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SOME HARDY INEQUALITIES ON HALF
SPACES FOR GRUSHIN TYPE OPERATORS

YING-XIONG XIAO

(Communicated by I. Peri¢)

Abstract. We prove some sharp Hardy type inequalities on half spaces for Grushin type operators
. 2 2y .
like Ay + (1+7)%|x|"" Ay with y>0.

1. Introduction

The Hardy inequality in RY reads that, for all u € C7(R") and N > 3,

) (N —2)? u?
/RN |Vul|“dx > - /RN —Mzdx (L.1)
(N—2)?

and the constant ~—;  in (1.1) is sharp. Recently, it has been proved by S. Filippas,
A. Tertikas and J. Tidblom ([5]) that the following Hardy inequality is valid for f €
G5 (RY)

2 2
/ |Vu(x)|Pdx > ]L/ u(xl dx, (1.2)
RY 4 JrY |x|

where R{X = {(x1,"++,x,)|xy > 0}, and the constant NTZ is sharp. This shows that the

. —2)2 2 . . .
Hardy constant jumps from (NT% to NT , when the singularity of the potential reaches

the boundary.

The aim of this note is to prove similar Hardy type inequality on half spaces for
Grushin type operators like Ay + (1+ y)z\x\zyAy with y > 0. It has been proved by
D’Ambrosio ([1]) that for & < Q—2 and u € Ca"(Rm“) with x € R™ and y € R",
there holds

Voul? h N2 2 2y
/ [Vl dxdyZM/ — M7 ey, )
mn i (X, ) 4 R P2 (x, ) p2(x,y)

and the constant w in (1.3) is sharp, where V, = (V,, (1 +7)x|"V,), O =

1
m+ (14 7y)n and p(x,y) = (Jx[*72Y + |y|>)7*27 . In this note we shall show when the
singularity is on the boundary, the Hardy constant also jumps. In fact, we have the
following:
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THEOREM 1.1. There holds, for all u € C3(R"! xR"),

0 i
\Vyuldxdy > =
/MXW 4 T4 Jrmsre pP(x,y) p (x,y)

dxdy (1.4)

and the constant %2 in (1.4) is sharp.

However, it seems that the method used in [5] can not be applied to Grushin type
operator. So in order to prove Theorem 1.1, we use a different technique which is
motivated by V. Maz’ya and T. Shaposhnikova (see [7], Theorem 6.1).

As an application of Theorem 1.1, we obtain the following Hardy inequalities with
weights.

THEOREM 1.2. Let a0 < Q —2. There holds, for all u € C5 (R} x R"),

Vul? —a)? Wt |x®r
/ ‘ yoc| 2 <(Q ) —|—OC)/ 2+a% (L.5)
RUXRM P 4 R xR? P p

2
and the constant @ + o in (1.5) is sharp.

We also obtain some sharp Rellich inequalities on R’} x R".

THEOREM 1.3. Let a0 < Q —2. There holds, for all u € C5 (R} x R"),

/ Al <(Q+a+2>(Q—a—2>)2/ w1
ke [Vyp2p® ~ 4 Ry xRr pHOFY '

2
and the constant (W) in (1.6) is sharp.

Our method can also be applied to the half space R x R’ . To this end, we have

THEOREM 1.4. Let oo < Q —2. There holds, for all u € C§(R™ xR".),

|Vyul? <<Q+2y—a>2 ) / W’ |x[*
= +(1+7y o —_— 1.7
[ ! () [ S 0D

and the constant w +(L+vy)a in(1.7) is sharp.

THEOREM 1.5. Let o < Q+2y—2. There holds, for all u € Cj(R™ x R"}.),

/ \AyuP - ((Q+2y+a+2)(Q+2y—a—2)>2/ u?|x|?Y
R 4 R

= S 1.8
nxry [VypPp® myRy P2V (18)

2
and the constant ((Q+2Y+a+2)4(Q+2Y_a_2)> in (1.8) is sharp.
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2. The proofs

We begin by quoting some preliminary facts which will be needed in the sequel
and refer to [1, 3, 4] for more precise information about Grushin type operators. Recall
that Grushin type operator is the operator defined on R = R x R§ by

Ay = Ac+ (y+1)2x*7Ay, 7> 0.

Ay is elliptic for x # 0 and degenerates on the manifold {0} x R}. This operator
belongs to the wide class of subelliptic operators introduced and studied by Franchi
and Lanconelli in [4].
Observe that the operator A, possesses a natural family of anisotropic dilations,
namely
8 (x,y) = (Ax, A" 1y), A >0.

One easily checks that A, is homogeneous of degree two with respect to {5; };~0-
The Jacobian of the dilations &, is A2, where Q = m+ (y+ 1)n is the homogeneous
dimension. For simplicity, we will write A(x,y) to denote &, (x,y). The operator A,
can be written in the form “sum of squares” Ay = 3" ¥? by choosing

d

Y= —
! 8xl~

fori=1,---,m

d
Yiem=(1+7y)x|'=— for j=1,---,n.
J+ 8yj

Denote by V)’ = (Y],- o 7Ym+n) = (V)m (l + Y)‘x‘yvy) - Then
Ay: <VY7V)/>

and V, is homogeneous of degree one with respect to {0y }1~0-
The anisotropic dilation structure on R”*" introduces homogeneous norm

1
p(x,y) = ([P0 4 |y[2) 20
With this norm, we can define the ball centered at origin with radius R
Br={E €R™":p(&) <R}

and the unit sphere £ = dB; = {(x,y) € R™"": p(x,y) = 1}. A function f on R"*"
is said to be radial if f(x,y) = f(p). If f is radial, then (see [1])

[

Vo f] = WIf’(p)\ 2.1)

and

n, O—1, |x|27 n, O—1,
Ayf=|Vyp (f +Tf>zﬁ<f +Tf)- (2.2)
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Next, we recall the polar coordinate for Grushin type operators which is similar to
that on homogeneous groups ([6], Proposition (1.15)). Given any (0,0) # & = (x,y) €
R set x* = =5a V= p(xi)l“’ and £* = (x*,y*). Then p(&*) = 1. Moreover,

there exits a unique Radon measure ¢ on X such that forall f € L'(R"™"),

_ “ * ok 0—-1
[ fedsay= [ [ .y )nedodr. 23

In fact, (2.3) can be obtained through a transformation given by D’ Ambrosio et al ([2],
see also [1], page 728).
Finally, we define two smooth functions H(¢) and ®(¢) which satisfy

0,r<1;
H(t):{l 152 2.4)
and
1, <1,
O(r) = {o, 152, (2.5)

Without loss of generality, we assume 0 < H(¢) < 1 and 0 < @(7) < 1 forall r € R.
Before the proof of main results, we need the following Lemma.

LEMMA 2.1. Let Q > 3. The following Hardy inequality

—2)? u? |x[2
/I‘meR" | ’yu‘ ey 4 R xR" Pz(xy)’) p27(x,y) e ( )

is valid for all u € C5 (R™™) which satisfies the condition

M()C,y) = ﬁ(xl y T s Xm—3, \/ x’2n_2 +x3n_1 +x;2nay) (27)

(0-2)?
4

Furthermore, the constant is also sharp.

Proof. Since the inequality (2.6) is valid for all functions in Ci (R™*"), it is also
valid for functions in Ci’(R"") satisfying the condition (2.7). So to finish the proof,
(0-2)

1

it is enough to show the the constant is sharp.

Let Fe(p) = H(2)p 2 and Fy r(p) = ®(§)Fe(p) = ®(3)H(2)p "2 if p(x,y) >
0, where 0 <& <1 and R > 2. BythedeﬁnmonofH( ). gR(p)—O if0<p<e.
So we may set F¢ z(0) = 0 so that Fg g(p(x,y)) € C5 (R™"). We consider Fgg(p) as
the test function. It is easy to check

Fer(p) =14 p=2, 2e <p <R;



SOME HARDY INEQUALITIES ON HALF SPACES FOR GRUSHIN TYPE OPERATORS

797
We have, using the polar coordinate (2.3),

Fer(p )|x|2Y 2 (PN 2 (P 1 2
2 - = L = - . *|2Y
and
/ ViFer(p)Pdsdy = [ |FLaPp® \ap- [ v Prdo
m R’l O ’ Z
2
<I>’ ) Felp)+ @ (%) Fi(p) pQ‘ldp-/\x*lzde
1 /(P 0-1 2y /
R2/ ¢<R>Fg p2 ldp . /\x| do + ‘op )

R/ )FE<P>F (p)p? 'dp- / x*[Pdo

=(I)+ (I) + (111)

"plap. /Ix REL

where

/ 2ldp . /\x *"do
/ B)p%Q pQ"dp~/\x*|27dG
8 p)

Loy 20 o ) (2.8)
), o (E)’” PO ldp- [ I Pdo

2R
<max\CI)/( R2/ pdp - /|x ?Ydo = max|(I)’ /|x Ydo,
1R

(1) /‘CD F’

= ‘— (g)p’7+éH’(g>p¥ 2ledp~/Zx*|27dG
<Qf’/ (L) o e
@ (3) [ (2)[ odo- [ o
RS / @ (R (5)u (7)ap- [ Frao
ey fre

PG
(0 o252 [ (2 (2)en] [

1
R
1
R
1

p%ldp. /|x dc

(-

+[S—z/
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(Q=2)* [* 5 (P ;2 (P -1 «|2y
< e (B) e (2)ptap- [ pPrao
—l—(imax|H/(t)2 (Q— 2max\H )/|x *Ydo
2 teR

(2.9)
and

(11— ["o(B) o' (B) rlp)rttpip? tdp- [P

R R

2R _ _
R/ 1% —)p¥-—2 2Qp’2pQ’1dp~/ x*[*do
z (2.10)
<max|(D/ / /|x *do

—(0 — 2) max|®'(¢)| / ¥ Pdo.
teR z
Therefore, by (2.8)-(2.10),

Jrmn |VyFer(p)|*dxdy

F§R<
me xR"

(0—-2)? Cho
< yR

Jo @2 (7) H2 (5) p~'dp’

le27

7dxdy
where

3 3
Cno = = max|®(1)|? -2 @' ()| + = max |H'(1)|? -2 H'(1)].
0 = 5 max | (1) P+ (Q —2) max @ (1)] + 5 max (1) + (0 — 2) max|H'(r)
To finish the proof, it is enough to show

i wq)z <B>H2 <B> 17 — Joo.
£—1>I(I)1+ 0 R € pdp=-+
In fact,

/o g <IB€> H? (g) p ldp 2/2:p‘1dp =InR —1In2¢ — +oo (¢ — 0+)

The desired result follows. [

REMARK 2.2. Since the test function F¢ g(p) in Lemma 2.1 is radial, one can see
)2 .
the constant %

is also sharp when the function u is restricted to be in C (R"*")
and satisfy

(x7y) = ﬁ(%)’lr'n)’n%» \/ yi_z +y%_1 +y}%)

Now we can prove the Theorem 1.1

Proof of Theorem 1.1. Consider the sharp Hardy inequality on R”+2 x R”": for
v € Cy(RPH2 x RY), there holds

X%

+(1+y)n)? v?
Vol > (m—/ . 2.11
/RerZXRn ‘ yV‘ 4 Rm+2 xRn Pz(xy)’) pZV(X’y) ( )
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Next we assume the function v = v(xy, -+, Xpm—1, /X2 + X%, +X2.5,y). By Lemma

2.1, the constant in (2.11) is also sharp when v is limited to such functions. Set x/, =

\/ X X2, X2, . We get, by (2.11),

Lo V=1 [ [ / (V712 + 104,71 + (14 9215, PV, 7202
Rm+2 R m—1

(m+1+7 |2|/ // 2Ixx |27,2
/ ]le n m’

where |S?| is the volume of S?, the unit sphere in R*. Replacing x/, by x,, yields

L@ P,

2
/R’"X]R" |VY~] m/ 4 R” x R”p p27 X (212)
+

Set u = x,;,v. Then

- _adv
/ \Vyu|2:/ x|V 4 7+ 2xpV=—-.
R xR" xR R xR" R xR" IxXm

oo OV +eo g2 T
/ 2XV=——dXx = / Xp=——dXy = — / \/Zd)cm7
0 X 0 X, 0

/ |VY”\2 :/ xi|Vyﬂ2.
xRN R” xR”

2 2 .12y
/ WV”|2 > Q_ M_2 ‘x‘zy :
R xR 4 Jryxre p*p
The desired result follows. [

Since
we have

By (2.12),

Proof of Theorem 1.2. Replacing u by p’%u in Theorem 1.1, we obtain

o o
\% 2dxdy >

/R'ﬁxR"‘ o™ u)Pdxdy > 4 Jrrrn p2He(x,y) p2(x,y)

On the other hand, by (2.1) and (2.2),

—g W M|2 _ _a _a
Lo Vot 07 = [ Rn( i +u2wvyp 4P 2pu(Vyp % Vo)
+% x

dxdy. (2.13)

\V u|2 u? |x|27 _
y 4 p2+a pzv < w V7“>

(Vyu|2 W X2 u?

s
e

g e jAﬂ’a)

/ \Vyu|2 o —2a(+2-0Q) u* |x¥
—— 4 prta p2t

R xR"

+
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Therefore

/ Vyu2>Q2—a2+2a(a+2—Q>/ i
RExRe PE T 4 R xR p2TE 27

—o)? 2 2y
= <(Q “ + a) / ;L+ ‘x‘zy
4 R xR? P=T o
Q-

. . 2. .
and the constant ~*—— + o is sharp since QT is the sharp constant in (2.13).

To prove Theorem 1.3, we need the following sharp Rellich inequalities:

LEMMA 2.3. Let oo < Q —4. There holds, for all u € C5(R™ x R"),

Auul? AN\ 2 21,127
[ el (rare-ayyy i o1

my R |Vyp|2poc m R p4+a+2y

2
and the constant (W) in (2.14) is sharp.

Proof. A simple calculation shows —2uAyu = 2|V,u|? — Ayu?. Therefore,

) uAyu ) Vul? Ayu?
R R pa+2 - R RN pa+2 R KR pa+2'

Through integration by parts, we have, using (2.2),

2 u2

Ayu 2
_/Rmxwm:(a+2)(Q—a—4)AmeHW|VYp| .

Therefore, by (1.3), we obtain

2 2
) ubyu ) [Vyu” Ayu
R™ xR" pa+2 RmxR! pa+2 RmxR! pa+2

Q—o—4)? u? u?
OGP a2 [ vl
(Q+a)(Q—a—4) L
= 4 /"bdR" pa+4|v’)/p‘ .
Hence
(Q+a)(Q—o—4) u? 2 uAyu
4 /]Rmx]R” pa+4 |VYp| < _/]RWXR” pa+2

(e forer) (L)
= \Urmxrr p®t4 i rnxre [Vyp|2p% )

Canceling and raising both sides to the power 2, we obtain (2.14).
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2(0——4)2 .
(Qro (004 g sharp. Let G r(p) = D(2)H(2)

p =52 if p(x,y) >0, where 0< £ < 1 and R > 2. Set G¢ £(0) =0 so that G z(p (x,y))
€ Cy(R™™) since G r(p) =0 if 0 < p < e. We consider G g(p) as the test function
and compute

AyGer(P)
0o—1
(GHR"' o Giz,R) Vool

- QLG g (B ()

el (Lo(8) (2) o/ (8)(2))o=wr
(o B (2) e (2o (2) s o (2 (2)) "

Since € < 1 <R/2, ®'(R)H'(2) =0 by the definition of H and ®. Therefore, by
Minkowski inequality,

2 P P2 2
, (Q+a)(Q-a—4) [(R)H (T )
</RR Vyp2p°‘> s z </RmR p? Vapl

+<<3+a>2 i |¢<%>H’§%>2vyp2>2

Now we show the the constant (

82 RmxRn in
1
Crof [ WEHOF, o)’
R2 Rm xR pQ72 )/p

1
[0 P H// P2 2
84 RmMxRn pQ 4

_|_
VR
| -
T
3
X
|
=Y
%aﬁo
L=
LhS)
o
<]
©
o
~
o=

1

(0 ta)(Q—a—4) Gir o p)
T 4 /m R"POHM P ‘
_|_

(D)2,

where

seap [ RH )P
=S [ ROl oy

pe-
3+a)? (2 p
= (872)/8 \H/(E)|2PdP/ZW7P\2dG
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3+ ) / 2/28 / 2
< H \Y
oz max|H'(1)] | pdp Z\ | do

3 2 / 2/ 2
= 36+ aPmax () [1V,pPdo,

(B+a) @' (R)H(E)?
(B) = R? /Rmean;Qi‘z

_(3+(X)2 R 1 P2 2

= S [ Brpap [[VipPdo
(B+a)? e (R 2
e-max (@ ()P [ pdp [ [V,pdo

3
= 56+ 0 max|o/() [ [Vyp[do,

IVyp dxdy

N

1 @ (5)H"(2)P
84 RmMxR" pQ
1

P23 2
8—4 |H (E)\ P dP/W)/P\ do

\Vyp *dxdy

//\

max \H"(1)[? / p3dp/\V p|’do
15

-~ H' (1 2/ \v4 Zd
5 max|HE ()" | [Vyp[*do

and

L RHE)P
D)= 5 fyrzs—pas VPPt
1

=i |10 Bypoap [ 1V,pPao

1 2R
—max (1) 2/ 3d /V 2do
R4 |7 (2)] R p-ap 2| 1Pl

teR

15
- max |0 (1 |2/Z\Vyp|2d0.

N

Thus,

_|_
=
_|_
S
_|_
)

<f]R . |AngﬁR|2>

B Tptt) _(Q+a)(0—a-4)  (4)
1o p)? 4 1o b

(mexR" W‘VYP| ) (mexR" W‘VYP‘

<(Q+OC)(Q—OC—4)+ 6[.17(1)

) 4 o
(mexR" pa—MVYP2>

(S
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where

~ 3
Cira =33+ 00? (max H/0)F + max @) ) [ V;pPdo
2 teR teR s

15
= " (1)|? H”tzh/V ’do.
+ 22 (max i@ )+ max A0 ) [V, Pdo

So to finish the proof, it is enough to show

2

. &R
lim

Vyp|? = +oo.
e—0+ JRm xR pO£+4 }/p‘

In fact,
[ Gagpp [ mEE
myR1 p O(+4 y RmxRn p

R
>/ p"dp/ Vyp|Pdo
2e z
—(InR— 1n28)/ V,pPdo — +eo (e — 0+).
b
The desired result follows. [

REMARK 2.4. Since the test function G g(p) in Lemma 2.3 is radial, the con-

2
stant (W) is also sharp when the function u is restricted to be in Cj;' (R™*")

and satisfy
u(x7y) - ﬁ(xla o Xm=-3, \/m7Y)
u(x7y) = ﬁ(xvyla' *yYn-3, \/ yg_z +y3_1 +y%)

Proof of Theorem 1.3. The proof is similar to that of Theorem 1.1. By Lemma
2.3, we consider the sharp Rellich inequality on R7"2 x R?: for v € Ci (R 2 x RY)
and o« <m+2+n(l+7vy)—4=0—2,where Q =m+n(1+7), there holds

2 2 21,12
/ |Ayv| ><@+2+aXQ—a—3)l/ Jﬂﬂi, (2.15)
- R

m+2 1 |VyP|2Pa 4 m+2 1 p4+0¢+2)’

or

Now we assume the function v = V(x1,- -, Xm_1,1/X2 + X2, | +x2,,,y). By Remark
2.4, the constant in (2.15) is also sharp when v is limited to such functions. Set x,,, =

/42 4 42 2
Xy + X, X, ,. We compute

/ |Ayﬂ2
R [Vyp[2p©
e S 2 (L) Ry

2
~2
S2 00 X | 2i=1 ox X me J= 18y
iy e T
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Replacing X, by x,, in the equality above, we obtain
/ A
Rm+2 «R1 ‘VprpOC
2
5 oo xgn :ﬂ 1 3;2} + X%n Oxm + (1 +Y) ‘x‘zyzj 1 ay (2 16)
s / bk |
| | Rin—1 . ‘Vyp|2 o
(Q+2+OC)(Q o — 2 |SZ| 2|x|27
Rin—1 n 4+oc+2y
Set u = x,;,v. Then
mn 3214 2
2 ox 2 1+’Y | 72
i=1
[m=1 925 5] 92 (xw)
=X + (L4 7)2 +—
* = 8xi + (177l Z 10 2] ox2,
2.17
— 0%y 2 v 9%V v ( )
=Xm = ax%+(l+']/ ‘x‘ 2 dy 2 +xma %14-2%
(0% 2 oy 9%
=xn | >, =+ —=a—+ 1+ ==
By (2.16) and (2.17),
2
2 S S (L4 PRPT S
iy
51 fens " IVyp|2p©
_ 21| 2Y
;ZCQ+2+aXQ ) Sﬂ/ / / XV~ X[
4 Rm—1 " 4+0¢+2y
_((@+2+a)@-a-2)}" o P
B 4 Ro-1 n ptot2y’
i.e.
/ A (Q+2+aXQ—a—2>2/ CET o)
R X" V,p[2p® Z 4 R pirat2y’ .
2
WM) in (2.18) is sharp since the same constant in (2.15)
O

The constant
is sharp . This completes the proof of Theorem 1.3

Proof of Theorem 1.4. The proof is similar to that of Theorem 1.1 and Theorem
x R+2:
Y

1.2. Consider the sharp Hardy inequality on R’
2 2y
d i (2.19)

+(1+yn+2y)?°
V 2 2 (m /
/RmXRM Vol 4 rrxe2 p2(x,y) p(x,y)
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where v € G5 (R} x R;”). Next we assume the function

V= V(x7y177' V-1, \/ y% +)’i+1 +y§+2)

By Remark 2.2, the constant in (2.19) is also sharp when v is limited to such functions.
Following the proof of Theorem 1.1, we have, replacing y/y2 42, + 2,5 by ya,

+2y)? v |x]?
Vv“zL/ — 2 2.20
/mXR’}r‘ );] Yn 4 R xR P2 pzy Yn ( )
Set u =y,v. By (2.20),
+2y)* u® [x*Y
Vu2=/ Vv22>(Q7/ — 2.21
/Rmxm| = fo o V0 [ 2.21)

2 427
4 m XRZ p p

and the constant appeared in (2.21) is sharp. Therefore, we prove inequality (1.7) for
a=0.

Next, replacing u by p’%u in (2.21), we have, following the proof of Theorem
1.2,

[ [ eyt 220 e K
= u)|”— Lad I
RnxRL P R xR r\P 4 g P2 p27

2(Q+2y)2—ocz+20c(oc+2—Q>/ u? |x??
R

4 R p2+a W
(Q+2y-a) w? |x
=( 4 +(1+7)o /mxm pTra pIl

The desired result follows. [

Proof of Theorem 1.5. The proof is similar to that of Theorem 1.3. Consider the
sharp Rellich inequality on R x ]R;’*z: for v € Cy (R} ]R;’*z) and oo < m—+ (n+
2)(147y)—4=Q+2y—2, there holds

/ LV <(Q+2y+a+2>(Q+2y—a—2>>2/ v2 [
R R

mx RA+2 |Vyp‘2p0( - 4 my Rn+2 p4+06+2)/'

Here we also denote by Q =m+n(1+7). Set

v:V(x7y1a"'ayn—l7 \/ Y%“‘Y%H +}’3+2)

2
By Remark 2.4, the constant <<Q+2Ha+2)(Q+2y*a*2)> is also sharp when v is limited

4
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to such functions. Therefore, if we set y, = /y2 42, | +y2 ,, then

/ Ay
rrxrri2 [Vyp[2p®
2

2
7 mgvu+me2%$+m+ﬁ$>
oo >
R JRn-1 IVypl?p
32 2|x|2y

(O+2y+a+2)(0+2y—a—2) < 525
( : V[ f B

Replacing y,, by y,, in the equality above, we obtain
2

R S (P S 25
/m /RH/ |Vyp\2 (2.22)
(Q+2y+a+2)(Q+2y—0a—2) = yave lx?
4 /l‘gm /lign 1/ 4+OH’27
Set u = y,v. We compute
m 32 ) n 2
Yo+ NZ—2
i=1 j=1 j
EPEy ! 9%y .
o |3 L (PP S I (14 g e
= Ox; i ay,. dyz
- ’ (2.23)
- i e \x\”E catll N P
[ v 2 Iv
=n —+ 1+ 2|x?r +—=—1]-
DSOS (%ay, =]
By (2.22) and (2.23), we have
2
S G (LTS lav
/m /Rn l/ |V’)/p|2 o
(Q+2y+a+2)(Q+2y—a—2) u?|x|?"
4 /m/R" 1/ 4+a+2y’
ie.
u?|x|?Y

/ |Ayul? - <(Q+2y+a+2)(Q+2y—a—2)>2/
rrxRy [Vyp[2p® ~ 4 R

The desired result follows. [

4 2y°
mXRi p +o+2y
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