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(Communicated by J. Pečarić)

Abstract. In this paper we define several types of functions on the solution to a class of linear
elliptic equations of even order. We establish that these functions satisfy a classical maximum
principle. As a consequence we obtain uniqueness results and bounds on various quantities of
interest.

1. Introduction

The technique of applying classical maximum principles to certain functions de-
fined on the solution of a differential equation of order � 2 is well-known (see the book
of Sperb [15] or the survey paper [10] and the vast literature cited therein). Utilizing
this technique one can, for example, deduce results about the solution itself or perhaps
obtain apriori bounds on various gradients of the solution. An interesting boundary
value problem on which this technique has been applied concerns a class of differential
equations known as m-metaharmonic equations{

Δmu−am−1(x)Δm−1u+am−2(x)Δm−2u+ · · ·+(−1)ma0(x)u = f in Ω
u = g1, Δu = g2, . . . , Δm−1u = gm on ∂Ω,

(1.1)

where ai, i = 0, . . . ,m−1, are bounded and the domain Ω ⊂ IRn,n � 2 is bounded.
In [6], Dunninger develops maximum principle results for this boundary value

problem, on an arbitrary domain Ω , in the case where m = 2, n � 2, a1 = 0, a0 ≡
constant � 0. Schaefer [12, 13] obtains such results on domains Ω in which ∂Ω has
positive curvature, and assumes that m = 2,3 and n = 2, respectively. The author
requires that a1 = 0 in [12] and a2,a1 � 0, a0 > 0 in [13].

To contrast, Danet [4] treats the nonconstant coefficient case for an arbitrary do-
main Ω . Here, uniqueness results are obtained both for m = 2 and m = 3, where
n � 2. For the case m = 3, n = 2, S. Goyal and V. Goyal in [7] also deduce uniqueness
results for (1.1) for arbitrary domains. Later, in [5], the author studies (1.1) for domains
with boundaries that have positive curvature in the case m = 4, n = 2. Herein, the
assumptions a3,a2,a1 � 0, a0 � 0 are made on the coefficients.
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Maximum principle results for the case where the differential equation in (1.1) has
order > 8 can be found in [16] and in [2], for domains which are planes or lines. An-
other such result appears in [1], in which the authors pose an interesting open problem:
If f = 0 in Ω , g2 = · · ·= gm = 0 on ∂Ω , m � 3, n � 2, am−1 = · · · = a1 = 0 in Ω do
all the solutions of (1.1) satisfy the maximum principle

max
Ω

|u| � Cmax
∂Ω

|u|, (1.2)

where C > 1 is a constant? This problem, as it turns out, can be solved when Ω is a
class C2 domain ([14]).

In this paper we study the differential equation in (1.1) from two approaches. We
primarily utilize functions containing the squares of terms of the form (Δiu)2 . We show
that these functions satisfy a generalized maximum principle (see next section for an
explicit definition) and deduce the uniqueness of classical solutions classical solutions,
(i.e., solutions in C2m(Ω)∩C2m−2(Ω) , m � 2), of the boundary value problem (1.1).
We also show that (1.2) is valid even if Ω is an arbitrary domain. We then take a new,
second approach to the m-metaharmonic equation in (1.1), in that we utilize functions
containing the squares of certain higher order gradient terms. These functions are,
partially, generalizations of functions used by L. E. Payne in [9]. In this work the
author deduces maximum principles results for the semilinear equation Δ2u = f (u) by
employing functions containing the square of the second gradient of the solution u .
In our paper, this alternative class of functions will yield integral bounds on certain
gradient terms for some interesting boundary conditions, in which, for example both

Δiu = 0 and ∂ (Δiu)
∂n = 0 for certain values of i . Both classes of functions are used to

analyze the principle equation in (1.1) as well as the specific cases m = 2,3, and m = 4.

2. Assumptions and notation

Throughout this paper we shall assume that Ω ⊂ IRn , n � 2 is a bounded domain,
m � 2 and the coefficients ai , i = 0, . . . ,m−1 are bounded in Ω . Also we shall suppose
that a0 �≡ 0. Additionally, diamΩ will denote the diameter of Ω .

Partial differentiation is denoted by commas. Furthermore, we identify the prod-
ucts of the first, second, and third gradients of the functions v and w as follows

∇v ·∇w = v,iw,i, ∇2v : ∇2w = v,i jw,i j, ∇3v
...∇3w = v,i jkw,i jk.

We denote the squares of the first, second, third, and fourth gradients of w by

|∇w|2 = w,iw,i, |∇2w|2 = w,i jw,i j, |∇3w|2 = wi jkw,i jk, |∇4w|2 = w,i jklw,i jkl .

For the sake of brevity, we shall say that a function Φ satisfies a generalized
maximum principle in Ω , if either there exists a constant k ∈ IR such that Φ ≡ k in Ω
or Φ does not attain a nonnegative maximum in Ω .

In (1.1), for simplicity, we shall only consider the case when m is even, i.e., we
shall study the equation
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Δmu−am−1(x)Δm−1u+am−2(x)Δm−2u−·· ·+a0(x)u = 0 in Ω. (2.1)

Similar results will hold if m is odd.

3. Some useful results

We now state two maximum principles that will be applied several times in the
paper. The first result appears in [4].

THEOREM 3.1. Let u ∈C2(Ω)∩C0(Ω) satisfy the inequality Lu ≡ Δu+ γ(x)u �
0 in Ω , where γ � 0 in Ω . Suppose that

sup
Ω

γ <
4n+4

(diamΩ)2 (3.2)

holds.
Then, the function u/w1 satisfies a generalized maximum principle in Ω. Here

w1(x) = 1−α(x2
1 + · · ·+ x2

n) ∈C∞(IRn) , α = supΩ γ/2n.
If Ω lies in strip of width d and if we impose the restriction

sup
Ω

γ <
π2

d2 , (3.3)

we obtain that u/w2 satisfies a generalized maximum principle in Ω. Here

w2 = cos
π(2xi−d)
2(d + ε)

n

∏
j=1

cosh(εx j) ∈C∞(Ω),

for some i ∈ {1, . . . ,n} , where ε > 0 is small.

A similar maximum principle holds for more general operators

THEOREM 3.2. Let u ∈C2(Ω)∩C0(Ω) satisfy the inequality

L1u ≡ Δu+
n

∑
i=1

βi(x)
∂u
∂xi

+ γ(x)u � 0, where γ � 0 in Ω.

(a) If there exists i ∈ {1, . . . ,n} such that βi � 0 in Ω and if

sup
Ω

γ <
4

d2e2 , (3.4)

then, the function u/w3 satisfies a generalized maximum principle in Ω. Here w3(x) =
1− βeαxi ∈ C∞(IRn) for some i ∈ {1, . . . ,n} , where β = supΩ γ/α2 and α > 0 is a
constant.

(b) Let i1, . . . , in ∈ {1, . . . ,n} be distinct numbers. Suppose that one of the follow-
ing conditions holds
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(i) βk � 0 for all k = 1, . . . ,n in Ω; or
(ii) there exist(s) i1, . . . , iq (1 � q � n−1) such that βi1 , . . . ,βiq � 0 in Ω and rest

of coefficients βk are nonnegative in Ω; or
(iii) βk � 0 for all k = 1, . . . ,n in Ω;
If in addition

sup
Ω

γ � 2(n−1)
diamΩ(diamΩ + δ )(

√
n+1)

, (3.5)

where δ is any positive constant, then, there exists a function w4 (for more details see
[3]) such that u/w4 satisfies a generalized maximum principle in Ω.

The proof of part (a) follows from Theorem 10, [11], p. 73 and the results on p.
73–74 in [11]. The proof of part (b) follows from Theorem 10, [11], p. 73 and Lemma
1, [3].

REMARKS.
1. A broad class of domains satisfy Ω⊂BdiamΩ/2 = {x | x2

1+ · · ·+x2
n < (diamΩ)2/4} .

For these domains C(n,diamΩ) = (4n + 4)/(diamΩ)2 (in Theorem 3.1) may be re-
placed by C1(n,diamΩ) = 8n/(diamΩ)2 (see [4]).

2. For some domains it is possible to improve the constant C1(n,diamΩ) (also see
[4] for details).

4. Main results

THEOREM 4.1. Let u be a classical solution of (2.1). Suppose that am−1 = . . . =
a1 = 0 , a0 > 0 , Δa0 � 0 in Ω.

We define the functions P1 and P2

P1 = (Δm−1u)2 +(Δm−2u)2 + · · ·+u2,

P2 =
P1

a0
.

(a) If the inequality

max{1+ sup
Ω

a0,2}+ sup
Ω

Δa0

a0
� 0, (4.6)

holds, then the function P2 attains its maximum value on ∂Ω.
(b) If we have

max{1+ sup
Ω

a0,2}+ sup
Ω

Δa0

a0
<

4
d2e2 (4.7)

and if there exists i ∈ {1, . . . ,n} such that ∂
∂xi

( 1
a0

)
� 0 in Ω , then the function P2/w3

satisfies a generalized maximum principle in Ω.
(c) If the strict inequality

max{1+ sup
Ω

a0,2}+ sup
Ω

Δa0

a0
<

2(n−1)
diamΩ(diamΩ + δ )(

√
n+1)

, (4.8)
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holds, where δ is any positive constant, if the coefficients βi = ∂
∂xi

(
1
a0

)
satisfy one of

conditions of part (b) of Theorem 3.2, then the function P2/w4 satisfies a generalized
maximum principle in Ω.

Proof. (a) A computation shows that

ΔP2 −2a0∇
(

1
a0

)
∇P2 = −P1

a2
0

Δa0 +
1
a0

ΔP1

� −P1

a2
0

Δa0− 1
a0

(
(1+a0)(Δm−1u)2 +2(Δm−2u)2

+ . . .+2(Δu)2 +2(1+a0)u2
)

.

Hence P2 satisfies the differential inequality

ΔP2−2a0∇
(

1
a0

)
∇P2 � − 1

a0

((
1+a0 +

Δa0

a0

)
(Δm−1u)2

+
(

2+
Δa0

a0

)
(Δm−2u)2 + . . .

+
(

2+
Δa0

a0

)
(Δu)2 +

(
1+a0 +

Δa0

a0

)
u2
)

� 0 in Ω.

As consequence of the classical maximum principle P2 attains its maximum value
on ∂Ω . The proofs of (b) and (c) follow from the generalized maximum principle
(Theorem 3.2). �

REMARKS.
1. A similar result (but weaker) to Theorem 4.1, case a). can be stated if we do

not impose smoothness or sign conditions on the coefficient a0. The function P1/w1

satisfies a generalized maximum principle in Ω if am−1 = . . . = a1 = 0 in Ω (a0 is of
arbitrary sign in Ω) and if

max{1+ sup
Ω

a2
0,2} <

4n+4
(diamΩ)2 , (4.9)

2. If m = 2 and a0 � 1 the result of Theorem 4.1, case a). can be sharpened,
i.e., a maximum principle for the the function P∗

1 = ((Δu)2 +u2)/a0w1 holds if (4.6) is
replaced by

sup
Ω

a0−1+ sup
Ω

Δa0

a0
� 0. (4.10)

The next result allows a0 to be large if am−1 is large

THEOREM 4.2. Let u be a classical solution of (2.1). We consider the function
P3

P3 = (Δm−1u)2 +2am−2(Δm−2u)2 +(Δm−3u)2 + · · ·+u2.
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Suppose that am−1 , am−2 > 0 and Δ(1/am−2) � 0 in Ω . If

sup
Ω

{
a2

0

2am−1 +1

}
<

4n+4
(diamΩ)2 , (4.11)

a2
0

2am−1
> max

{
1+ sup

Ω
a1, . . . ,1+ sup

Ω
am−3

}
, (4.12)

a2
0

2am−1 +1
> sup

{|a1|+ . . .+ |am−3|
}
, (4.13)

and (
a2

0

2am−1
+1

)
am−2 > 1 inΩ (4.14)

then, the function P3/w1 satisfies a generalized maximum principle in Ω.

The proof is similar to the proof of Theorem 4.1 and hence is omitted.

REMARK. The coefficient a0 can be replaced by am− j , j = 4, . . . ,m−1 if there
exists a j = 4, . . . ,m−1 such that

a2
m− j

2am−1
> max

k=3,...,m

{
2+ sup

Ω
ak
}
, (4.15)

a2
m− j

2am−1
+2 > sup

Ω

{|a0|+ · · · |am− j−1|+ |am− j+1|+ . . .+ |am−3|
}
, (4.16)

and (
a2

m− j

2am−2
+1

)
am−2 > 1 inΩ. (4.17)

We now show that the uniqueness result and the maximum principle (1.2) holds.

THEOREM 4.3. There is at most one classical solution of the boundary value
problem (1.1) provided the coefficients am−1, . . . ,a0 satisfy the conditions imposed in
Theorem 4.1 or Theorem 4.2.

Proof. Suppose that the hypotheses of Theorem 4.1 are satisfied. Define u =
u1 − u2, where u1 and u2 are solutions of (1.1). Then u1 and u2 satisfy the equation
(2.1) and

u = Δu = · · · = Δm−1u = 0 on ∂Ω. (4.18)

Hence, by Theorem 3.1 either
(i) there exists a constant k ∈ IR such that

P1

w1
≡ k inΩ, (4.19)

or
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(ii)
P1

w1
does not attain a maximum inΩ.

Case (i) By continuity (4.19) holds in Ω. By the boundary conditions (4.18) we
obtain P1 = 0 on ∂Ω, i.e., k = 0. It follows that P1 ≡ 0 in Ω, which means u ≡ 0 in
Ω . Hence u1 = u2 in Ω .

Case (ii) From

max
Ω

P1

w1
= max

∂Ω

P1

w1

and (4.18) we get

0 � max
Ω

P1

w1
= 0,

i.e., u1 = u2 in Ω .
We can argue similarly if we are under the hypotheses of Theorem 4.2. �

THEOREM 4.4. We consider the boundary value problem (1.1), where f = 0 in
Ω and g2 = · · · = gm = 0 on ∂Ω . Then (1.2) holds for all solutions of (1.1) provided
the coefficients am−1, . . . ,a0 are subject to one of the conditions imposed in Theorem
4.1 or Theorem 4.2.

Proof. Suppose that the hypotheses of Theorem 4.1 are satisfied. By Theorem 3.1
we see that

u2

w1
� max

∂Ω

P1

w1
= max

∂Ω

u2

w1
� (max∂Ω |u|)2

min∂Ω w1
in Ω.

This inequality proves the desired result. �
REMARK. The boundary value problem{

Δmu+2mu = 0 in Ω = (0,π)× (0,π)
u = Δu = · · · = Δm−1u = 0 on∂Ω,

has (at least) the solutions u1(x,y) ≡ 0 and u2(x,y) = sinxsiny in Ω. This example
shows that if we do not impose some restrictions on the coefficients am−1, . . . ,a0 , then
the uniqueness result (Theorem 4.3) might be violated. To obtain a uniqueness result
one must impose the restriction (4.9).

Our last result, as well as the preceeding ones, are valid for functions containing
terms of the form (Δiu)2 and for boundary conditions of the form Δiu = 0. Here, we
state and prove a maximum principle result for the homogeneous equation Δmu = 0
utilizing a different class of functions, in particular, functions containing the squares of
certain second gradient terms. Now, we state our first result of this type

THEOREM 4.5. Suppose that u∈C2m+1(Ω)∩C2m−1(Ω) is a solution of Δmu = 0 .
Furthermore, let

P4 = |∇2(Δm−2u)|2−∇(Δm−2u) ·∇(Δm−1u)− (4−n)
2(n+2)

(Δm−1u)2. (4.20)
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Then P4 takes its maximum value on ∂Ω .

Proof. First we calculate

ΔP4 = 2|∇3(Δm−2u)|2 +2∇2(Δm−2u) : ∇2(Δm−1u) (4.21)

−|∇(Δm−1u)|2−∇2(Δm−2u) : ∇2(Δm−1u)
−∇2(Δm−2u) : ∇2(Δm−1u)−∇(Δm−2u) ·∇(Δmu)

− (4−n)
(n+2)

|∇(Δm−1u)|2− (4−n)
(n+2)

Δm−1uΔmu.

Upon simplifying (4.21) we see that

ΔP4 = 2|∇3(Δm−2u)|2− 6
(n+2)

|∇(Δm−1u)|2.

The proof now follows by substituting w for Δm−2u in the well-known inequality (see
[9])

|∇3w|2 � 3
n+2

|∇(Δw)|2,

which holds for functions w ∈C3(Ω) .

REMARK. We note that the smoothness conditions for u are more strict than in
our previous results; this is due to the presence of a gradient terms in P4 . Secondly,
when Dirchlet boundary conditions are present, one can deduce an apriori bound on
|∇(Δm−2u)|2 using this result (see [9] for more details). Lastly, additional results using
functions similiar to P4 are proven in the next section of this paper.

5. The cases m = 4,m = 3 and m = 2

In this final section, we treat the particular cases m = 4, m = 3 and m = 2.
It is interesting to note that the following results cannot be deduced from the results

of Section 3.

THEOREM 5.1. Let u be a classical solution of (2.1), where m = 4 . Assume that

a3 > 0 in Ω, (5.22)

a2 � 0 in Ω, (5.23)

a0 > 0, Δ(1/a0) � 0 in Ω, (5.24)

and
a2−a0−1 > 0, Δ(1/(a2−a0−1)) � 0 in Ω. (5.25)

are satisfied.
We define the function

P5 =
1
2
(Δ3u+ Δu)2 +

a0

2
(Δ2u+u)2 +

a2−a0−1
2

(Δ2u)2 +
a2−a0−1

2
(Δu)2.
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If

sup
Ω

(a1 +a3)2

a2
3(a2−a0−1)

<
8n+8

(diamΩ)2 , (5.26)

then, the function P5/w1 satisfies a generalized maximum principle in Ω.
If a1 = 0 and a3 � 0 in Ω a similar result holds for P5/w1 under the restriction

sup
Ω

a3

(a2−a0−1)
<

8n+8
(diamΩ)2 . (5.27)

If
4a2

3a1 � (a1 +a3)2, a1 > 0 in Ω, (5.28)

(5.22), (5.24) and (5.25) are satisfied then the function P5 attains its maximum value
on ∂Ω.

The proof is similar to the proof of Theorem 4.1 and hence is omitted.

With the aid of the above theorem we can establish a uniqueness result.

THEOREM 5.2. Suppose that m = 4 and one of the following conditions hold:
(a) a3, a1 � 0 (a3, a1 constants), a2 � 0 , a0 > 0 in Ω , n = 2 and the curvature

of ∂Ω is strictly positive;
(b) the hypotheses of Theorem 5.1.
Then there exists at most one classical solution of the boundary value problem

(1.1).

Proof. (a) For a proof see Theorem 1, [5].
(b) The proof is achieved by arguing exactly as in Theorem 4.3. �

THEOREM 5.3. Let u be a classical solution of (2.1), where m = 2 and a1 ≡
const. > 0 , a0 > 0 in Ω.

Suppose that

sup
Ω

(
a1− 1

a1

(
a0−1

a0

)2)
<

2n+2
(diamΩ)2 . (5.29)

Let

P6 =
1
2
(Δu−au)2 +

1
2
(Δu)2 +u2.

Then the function P6/w1 satisfies a generalized maximum principle in Ω.
If

a2
1 �

(
a0−1

a0

)2

inΩ, (5.30)

then the function P6 attains its maximum value on ∂Ω (here the assumption (5.29) is
not needed).
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The proof is similar to the proof of Theorem 4.1.

REMARK. A classical result ([1]) tells us that the boundary value problem{
Δ2u−a1(x)Δu+a0(x)u = f in Ω ⊂ IRn

u = g, Δu = h on∂Ω,
(5.31)

has a unique solution if a1,a0 > 0 and if Δa0 < 0 or Δ(1/a0) < 0 in Ω.
Theorem 5.3 tells us that if a1 � 1 and a0 > 0 then the boundary value problem

(5.31) has a unique solution. We see that no smoothness restrictions are needed on the
coefficient a0 .

To contrast the above results we now deduce some maximum principle results,
using auxiliary functions containing the squares of certain gradients of order greater
than two, for the cases m = 3 and m = 4.

THEOREM 5.4. Let u ∈C7(Ω)∩C5(Ω) be a solution to (1.1) for m=3. Define,

P7 = |∇3u|2 +
1
2

∇u ·∇(Δ2u)−∇2(Δu) : (∇2u)+ β (x)u2 +(Δ2u)2 (5.32)

+
[

n−7
2(n+5)

+ φ(x)
]
|∇(Δu)|2 + |∇u|2,where, β (x),φ(x) ∈C2(Ω).

Furthermore, assume that

β � 9n|∇a1|2
32

, a2 � 9
2
na2

1,
a0

4
� max

{
1+

a2
2

16
,
3|∇a2|2
16a2

}
, (5.33)

Δβ
4

� max

{
nβ 2,

3a2
0

a2
,
3|∇a0|2

32β
,
6|∇β |2

β

}
, (5.34)

Δφ
3

� max

{
2,

2|∇φ |2
φ

,
[γ(x)]2

4
,
3a2

1

8β

}
, where γ(x) = 2φ(x)+

3(n−3)
2(n+5)

. (5.35)

Then P7 attains its maximum value on ∂Ω .

Proof. By a straightforward calculation, we have

ΔP7 = 2|∇4u|2 +
1
2

∇(Δu) ·∇(Δ2u)+
1
2

∇u ·∇(Δ3u) (5.36)

+
[
2φ +

n−7
n+5

][
(∇2(Δu) : ∇2(Δu)+ ∇(Δu) ·∇(Δ2u))

]
+Δφ |∇(Δu)|2 +2∇φ ·∇(|∇(Δu)|2)+2Δ2uΔ3u+2|∇2u|2
+Δβu2 +2∇β ·∇(u2)+2βuΔu+2β |∇u|2+2∇u ·∇(Δu)
+2|∇(Δ2u)|2−|∇2(Δu)|2.

From the inequalities

|∇4u|2 � 6
n+5

|∇2(Δu)|2, |∇2u|2 � 1
n
(Δu)2 (see [8, 9])
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we deduce that

ΔP7 � 1
2

∇u ·a0∇u+ γ(x)∇(Δu) ·∇(Δ2u)+2φ |∇2(Δu)|2 (5.37)

+
1
2

∇u · [(∇a2)Δ2u+a2∇(Δ2u)− (∇a1)Δu−a1∇(Δu)+ (∇a0)u]

+Δφ∇(Δu) ·∇(Δu)+2∇φ ·∇(|∇(Δu)|2)+ Δβu2 +2∇β ·∇(u2)

+2βuΔu+2β |∇u|2+
2
n
(Δu)2 +2Δ2u(a2Δ2u−a1Δu+a0u)

+2|∇(Δ2u)|2 +2∇u ·∇(Δu).

To complete the proof, we first establish a set of useful inequalities involving the
term |∇(Δu)|2 :

2∇u ·∇(Δu) � −|∇u|2−|∇(Δu)|2, (5.38)

Δφ
3
|∇(Δu)|2+γ(x)∇(Δu) ·∇(Δ2u)+|∇(Δ2u)|2 � |∇(Δu)|2

[
Δφ
3
− (γ(x))2

4

]
, (5.39)

2φ |∇2(Δu)|2+2∇φ ·∇(|∇(Δu)|2)+Δφ
3
|∇(Δu)|2 � |∇(Δu)|2

[
Δφ
3
−2|∇φ |2

φ

]
, (5.40)

β
3
|∇u|2− a1

2
∇u ·∇(Δu)+

Δφ
6
|∇(Δu)|2 � |∇(Δu)|2

[
Δφ
6

− 3a2
1

16β

]
. (5.41)

Secondly, the following inequalities involving |∇u|2 and (Δ2u)2 hold:

|∇(Δ2u)|2 +
a2

2
∇u ·∇(Δ2u)+

(a0

4
−1
)
|∇u|2 � |∇u|2

[
a0

4
−
(

1+
a2

2

16

)]
, (5.42)

a2

3
(Δ2u)2 +

1
2
(∇a2) ·∇uΔ2u+

a0

4
|∇u|2 � |∇u|2

[
a0

4
− 3|∇a2|2

16a2

]
, (5.43)

a2

3
(Δ2u)2−2a1Δ2uΔu+

2
3n

(Δu)2 � (Δ2u)2
[
a2

3
− 3na2

1

2

]
, (5.44)

β
3
|∇u|2− 1

2
∇u ·∇(a1)Δu+

2
3n

(Δu)2 � |∇u|2
[

β
3
− 3n|∇a1|2

32

]
. (5.45)

Lastly, we state several inequalities for u2 :

Δβ
4

u2 +2a0uΔ2u+
a2

3
(Δ2u)2 � u2

[
Δβ
4

−3
a2

0

a2

]
, (5.46)

Δβ
4

u2 +
∇(a0) · (∇u)

2
u+

2
3

β |∇u|2 � u2
[

Δβ
4

− 3|∇a0|2
32β

]
, (5.47)

Δβ
4

u2 +2βuΔu+
2
3n

(Δu)2 � u2
[

Δβ
4

− 3nβ 2

2

]
, (5.48)

Δβ
4

u2 +2∇β ·∇(u2)+
2
3

β |∇u|2 � u2
[

Δβ
4

− 6|∇β |2
β

]
. (5.49)
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Utilizing (5.33), (5.34), (5.35) and (5.38)–(5.49) we see that P7 is subharmonic in
Ω . �

Next we obtain a maximum principle result for the equation Δ4u + a0(x)u = 0
utilizing an auxiliary function containing the second gradient of Δ2u .

THEOREM 5.5. Suppose that u ∈ C9(Ω)∩C7(Ω) be a solution to (1.1) where
m = 4 and a3 = a2 = a1 = 0. Let

P8 = |∇2(Δ2u)|2−∇(Δ2u) ·∇(Δ3u)−
[

4−n
2(n+2)

]
(Δ3u)2 (5.50)

+ β (x)
[
u2 +(Δu)2 +(Δ2u)2 +(Δ3u)2] , where β (x) ∈C2(Ω).

Furthermore, we require that for a0 > 0 ,

β 2 � 3
8
a2

0, (5.51)

(Δβ )2 � max

{
15β 2,20β 2a2

0,
15
8
|∇a0|2,5

(
4−n
n+2

)
a2

0

}
. (5.52)

Then P8 achieves its maximum value on ∂Ω .

Proof. Applying the Laplacian to P8 yields

ΔP8 � −∇(Δ2u) ·a0∇u−∇(Δ2u) · (∇a0)u−
(

4−n
n+2

)
(Δ3u)a0u (5.53)

+Δβ
[
u2 +(Δu)2 +(Δ2u)2 +(Δ3u)2]+2β [|∇u|2 +uΔu

+|∇(Δ2u)|2 + Δ2uΔ3u+ |∇(Δ3u)|2 +(Δ3u)a0u+ |∇(Δu)|2 + ΔuΔ2u]
+2∇β · [∇(u2)+ ∇((Δ2u)2)+ ∇((Δ3u)2)+ ∇((Δu)2)].

Utilizing a series of inequalities similar to (5.38)–(5.49) leads to

ΔP8 � |∇(Δ2u)|2
[
2β
3

− a2
0

4β

]
+u2

[
Δβ
5

− 4|∇β |2
β

]
(5.54)

+u2
[

Δβ
5

− 3β 2

Δβ

]
+u2

[
Δβ
5

− 3|∇a0|2
8β

]

+(Δ2u)2
[

Δβ
3

− 6|∇β |2
β

]
+(Δ2u)2

[
Δβ
3

− 4β 2

Δβ

]

+(Δ3u)2
[

Δβ
4

− 6|∇β |2
β

]
+(Δ3u)2

[
Δβ
4

− 5β 2a2
0

Δβ

]

+(Δ3u)2

[
Δβ
4

− 5
( 4−n

n+2

)
a2

o

4Δβ

]
+(Δu)2

[
Δβ
2

−4
|∇β |2

β

]

+(Δu)2
[

Δβ
2

− 3β 2

Δβ

]
.
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From conditions (5.51) and (5.52) it follows that ΔP8 � 0. �

Finally we state a few applications of the last two results. We impose the boundary
conditions u = ∂u

∂n = ∂ 2u
∂n2 = 0 on (2.1) in the case m = 3. Using integration by parts

(see[8]) and Theorem 5.4 we obtain the following integral bound for |∇(Δu)|2 :

∫
Ω

(
5
2

+
[

n−7
2(n+5)

+ φ
])

|∇(Δu)|2dx

� area(Ω)max
∂Ω

(
|∇3u|2 +

(
n−7

2(n+5)
+ φ
)
|∇(Δu)|2 +(Δ2u)2

)
.

Now we consider (2.1) with m = 4 subject to the boundary conditions u = Δu =
Δ2u = ∂ (Δ2u)

∂n = 0. From Theorem 5.5 we deduce:

∫
Ω
(Δ3u)2dx

� area(Ω)
{

n(n+2)
3n

}
max
∂Ω

[(
n−4

2(n+2)
+ β

)
(Δ3u)2 + |∇2(Δ2u)|2

]
.
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