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Abstract. In the present paper, we show that if A ∈Mn(C) is a non scalar strictly positive matrix
such that 1 ∈ σ(A) , and p > q > 1 with 1

p + 1
q = 1, then there exists X ∈ Mn(C) such that

ω(AXA) > ω( 1
p ApX + 1

q XAq) . Moreover, several numerical radius inequalities are presented

for Hilbert space operators. In particular, we prove that if p � q > 1 with 1
p + 1

q = 1 , then

ω r(A∗XB) �
∥∥∥ 1

p (A∗|X∗|A)
rp
2 + 1

q (B∗|X |B)
rq
2

∥∥∥ , for all A,B,X ∈ B(H) and r � 2
q .

1. Introduction

Let B(H) denote the algebra of all bounded linear operators on a complex Hilbert
space H with inner product 〈., .〉 . For A ∈ B(H) , the usual operator norm of A is
defined by

‖A‖ = sup{‖Ax‖ : x ∈ H,‖x‖ = 1},
where ‖x‖ = 〈x,x〉1/2 .

The numerical range of A is defined as the set of complex numbers given by

W (A) = {〈Ax,x〉 : x ∈ H,‖x‖ = 1},

and the numerical radius of A is given by

ω(A) = sup{|〈Ax,x〉| : x ∈ H,‖x‖ = 1}.

We recall the following results that were proved in [7].

LEMMA 1. Let A ∈ B(H) and let ω(.) be the numerical radius. Then

(i) ω(.) is a norm on B(H) ,

(ii) ω(.) is not a unitarily invariant norm,
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(iii) ω(.) is not submultiplicative,

(iv) ω(UAU∗) = ω(A), for all unitary operators U ,

(v) ω(Ak) � ω(A)k , k = 1,2,3, . . . (power inequality)

(vi) 1
2‖A‖ � ω(A) � ‖A‖.

For positive real numbers a,b , the classical Young inequality says that if p,q > 1
such that 1

p + 1
q = 1, then

ab � ap

p
+

bq

q
. (1)

Replacing a,b by their squares, we could write (1) in the form

(ab)2 � a2p

p
+

b2q

q
. (2)

The authors interested to replace the numbers a,b by positive operators A,B . But there
are some difficulties, for example if A and B are positive operators, the operator AB
is not positive in general. One way to get around this is to compare not the operators
themselves but to the singular values or norms of them.

In section 2, we establish that, if p > q > 1 such that 1
p + 1

q = 1 and A ∈ Mn(C)
be a non scalar strictly positive matrix such that 1∈ σ(A) , then there exists X ∈Mn(C)
such that ω(AXA) > ω( 1

pApX + 1
qXAq) .

In section 3, by using the Young inequality we shall extend some known inequali-
ties.

Throughout the paper we use the term positive for a positive semidefinite matrix,
and strictly positive for a positive definite matrix. Also we use the notation A � 0
to mean that A is positive, A > 0 to mean it is strictly positive, |||A||| to denote an
arbitrary unitarily invariant norm of A and let J be an square matrix with entries equal
to 1.

2. Matrix Young inequality

Bhatia and Kittaneh in 1990 [5] established a matrix mean inequality as follows:

|||A∗B||| � 1
2
|||A∗A+B∗B|||, (3)

for matrices A,B ∈ Mn(C) .
In [4] a generalization of (3) was proved, for all X ∈ Mn(C) ,

|||A∗XB||| � 1
2
|||AA∗X +XBB∗|||. (4)

Ando in 1995 [2] obtained a matrix Young inequality:

|||AB||| �
∣∣∣∣
∣∣∣∣
∣∣∣∣Ap

p
+

Bq

q

∣∣∣∣
∣∣∣∣
∣∣∣∣ , (5)
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for p,q > 1 with 1
p + 1

q = 1 and positive matrices A,B . Also, in [1], the author shows

that |||AXB||| � ||| 1pApX + 1
qXBq||| does not hold in general.

Now, we consider the inequalities (3) and (5) with the numerical radius norm. We
know that ω(A) = ‖A‖ if ( but not only if) A is normal and by Lemma 1(vi), we obtain
the following:

PROPOSITION 1. If A,B are n×n matrices, then

ω(A∗B) � 1
2

ω(A∗A+B∗B). (6)

Moreover, if A and B are positive matrices, then

ω(AB) � ω
(

Ap

p
+

Bq

q

)
. (7)

For A,B ∈ Mn(C) , denoted by A ◦B the Schur ( Hadamard ) product of A and
B , that is, the entrywise product. The linear operator SA on Mn(C) , called the Schur
multiplier operator, defined by SA(X) := A◦X , ∀X ∈ Mn(C). The induced norm of SA

with respect to numerical radius norm will be denoted by

‖SA‖ω = sup
X 	=0

ω(SA(X))
ω(X)

= sup
X 	=0

ω(A◦X)
ω(X)

.

Ando and Okubo in 1991, [3, Theorem 2 and Corollary 4], proved the following
theorem:

THEOREM 1. For A ∈ Mn(C) the following assertions are equivalent:

(i) ‖SA‖ω � 1.

(ii) There is 0 � R ∈ Mn(C) such that

(
R A
A∗ R

)
� 0 and R◦ I � I.

Moreover, if A = (ai j) be an n×n positive matrix,

(iii) ‖SA‖ω = maxaii.

Now, in the following theorem, we show that, if A,B � 0, there exists X ∈ Mn(C)
such that ω(AXB) � ω( 1

pApX + 1
qXBq).

THEOREM 2. Let p > q > 1 such that 1
p + 1

q = 1 and let A ∈ Mn(C) be a non
scalar strictly positive matrix such that 1 ∈ σ(A) . Then there exists X ∈ Mn(C) such
that

ω(AXA) > ω
(

1
p
ApX +

1
q
XAq

)
. (8)
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Proof. Without loss of generality, assume that A = diag(a1,a2,a3, . . . ,an) where
a1 = 1, a2 	= 1.

It is easy to show that
1
p

+
aq

2

q
	= 1

q
+

ap
2

p
. (9)

Assume if possible that

ω(AXA) � ω
(

1
p
ApX +

1
q
XAq

)
, ∀X ∈ Mn(C). (10)

Now, let C = (ci j) and E = (ei j) be n× n matrices, where ci j = ap
i
p +

aq
j

q , and
ei j = aia j. Then we rewrite (10) in the following form

ω(E ◦X) � ω(C ◦X), ∀X ∈ Mn(C). (11)

Let D be the entry wise inverse of C (C ◦D = J). We replace X by (D ◦X) in (11),
then

ω((E ◦D)◦X) � ω(X), ∀X ∈ Mn(C). (12)

Let F := (E ◦D) = ( fi j). Then by (12), we obtain that ω(F ◦X) � ω(X) for all X ∈
Mn(C) and hence,

‖SF‖ω = sup
X 	=0

ω(F ◦X)
ω(X)

� 1. (13)

By Theorem 1, there exists an n×n matrix X = (xi j) � 0 with 0 � xii � 1, (1 �

i � n) , such that

(
X F
F∗ X

)
� 0. By considering X̃ := (x̃i j) such that x̃i j = xi j if i 	= j

and x̃ii = 1, we obtain that (
X̃ F
F∗ X̃

)
� 0.

Since, any principal submatrix of the above matrix is positive, we have⎛
⎜⎜⎝

1 x 1 f12

x 1 f21 f22

1 f21 1 x
f12 f22 x 1

⎞
⎟⎟⎠� 0, where x := x̃12 = x12.

By using the Schur complement Theorem [4, Theorem 1.3.3], we obtain that⎛
⎝ 1 f21 f22

f21 1 x
f22 x 1

⎞
⎠−

⎛
⎝ x

1
f12

⎞
⎠( x 1 f12

)
=

⎛
⎝ 1−|x|2 f21 − x f22− x f12

f21− x 0 x− f12

f22 − x f12 x− f12 1− f 2
12

⎞
⎠� 0.

Since the leading principle submatrices of the above matrix is positive, we have f21 −
x = x− f12 = 0 and hence f12 = f21. But by (9) we know that f12 	= f21, a contradic-
tion. �

As in the proof of Theorem 2, the relations (10), (11), (12), and (13) are equivalent,
so we state the following corollary.
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COROLLARY 1. Let p � q > 1 such that 1
p + 1

q = 1 and A ∈ Mn(C) be a strictly
positive matrix, and let F be as in the proof of Theorem 2. Then the following are
equivalent:

(i) ‖SF‖ω � 1.

(ii) ω(AXA) � ω( 1
pApX + 1

qXAq) (X ∈ Mn(C)).

The following corollary shows that, we cannot remove the condition, p 	= q, in
Theorem 2.

COROLLARY 2. Let A ∈ M2(C) be a non scalar strictly positive matrix such that
1 ∈ σ(A) . Then for all X ∈ M2(C)

ω(AXA) � ω
(

1
2
A2X +

1
2
XA2

)
.

Proof. Without loss of generality, assume that A = diag(1,a) where a 	= 1, a > 0.

Let F be as in the proof of Theorem 2. Then F =

(
1 2a

1+a2
2a

1+a2 1

)
� 0 and hence, by

Theorem 1 (iii), we have ‖SF‖ω = 1. Now by Corollary 1, we obtain that ω(AXA) �
ω( 1

2A2X + 1
2XA2). �

The following example shows that, we cannot remove the condition 1 ∈ σ(A) , in
the Theorem 2.

EXAMPLE 1. Let a = 1.2255, b = 0.7, p = 5, and let A = diag(a,b) . Then we
have ap

p + bq

q = aq

q + bp

p .

Now, let F = ( fi j) =

⎛
⎝ a2

ap
p + aq

q

ab
ap
p + bq

q
ab

ap
p + bq

q

b2

bp
p + bq

q

⎞
⎠ and X =

(
1 f12

f21 1

)
. It is readily seen

that X � 0 and

(
X F
F∗ X

)
� 0. By Theorem 1 we obtain that ‖SF‖ω � 1. By using

Corollary 1, ω(AXA) � ω( 1
pApX + 1

qXAq).

3. Numerical radius inequalities

Let A ∈ B(H). we know that 1
2‖A‖ � ω(A) � ‖A‖ (see Lemma 1(vi)). These

inequalities was improved in [8, 10] as follows:

ω(A) � 1
2
‖|A|+ |A∗|‖ � 1

2
(‖A‖+‖A2‖ 1

2 ), (14)

1
4
‖A∗A+AA∗‖ � ω2(A) � 1

2
‖A∗A+AA∗‖, (15)

where, |A| := (A∗A)
1
2 is the absolute value of A.
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The second inequality in (15) have been established in [6] for the numerical radius
norm of operators. It has been shown that if A,B ∈ B(H) , for 0 < α < 1 and r � 1,
then

ωr(A) � 1
2

∥∥∥|A|2rα + |A∗|2r(1−α)
∥∥∥ , (16)

ωr(A+B) � 2r−2
∥∥∥|A|2rα + |A∗|2r(1−α) + |B|2rα + |B∗|2r(1−α)

∥∥∥ . (17)

In 2005, Kittaneh extended the above inequalities as follows:

THEOREM 3. [10, Theorem 2] If A,B,C,D,S,T ∈B(H), then for all α ∈ (0,1),

ω(ATB+CSD) � 1
2

(∥∥∥A|T ∗|2(1−α)A∗ +B∗|T |2(α)B+C|S∗|2(1−α)C∗ +D∗|S|2(α)D
∥∥∥) .

(18)
In particular,

ω(AB±BA) � 1
2
‖A∗A+AA∗+B∗B+BB∗‖. (19)

In 2009, Shebrawi and Albadawi extended the inequality (18), in the following
form:

THEOREM 4. [11, Theorem 2.5] Let Ai,Bi,Xi ∈ B(H)(i = 1,2, . . . ,n), and let f
and g be nonnegative functions on [0,∞) which are continuous and satisfy the relation
f (t)g(t) = t for all t ∈ [0,∞). Then for all r � 1,

ωr(
n

∑
i=1

A∗
i XiBi) � nr−1

2

(∥∥∥∥∥
n

∑
i=1

([A∗
i g

2(|X∗
i |)Ai]r +[B∗

i f 2(|Xi|)Bi]r)

∥∥∥∥∥
)

. (20)

We shall establish a numerical radius inequality that generalizes (20) and conse-
quently, generalize (16), (17), (18), (19). To prove our results, we need the following
basic lemmas.

LEMMA 2. [9, Theorem 1] Let A be an operator in B(H), and let f and g be
nonnegative functions on [0,∞) which are continuous and satisfy the relation f (t)g(t)=
t for all t ∈ [0,∞). Then for all x and y in H .

|〈Ax,y〉| � ‖ f (|A|)x‖‖g(|A∗|)y‖. (21)

The following lemma is a consequence of the spectral theorem for positive opera-
tors and Jensen’s inequality (see, e.g., [9]).

LEMMA 3. Let A be a positive operator in B(H) and let x ∈ H be any unit
vector. Then for all r � 1,

〈Ax,x〉r � 〈Arx,x〉. (22)

Now, we state the following theorem which generalize (20).
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THEOREM 5. Let Ai,Bi,Xi ∈ B(H) (i = 1,2, . . . ,n) , and let f and g be nonneg-
ative functions on [0,∞) which are continuous and satisfy the relation f (t)g(t) = t for
all t ∈ [0,∞) . If p � q > 1 with 1

p + 1
q = 1 , then for all r � 2

q

ωr(
n

∑
i=1

A∗
i XiBi) � nr−1

∥∥∥∥∥
n

∑
i=1

1
p
(B∗

i f 2(|Xi|)Bi)
rp
2 +

1
q
(A∗

i g
2(|X∗

i |)Ai)
rq
2

∥∥∥∥∥ . (23)

Proof. For every unit vector x ∈ H , we have

|〈(
n

∑
i=1

A∗
i XiBi)x,x〉|r � (

n

∑
i=1

|〈XiBix,Aix〉|)r

� (
n

∑
i=1

〈 f 2(|Xi|)Bix,Bix〉 1
2 〈g2(|X∗

i |)Aix,Aix〉 1
2 )r (by (21))

� nr−1
n

∑
i=1

〈 f 2(|Xi|)Bix,Bix〉 r
2 〈g2(|X∗

i |)Aix,Aix〉 r
2

= nr−1
n

∑
i=1

〈B∗
i f 2(|Xi|)Bix,x〉 r

2 〈A∗
i g

2(|X∗
i |)Aix,x〉 r

2

� nr−1
n

∑
i=1

(
1
p
〈(B∗

i f 2(|Xi|)Bi)
rp
2 x,x〉+ 1

q
〈(A∗

i g
2(|X∗

i |)Ai)
rq
2 x,x〉

)
(by (1) and (22))

= nr−1

〈
n

∑
i=1

(
1
p
(B∗

i f 2(|Xi|)Bi)
rp
2 +

1
q
(A∗

i g
2(|X∗

i |)Ai)
rq
2

)
x,x

〉
.

Now, the result follows by taking the supremum over all unit vectors in H. �

The inequality (23) includes several numerical radius inequalities as special cases.
Samples of inequalities are demonstrated in the following.

COROLLARY 3. Let Ai ∈ B(H) (i = 1,2, . . . ,n). If p � q > 1 with 1
p + 1

q = 1 ,

r � 2
q and 0 < α < 1, then

ωr(
n

∑
i=1

Ai) � nr−1

∥∥∥∥∥
n

∑
i=1

(
1
p
|Ai|rpα +

1
q
|A∗

i |rq(1−α)
)∥∥∥∥∥ . (24)

Moreover, if A1 = A2 = · · · = An = A, then

ωr(A) �
∥∥∥∥ 1

p
|A|rpα +

1
q
|A∗|rq(1−α)

∥∥∥∥ . (25)

The inequalities (24) and (25) are generalizations of the inequalities (17) and (16),
respectively. Now, we state the following numerical radius inequalities for products of
operators.
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COROLLARY 4. Let Ai,Bi,∈B(H) (i = 1,2, . . . ,n). If p � q > 1 with 1
p + 1

q = 1

and r � 2
q , then

ωr(
n

∑
i=1

A∗
i Bi) � nr−1

∥∥∥∥∥
n

∑
i=1

(
1
p
|Bi|rp +

1
q
|Ai|rq

)∥∥∥∥∥ . (26)

In particular, if n = 1, then

ωr(A∗B) �
∥∥∥∥ 1

p
|B|rp +

1
q
|A|rq

∥∥∥∥ . (27)

REMARK 1. By considering n = 1 in Theorem 5, we obtain the following

ωr(A∗XB) �
∥∥∥∥ 1

p
(B∗|X |B)

rp
2 +

1
q
(A∗|X∗|A)

rq
2

∥∥∥∥ . (28)

Also, by Lemma 1, for all A,B,X ∈ B(H), we obtain the following inequalities:

ω(A∗XB) � 1
2

ω(A∗|X |A+B∗|X |B), (29)

ω((A∗XB)2) � ω
(

1
p
(A∗|X∗|A)p +

1
q
(B∗|X |B)q

)
. (30)

The inequalities (29) and in (30) are generalizations of the inequalities (6) and (2),
respectively.

Finally, by using the inequality (28), we obtain an upper bound for the numerical
radius of Ak. For all k � 2 and r � 2

q

ωr(Ak) �
∥∥∥∥ 1

p
(A∗|Ak−2|A)

rp
2 +

1
q
(A|(A∗)k−2|A∗)

rq
2

∥∥∥∥ . (31)
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