper.

THEOREM 4.1. For n � 1, let

qn(x) =
n−1

∑
j=0

eμ

j!
(x− μ) j + βn(x− μ)n (4.1)

where

βn =
∞

∑
j=0

eμ

(n+ j)!
(ν − μ) j.

Then ex � qn+1(x) � qn(x) on [μ ,ν]. Furthermore, these bounds are optimal in the
sense that if q(x) is a polynomial of degree n with ex � q(x) � qn−1(x) on [μ ,ν],
then qn(x) � q(x) on [μ ,ν].

We need a simple observation for the proof of the theorem.

LEMMA 4.2. For n � 1,

(i) βn > 0

(ii) βn+1 =
1

ν − μ

(
βn− eμ

n!

)
.

Proof. These properties are obvious from the definition. �

Proof of Theorem 4.1. Let

gn(x) = qn(x)− ex =
n−1

∑
j=0

eμ

j!
(x− μ) j + βn(x− μ)n− ex. (4.2)

Note g( j)
n (μ) = 0 for 0 � j � n−1 and by Lemma 4.2 (ii), g(n)

n (μ) = n!βn− eμ =
n!(ν − μ)βn+1 > 0. Hence gn(x) has n -multiple zero at x = μ and it is increasing
on a small neighborhood of x = μ . Also note gn(ν) = 0 by the definition of βn.
Invoking Proposition 2.2, these are all the zeros of gn(x). Therefore we conclude that
gn(x) � 0 or ex � qn(x) on [μ ,ν]. Let

hn(x) =
qn(x)−qn+1(x)

(x− μ)n = βn− eμ

n!
−βn+1(x− μ).
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Then h′n(x) = −βn+1 < 0, hn(μ) = βn− eμ/n! = (ν −μ)βn+1 > 0 and hn(ν) = βn−
eμ/n!−βn+1(ν −μ)= 0 which means that hn(x) is decreasing to zero on [μ ,ν]. So,
hn(x) � 0 or qn+1(x) � qn(x) on [μ ,ν]. Now it remains to show the optimality of
the polynomials. Suppose q(x) is a polynomial of degree n such that ex � q(x) �
qn−1(x) on [μ ,ν]. Then 0 � qn−1(x)−q(x) � qn−1(x)−ex = gn−1(x) on [μ ,ν]. Let
f (x) = qn−1(x)− q(x). We know that gn−1(x) has (n− 1)-multiple zero at x = μ
and a simple zero at x = ν. By Proposition 2.5, f (x) also has (n−1)-multiple zero

at x = μ and at least a simple zero at x = ν and f (n−1)(μ) � g(n−1)
n−1 (μ) . Since

deg( f (x)) = n, x = ν must be a simple zero. Hence f (x) = β (x− μ)n−1(x−ν) for
some real β and by Lemma 4.2 (ii), (n− 1)!β (μ − ν) � (n− 1)!(ν − μ)βn which
implies β + βn � 0. Then for x ∈ [μ ,ν],

q(x)−qn(x) = qn−1(x)−qn(x)− f (x)

= (x− μ)n−1
(

βn−1− eμ

(n−1)!
−βn(x− μ)−β (x−ν)

)
= (x− μ)n−1 (βn(ν − x)−β (x−ν))

= (x− μ)n−1(ν − x)(β + βn) � 0. �

5. A size comparison

Let u =−ν, v =−μ through this section. According to Theorem 3.4 and Theo-
rem 4.1, 1

pn(−x) and qn(x) are both upper bounds for ex on [μ ,ν]. Then one may
ask which bound is the more precise. The following theorem tells us that there is no
uniform inequality between them but shows an interesting result.

THEOREM 5.1. For all sufficiently large integers n,

(i) The equation qn(x)− 1
pn(−x)

= 0 has only one root λn on (μ ,ν) and

qn(x)− 1
pn(−x)

{
� 0, if x ∈ [μ ,λn],
� 0, if x ∈ [λn,ν].

(ii) lim
n→∞

λn =
μ + ν

2

Roughly speaking, the theorem exposes that qn(x) is the sharper bound on the
first half of the interval [μ ,ν] and 1

pn(−x) is the sharper bound on the second half.
The proof of the theorem is quite complicated and technical. First, we wish to establish
another expression for the number αn defined by (3.2) whose proof needs the lemma
below.
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LEMMA 5.2. For integers n,k with 0 � k < n,

(i)
k

∑
j=0

(−1) j
(

n
k− j

)
=
(

n−1
k

)

(ii)
k

∑
j=0

(−1) j( j +1)
(

n+1
k− j

)
=
(

n−1
k

)
.

Proof. We use the induction on k. The equations are trivial for k = 0. Next

k

∑
j=0

(−1) j
(

n
k− j

)
=
(

n
k

)
−

k−1

∑
j=0

(−1) j
(

n
k−1− j

)
=
(

n
k

)
−
(

n−1
k−1

)
=
(

n−1
k

)

where the second equality holds by the induction hypothesis. Similarly, by the induction
hypothesis for (ii) and by (i)

k

∑
j=0

(−1) j( j +1)
(

n+1
k− j

)
=
(

n+1
k

)
−

k−1

∑
j=0

(−1) j( j +2)
(

n+1
k−1− j

)

=
(

n+1
k

)
−
(

n−1
k−1

)
−

k−1

∑
j=0

(−1) j
(

n+1
k−1− j

)

=
(

n+1
k

)
−
(

n−1
k−1

)
−
(

n
k−1

)
=
(

n
k

)
−
(

n−1
k−1

)
=
(

n−1
k

)
. �

PROPOSITION 5.3. For n � 2, the numbers αn defined by (3.2) satisfy (with
u = −ν and v = −μ )

αn = eν−μ
∞

∑
j=0

1
(n+ j)!

(
n+ j−2

j

)
(μ −ν) j =

∞

∑
j=0

j +1
(n+ j)!

(ν − μ) j.

Proof. Note that by (3.2)

αn =
n−1+ μ−ν

(ν − μ)n

(
n−2

∑
j=0

(ν − μ) j

j!
− eν−μ

)
+

1
(n−2)!(ν − μ)

=
n−1+ μ−ν

(ν − μ)n

(
−

∞

∑
j=n−1

(ν − μ) j

j!

)
+

1
(n−2)!(ν − μ)

=
(

1−n
ν − μ

+1

) ∞

∑
j=0

(ν − μ) j

(n+ j−1)!
+

1
(n−2)!(ν − μ)

=
(

1+
n−1
μ −ν

)
eν−μ

∞

∑
j=0

(μ −ν) j

j!

∞

∑
j=0

(−1) j(μ −ν) j

(n+ j−1)!
− 1

(n−2)!(μ −ν)
.
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Using Lemma 5.2 (i), it is easy to see that

∞

∑
j=0

(μ −ν) j

j!

∞

∑
j=0

(−1) j(μ −ν) j

(n+ j−1)!
=

∞

∑
j=0

1
(n+ j−1)!

(
n+ j−2

j

)
(μ −ν) j. (5.1)

Thus we obtain

αn

eν−μ =
(

1+
n−1
μ −ν

) ∞

∑
j=0

1
(n+ j−1)!

(
n+ j−2

j

)
(μ −ν) j

− 1
(n−2)!(μ −ν)

∞

∑
j=0

(μ −ν) j

j!

=
∞

∑
j=0

1
(n+ j−1)!

(
n+ j−2

j

)
(μ −ν) j +

n−1
μ −ν

1
(n−1)!

+(n−1)
∞

∑
j=0

1
(n+ j)!

(
n+ j−1

j +1

)
(μ −ν) j

− 1
(n−2)!(μ −ν)

− 1
(n−2)!

∞

∑
j=0

(μ −ν) j

( j +1)!

=
∞

∑
j=0

1
(n+ j)!

(
n+ j−2

j

)
(μ −ν) j.

Also by using Lemma 5.2 (ii), one can show that

αn = eν−μ
∞

∑
j=0

1
(n+ j)!

(
n+ j−2

j

)
(μ −ν) j

=
∞

∑
j=0

(ν − μ) j

j!

∞

∑
j=0

(−1) j

(n+ j)!

(
n+ j−2

j

)
(ν − μ) j =

∞

∑
j=0

j +1
(n+ j)!

(ν − μ) j. �

DEFINITION 5.4. For integers n � 2, we define

γn =
∞

∑
j=0

1
(n+ j)!

(
n+ j−1

j

)
(μ −ν) j,

δn = eμ−ναn =
∞

∑
j=0

1
(n+ j)!

(
n+ j−2

j

)
(μ −ν) j.

LEMMA 5.5. For integers n � 2,

(i) γn = eμ−ν
∞

∑
j=0

(ν − μ) j

(n+ j)!
> 0

(ii) δn− γn = (ν − μ)δn+1
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(iii)
eμ−ν

n!
� δn � eν−μ

n!
.

Proof. (i) Using Lemma 5.2 again, we see that

eμ−ν
∞

∑
j=0

(ν − μ) j

(n+ j)!
=

∞

∑
j=0

(μ −ν) j

j!

∞

∑
j=0

(−1) j(μ −ν) j

(n+ j)!

=
∞

∑
j=0

1
(n+ j)!

(
n+ j−1

j

)
(μ −ν) j = γn.

(ii) This assertion is clear because
(n+ j−1

j

)− (n+ j−2
j

)
=
(n+ j−2

j−1

)
.

(iii) Note that

δn �
∞

∑
j=0

(ν − μ) j

(n+ j)(n+ j−1) j!(n−2)!
� 1

n!

∞

∑
j=0

(ν − μ) j

j!
=

eν−μ

n!

and using αn defined by (3.2), we have

δn

eμ−ν = αn =
n−1−ν + μ

(ν − μ)n

(
n−2

∑
j=0

(ν − μ) j

j!
− eν−μ

)
+

1
(n−2)!(ν − μ)

=
1

(n−2)!(ν − μ)
− n−1−ν + μ

(ν − μ)n

∞

∑
j=n−1

(ν − μ) j

j!
.

Here ∑∞
j=n−1

(ν−μ) j

j! � (ν−μ)n−1

(n−1)! and if n > ν − μ , then

∞

∑
j=n−1

(ν − μ) j

j!
=

(ν − μ)n−1

(n−1)!

(
1+

ν − μ
n

+
(ν − μ)2

n(n+1)
+ · · ·

)

� (ν − μ)n−1

(n−1)!

∞

∑
j=0

(
ν − μ

n

) j

=
n(ν − μ)n−1

(n−1)!(n−ν + μ)
.

Thus if n−1 < ν − μ then

δn

eμ−ν � 1
(n−2)!(ν − μ)

+
ν − μ −n+1

(ν − μ)n · (ν − μ)n−1

(n−1)!
=

1
(n−1)!

� 1
n!

and if n−1 � ν − μ then

δn

eμ−ν � 1
(n−2)!(ν − μ)

− n−1−ν + μ
(ν − μ)n · n(ν − μ)n−1

(n−1)!(n−ν + μ)

=
1

(n−1)!(n−ν + μ)
� 1

n!
. �

(5.2)
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PROPOSITION 5.6. For any real number x,

qn(x)− ex = eν(x− μ)n(ν − x)
∞

∑
j=0

γn+ j+1(x− μ) j, (5.3)

ex − pn(x) = eu(x− v)2(x−u)n−1
∞

∑
j=0

αn+ j+1(x−u) j (5.4)

and

0 < qn(x)− ex � ex

(n+1)!
(x− μ)n(ν − x), for μ < x < ν, (5.5)

0 < ex − pn(x) � ex+2(v−u)

(n+1)!
(x−u)n−1(x− v)2, for x > u. (5.6)

Proof. First, observe that

qn(x)− ex =
n−1

∑
j=0

eμ

j!
(x− μ) j + βn(x− μ)n−

∞

∑
j=0

eμ

j!
(x− μ) j

= eμ(x− μ)n
∞

∑
j=1

1
(n+ j)!

(
(ν − μ) j − (x− μ) j)

= eμ(x− μ)n(ν − x)
∞

∑
j=1

1
(n+ j)!

j−1

∑
k=0

(ν − μ) j−1−k(x− μ)k

= eμ(x− μ)n(ν − x)
∞

∑
j=0

(
∞

∑
k=0

(ν − μ)k

(n+ j +1+ k)!

)
(x− μ) j

= eν (x− μ)n(ν − x)
∞

∑
j=0

γn+ j+1(x− μ) j

which gives equation (5.3). Since by definition 5.4 and Lemma 5.5 (i)

0 < γn =
∞

∑
j=0

1
j!(n−1)!(n+ j)

(μ −ν) j � 1
n!

∞

∑
j=0

(μ −ν) j

j!
=

1
n!

eμ−ν ,

we have

0 < qn(x)− ex = eν(x− μ)n(ν − x)
∞

∑
j=0

γn+ j+1(x− μ) j

� eμ(x− μ)n(ν − x)
∞

∑
j=0

(x− μ) j

(n+ j +1)!

� eμ(x− μ)n(ν − x)
1

(n+1)!

∞

∑
j=0

(x− μ) j

j!

=
ex

(n+1)!
(x− μ)n(ν − x)
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for μ < x < ν. On the other hand, note that

ex = ev + ev(x− v)+ ev(x− v)2
∞

∑
j=2

(x− v) j−2

j!

= ev + ev(x− v)+ ev(x− v)2
∞

∑
j=2

1
j!

j−2

∑
k=0

(
j−2
k

)
(u− v) j−2−k(x−u)k

= ev + ev(x− v)

+ eu(x− v)2
∞

∑
j=2

(
ev−u

∞

∑
k=0

1
( j + k)!

(
j−2+ k

k

)
(u− v)k

)
(x−u) j−2

= ev + ev(x− v)+ eu(x− v)2
∞

∑
j=2

α j(x−u) j−2

which implies (5.4) by definition (3.1) of pn(x). Again by definition 5.4 and Lemma

5.5 (iii) with ν = −u,μ = −v, we know that αn � e2(v−u)

n! . Therefore

ex − pn(x) = eu(x− v)2(x−u)n−1
∞

∑
j=0

αn+ j+1(x−u) j

� eu(x− v)2(x−u)n−1e2(v−u)
∞

∑
j=0

(x−u) j

(n+ j +1)!

� ex+2(v−u)

(n+1)!
(x−u)n−1(x− v)2

for x > u. �

The proof of Theorem 5.1 will be presented step by step. By equation (5.4) with
−x and u = −ν,v = −μ ,

e−x− pn(−x) = e−ν(x− μ)2(ν − x)n−1
∞

∑
j=0

αn+ j+1(ν − x) j

= e−μ(x− μ)2(ν − x)n−1
∞

∑
j=0

δn+ j+1(ν − x) j

on [μ ,ν]. Therefore

qn(x)− 1
pn(−x)

= qn(x)− ex + ex− 1
pn(−x)

= qn(x)− ex − ex

pn(−x)
(e−x − pn(−x))
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= eν(x− μ)n(ν − x)
∞

∑
j=0

γn+ j+1(x− μ) j

− ex−μ

pn(−x)
(x− μ)2(ν − x)n−1

∞

∑
j=0

δn+ j+1(ν − x) j

= (x− μ)2(ν − x)T (x)

where

T (x) = (x− μ)n−2 f (x)− (ν − x)n−2g(x),

f (x) = eν
∞

∑
j=0

γn+ j+1(x− μ) j,

g(x) =
ex−μ

pn(−x)

∞

∑
j=0

δn+ j+1(ν − x) j.

And let

g1(x) =
∞

∑
j=0

δn+ j+1(ν − x) j,

h(x) = (ν − x)n−2g(x) =
1− ex pn(−x)

(x− μ)2(ν − x) pn(−x)
.

Then g(x) = ex−μ

pn(−x)g1(x) and e−x − pn(−x) = e−μ(x− μ)2(ν − x)n−1g1(x).
We assume that n is sufficiently large. Then f (x) > 0, g(x) > 0 on [μ ,ν] and

T (μ) =−(ν −μ)n−2g(μ) < 0, T (ν) = (ν −μ)n−2 f (ν) > 0. Hence the first assertion
of the theorem would follow if we show that T (x) is increasing on [μ ,ν]. But, to see
that T (x) is increasing, it is enough to show that h(x) = (ν −x)n−2g(x) is decreasing
because (x− μ)n−2 f (x) is clearly increasing.

LEMMA 5.7. g1(x) > |g′1(x)| on [μ ,ν].

Proof. Note that |g′1(x)|= ∑∞
j=0( j+1)δn+ j+2(ν −x) j. Invoking Proposition 5.3,

eν−μ(δn+ j+1− ( j +1)δn+ j+2)
= αn+ j+1− ( j +1)αn+ j+2

=
∞

∑
i=0

i+1
(n+ i+ j +1)!

(ν − μ)i−
∞

∑
i=0

(i+1)( j +1)
(n+ i+ j +2)!

(ν − μ)i

=
∞

∑
i=0

(i+1)(n+ i+1)
(n+ i+ j +2)!

(ν − μ)i > 0.

Then g1(x) > |g′1(x)| is obvious now. �
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LEMMA 5.8. If n is sufficiently large, then

(i) p′n(−x) > 0 and g′(x) > 0 on [μ ,ν]

(ii)
e−x − p′n(−x)

e−μ(x− μ)(ν − x)n−2g1(x)
� (x− μ)(ν − x)+ (n−1)(x− μ)−2(ν− x)

(iii)
p′n(−x)− pn(−x)

e−μ(x− μ)(ν − x)n−2g1(x)
� (x− μ)(ν − x)+2(ν − x)− (n−1)(x− μ).

Proof. Note that

e−x − pn(−x)
e−μ = (x− μ)2(ν − x)n−1g1(x),

p′n(−x)− e−x

e−μ = 2(x− μ)(ν − x)n−1g1(x)

− (n−1)(x− μ)2(ν − x)n−2g1(x)+ (x− μ)2(ν − x)n−1g′1(x).

Since g′1(x) is negative, by deleting the last term of the second equation and adding
them side by side, we obtain (iii). And (ii) follows if we replace g′1(x) by −g1(x).
Finally, by Lemma 5.5 (iii),

g1(x) =
∞

∑
j=0

δn+ j+1(ν − x) j �
∞

∑
j=0

eν−μ

(n+ j +1)!
(ν − x) j

�
∞

∑
j=0

eν−μ

(n+1)! j!
(ν − x) j =

eν−μ

(n+1)!
eν−x � e2(ν−μ)

(n+1)!

(5.7)

on [μ ,ν]. Therefore for sufficiently large n,

p′n(−x) = e−x +2e−μ(x− μ)(ν − x)n−1g1(x)

− e−μ(n−1)(x− μ)2(ν − x)n−2g1(x)+ e−μ(x− μ)2(ν − x)n−1g′1(x)

� e−ν − e−μ(n+2)(ν − μ)n e2(ν−μ)

(n+1)!
> 0.

By this result and Lemma 5.7, we conclude that

g′(x) =
pn(−x)(g1(x)+g′1(x))+g1(x)p′n(−x)

eμ−xp2
n(−x)

is positive. �

LEMMA 5.9. If n is sufficiently large and x ∈ [μ ,ν], then

1
pn(−x)

� ex +2e4ν−3μ (ν − μ)n+1

(n+1)!
.
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Proof. Using (5.7), we see that

e−x− pn(−x) = e−μ(x− μ)2(ν − x)n−1g1(x) � e−μ(ν − μ)n+1 e2(ν−μ)

(n+1)!
.

Therefore

1
pn(−x)

=
ex

1− ex(e−x − pn(−x))
� ex

1− e3(ν−μ) (ν−μ)n+1

(n+1)!

= ex(1+ ε + ε2 + · · ·) � ex(1+2ε) � ex +2eνε.

where ε = e3(ν−μ) (ν−μ)n+1

(n+1)! . �

Proof of Theorem 5.1. (i) It suffices to show that h(x) = (ν − x)n−2g(x) is de-
creasing on [μ ,ν]. Note that h′(x) = A(x)/e−x(x− μ)3(ν − x)2 p2

n(−x) where

A(x) = (3x− μ −2ν)pn(−x)(e−x − pn(−x))

+ (x− μ)(ν − x)(e−xp′n(−x)− p2
n(−x))

= (3x− μ −2ν)pn(−x)(e−x − pn(−x))

+ (x− μ)(ν − x)(e−x + pn(−x))(p′n(−x)− pn(−x))

+ (x− μ)(ν − x)pn(−x)(e−x − p′n(−x)).

Applying the inequalities in Lemma 5.8, we have

A(x)
e−μ(x− μ)2(ν − x)n−1g1(x)

� pn(−x)(3x− μ −2ν)

+ (e−x + pn(−x))((x− μ)(ν − x)+2(ν − x)− (n−1)(x− μ))
+ pn(−x)((x− μ)(ν − x)+ (n−1)(x− μ)−2(ν− x))

= pn(−x)Q1(x)+ e−xQ2(x) =: B(x)

where

Q1(x) = 3x− μ −2ν +2(x− μ)(ν − x)
Q2(x) = (x− μ)(ν − x)+2(ν − x)− (n−1)(x− μ).

Because pn(−x) � e−x , if Q1(x) � 0, then

B(x) � e−x(Q1(x)+Q2(x)) = e−x(x− μ)(3(ν − x)+2−n) < 0

for sufficiently large n. Now assume that Q1(x) < 0. Since

e−x − pn(−x) = e−μ(x− μ)2(ν − x)n−1g1(x) � e−μ(x− μ)(ν − μ)n e2(ν−μ)

(n+1)!
,
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we have

B(x) = pn(−x)Q1(x)+ e−xQ2(x)

�
(

e−x− (x− μ)
e2ν(ν − μ)n

e3μ(n+1)!

)
Q1(x)+ e−xQ2(x)

= e−x(Q1(x)+Q2(x))− (x− μ)
e2ν(ν − μ)n

e3μ(n+1)!
Q1(x)

= e−x(x− μ)
(

3(ν − x)+2−n− exe
2ν(ν − μ)n

e3μ(n+1)!
Q1(x)

)
< 0

on the open interval (μ ,ν). Therefore h′(x) < 0 and so h(x) is decreasing.
(ii) Now T (x) has the unique zero λn on (μ ,ν). Let τ0 = μ+ν

2 and η0 =
ν−μ

2 so that τ0 − μ = ν − τ0 = η0. Then, since 1
pn(−x) � ex,

T (τ0)
ηn−2

0

= eν
∞

∑
j=0

γn+ j+1 ·η j
0 − eτ0−μ 1

pn(−τ0)

∞

∑
j=0

δn+ j+1 ·η j
0

� eν
∞

∑
j=0

(γn+ j+1− δn+ j+1)η j
0

= −eν(ν − μ)
∞

∑
j=0

δn+ j+2 ·η j
0 < 0

which means that T (τ0) < 0. Let

τ1 = τ1(n) = μ +
ν − μ

2

(
1+

ν − μ
e2(μ−ν)(n+2)−ν + μ

) 1
n−2

.

Note that τ1 > μ+ν
2 = τ0 and lim

n→∞
τ1(n) = τ0. Thus, if T (τ1) > 0, then τ0 � λn �

τ1(n) and we can conclude that lim
n→∞

λn = τ0 = μ+ν
2 . It remains to show that T (τ1) >

0. Because T (x) = (x− μ)n−2 f (x)− h(x) and f (x) is increasing while h(x) is
decreasing, we know that T (τ1) � (τ1 − μ)n−2 f (τ0)− h(τ0). Let η1 = τ1 − μ and
η = η1/η0 so that η0 < η1. Then

T (τ1) � ηn−2
1 eν

∞

∑
j=0

γn+ j+1 ·η j
0 −ηn−2

0
eτ0−μ

pn(−τ0)

∞

∑
j=0

δn+ j+1 ·η j
0 . (5.8)

Combining (5.8) with Lemma 5.9, we have

T (τ1) � ηn−2
1 eν

∞

∑
j=0

γn+ j+1 ·η j
0 −ηn−2

0 eν
∞

∑
j=0

δn+ j+1 ·η j
0

−2ηn−2
0 eτ0+4(ν−μ) (ν − μ)n+1

(n+1)!

∞

∑
j=0

δn+ j+1 ·η j
0
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Since (5.7) implies that
∞

∑
j=0

δn+ j+1 ·η j
0 � eν−μ+η0

(n+1)!
, we obtain

T (τ1)
ηn−2

0 eν
�

∞

∑
j=0

(
ηn−2γn+ j+1− δn+ j+1

)
η j

0 −
2e5(ν−μ)(ν − μ)n+1

(n+1)!(n+1)!
.

Now we complete the proof of the positivity of T (τ1) by showing that

ηn−2γn+ j+1− δn+ j+1 � 0 (5.9)

for all j � 0 and by showing that the first term of the infinite sum

ηn−2γn+1− δn+1 >
2e5(ν−μ)(ν − μ)n+1

(n+1)!(n+1)!
. (5.10)

By the definition of τ1, we see that

ηn−2 = 1+
ν − μ

e2(μ−ν)(n+2)−ν + μ

and by Lemma 5.5, we have

δn+ j+1

γn+ j+1
= 1+(ν − μ)

δn+ j+2

γn+ j+1
= 1+(ν − μ)

δn+ j+2

δn+ j+1− (ν − μ)δn+ j+2

� 1+(ν − μ)
eν−μ/(n+ j +2)!

eμ−ν/(n+ j +1)!− (ν− μ)eν−μ/(n+ j +2)!

� 1+
ν − μ

e2(μ−ν)(n+2)−ν + μ
= ηn−2

from which (5.9) follows. Finally, by inequality (5.2), if n− 1 � ν − μ then δn �
eμ−ν/((n−1)!(n−ν + μ)). Therefore

ηn−2γn+1− δn+1

=
(

1+
ν − μ

e2(μ−ν)(n+2)−ν + μ

)
(δn+1− (ν − μ)δn+2)− δn+1

=
ν − μ

e2(μ−ν)(n+2)−ν + μ
δn+1−

(
1+

ν − μ
e2(μ−ν)(n+2)−ν + μ

)
(ν − μ)δn+2

� ν − μ
e2(μ−ν)(n+2)−ν + μ

· eμ−ν

n!(n+1−ν + μ)

−
(

1+
ν − μ

e2(μ−ν)(n+2)−ν + μ

)
(ν − μ)

eν−μ

(n+2)!

=
eμ−ν(ν − μ)2(

e2(μ−ν)(n+2)−ν + μ
)
(n+1)!(n+1−ν + μ)

which is obviously greater than the right side of (5.10) for all sufficiently large n. �
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