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MAXIMUM PRINCIPLES FOR A CLASS OF
LINEAR ELLIPTIC EQUATIONS OF EVEN ORDER

CRISTIAN-PAUL DANET AND ANITA MARENO

(Communicated by J. Pecaric)

Abstract. In this paper we define several types of functions on the solution to a class of linear
elliptic equations of even order. We establish that these functions satisfy a classical maximum
principle. As a consequence we obtain uniqueness results and bounds on various quantities of
interest.

1. Introduction

The technique of applying classical maximum principles to certain functions de-
fined on the solution of a differential equation of order > 2 is well-known (see the book
of Sperb [15] or the survey paper [10] and the vast literature cited therein). Utilizing
this technique one can, for example, deduce results about the solution itself or perhaps
obtain apriori bounds on various gradients of the solution. An interesting boundary
value problem on which this technique has been applied concerns a class of differential
equations known as m-metaharmonic equations

A" — ()N U @y 2 (X)A2Uu A4 (—1)"ag(x)u = f in Q (L1
u=4gi, Au:g27"'7 Am_l”t:gm on 897 :

where a;,i =0,...,m— 1, are bounded and the domain Q C IR",n > 2 is bounded.

In [6], Dunninger develops maximum principle results for this boundary value
problem, on an arbitrary domain €, in the case where m =2, n > 2, a; =0, ag =
constant > 0. Schaefer [12, 13] obtains such results on domains € in which dQ has
positive curvature, and assumes that m = 2,3 and n = 2, respectively. The author
requires that ¢y =0 in [12] and ay,a; >0, a9 > 0 in [13].

To contrast, Danet [4] treats the nonconstant coefficient case for an arbitrary do-
main €. Here, uniqueness results are obtained both for m =2 and m = 3, where
n > 2. For the case m =3, n=2, S. Goyal and V. Goyal in [7] also deduce uniqueness
results for (1.1) for arbitrary domains. Later, in [5], the author studies (1.1) for domains
with boundaries that have positive curvature in the case m =4, n = 2. Herein, the
assumptions a3, as,a; = 0, ag > 0 are made on the coefficients.
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Maximum principle results for the case where the differential equation in (1.1) has
order > 8 can be found in [16] and in [2], for domains which are planes or lines. An-
other such result appears in [1], in which the authors pose an interesting open problem:
If f=0inQ,g=-=g,=00ndQ, m>3,n>2,a, 1==a =0in Q do
all the solutions of (1.1) satisfy the maximum principle

max |u| < Cmax|ul, (1.2)
Q 0Q

where C > 1 is a constant? This problem, as it turns out, can be solved when Q is a
class C? domain ([14]).

In this paper we study the differential equation in (1.1) from two approaches. We
primarily utilize functions containing the squares of terms of the form (A'u)?. We show
that these functions satisfy a generalized maximum principle (see next section for an
explicit definition) and deduce the uniqueness of classical solutions classical solutions,
(i.e., solutions in C?"(Q)NC*"~2(Q), m > 2), of the boundary value problem (1.1).
We also show that (1.2) is valid even if Q is an arbitrary domain. We then take a new,
second approach to the m-metaharmonic equation in (1.1), in that we utilize functions
containing the squares of certain higher order gradient terms. These functions are,
partially, generalizations of functions used by L. E. Payne in [9]. In this work the
author deduces maximum principles results for the semilinear equation A%u = f(u) by
employing functions containing the square of the second gradient of the solution u.
In our paper, this alternative class of functions will yield integral bounds on certain
gradient terms for some interesting boundary conditions, in which, for example both
Alu =0 and a(aA;") = 0 for certain values of i. Both classes of functions are used to
analyze the principle equation in (1.1) as well as the specific cases m =2,3, and m =4.

2. Assumptions and notation

Throughout this paper we shall assume that Q C IR"”, n > 2 is a bounded domain,
m > 2 and the coefficients a;, i=0,...,m— 1 are bounded in €. Also we shall suppose
that ag #Z 0. Additionally, diamQ will denote the diameter of Q.

Partial differentiation is denoted by commas. Furthermore, we identify the prod-
ucts of the first, second, and third gradients of the functions v and w as follows

Vv-Vw=v,w;, Vi Vi = ViiWij, V3iviw = Vi kW, ijk-
We denote the squares of the first, second, third, and fourth gradients of w by
2 212 312 4 12
|VW‘ = W7,'W7,', |V W| = WJjWJj, ‘V W‘ = WijkW,ijk; ‘V W‘ = W7ijle7ijkl~

For the sake of brevity, we shall say that a function @ satisfies a generalized
maximum principle in Q, if either there exists a constant k € IR such that ® =k in Q
or @ does not attain a nonnegative maximum in Q.

In (1.1), for simplicity, we shall only consider the case when m is even, i.e., we
shall study the equation
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A" — a1 (X)A" U+ @y 2 (X)A" U — 4 ag(x)u =0 inQ. (2.1)

Similar results will hold if m is odd.

3. Some useful results

We now state two maximum principles that will be applied several times in the
paper. The first result appears in [4].

THEOREM 3.1. Let u € C*(Q)NCY(Q) satisfy the inequality Lu = Au+y(x)u >
0 in Q, where v > 0 in Q. Suppose that

4n+4

sup r< (diamQ)?

(3.2)

holds.
Then, the function u/wy satisfies a generalized maximum principle in Q. Here
wi(x) =1—a(?+---+x2) € C°(IR"), o= supgy/2n.
If Q lies in strip of width d and if we impose the restriction
2

sup7/< 7

(3.3)

we obtain that u/w, satisfies a generalized maximum principle in Q. Here

(2x;
wz:cos((dxi_i_jl:[lcosh ex;) € C*(Q),

forsome i € {1,...,n}, where € >0 is small.

A similar maximum principle holds for more general operators

THEOREM 3.2. Let u € C2(Q)NC%(Q) satisfy the inequality

z d
Liu=Au+ Zﬁ,(x)% +y(x)u >0, where y > 0in Q.
i=1 i

(a) If there exists i € {1,...,n} such that B; >0 in Q and if

supy < (3.4

4
d2e2’
then, the function u/ws satisfies a generalized maximum principle in Q. Here wi(x) =
1 — Be™i € C*(IR") for some i € {1,...,n}, where B = supgy/a* and o0 >0 is a
constant.

(b) Let iy,...,in € {1,...,n} be distinct numbers. Suppose that one of the follow-
ing conditions holds
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(i) B =0 forall k=1,....,nin Q; or
(ii) there exist(s) i,...,iq (1< q<n—1) suchthat B;,...,B;, <0 in Q and rest
of coefficients By are nonnegative in Q; or
(iii) By <0 forall k=1,...,n in Q;
If in addition
2(n—1)
diamQ(diamQ+6)(yv/n+1)’

where O is any positive constant, then, there exists a function wy (for more details see
[3]1) such that u/wa satisfies a generalized maximum principle in Q.

supy < (3.5)
Q

The proof of part (a) follows from Theorem 10, [11], p. 73 and the results on p.
73-741in [11]. The proof of part (b) follows from Theorem 10, [11], p. 73 and Lemma
1, [3].

REMARKS.

1. A broad class of domains satisfy Q C Bgigmay2 = {x|x] +--+x32 < (diamQ)? /4} .
For these domains C(n,diamQ) = (4n +4)/(diamQ)? (in Theorem 3.1) may be re-
placed by C(n,diamQ) = 8n/(diamQ)? (see [4]).

2. For some domains it is possible to improve the constant Cj (n,diam ) (also see
[4] for details).

4. Main results

THEOREM 4.1. Let u be a classical solution of (2.1). Suppose that a,,—1 = ... =
a; =0, ap>0, Aayg <0 in Q.
We define the functions Py and P,

P1 — (Amflu)2+(Am72u)2+___+u2,

Py
P, =
ap
(a) If the inequality
Aao
max{1 + supap,2} +sup— <0, (4.6)
Q Q ao
holds, then the function P, attains its maximum value on <.
(b) If we have
Aa() 4
max{1+ sgpao7 2} + sgp o < a2 4.7)

and if there exists i € {1,...,n} such that % (%) >0 in Q, then the function Py /w3
satisfies a generalized maximum principle in €.
(c) If the strict inequality
Aa 2(n—1
P (1)

| ) Agg 48
max{ +sgpao7 }—i—sgp ap  diamQ(diamQ+ 8)(v/n+1)’ (*5)
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holds, where O is any positive constant, if the coefficients ; = % (%) satisfy one of
1

conditions of part (b) of Theorem 3.2, then the function P, /wy satisfies a generalized
maximum principle in Q.

Proof. (a) A computation shows that

1 P 1
AP2 - Zaov (—) VP2 = ——éAao + —Apl
ap ag ap
P 1
> ——Aag— — ((1 +ag) (A" ) 4+ 2(A"2u)?
ao a

+ . 2(Au)?+2(1 —|—ao)u2>.

Hence P, satisfies the differential inequality

1 1 A
AP, — 2aoV<—>VP2 > — ( (1 +ao+ —“0) (A1)
a a

aop

A A
+<2+ﬂ)(Au)2+ <1+a0+ ﬂ)142) >0 inQ.

ap ao

As consequence of the classical maximum principle P, attains its maximum value
on dQ. The proofs of (b) and (c) follow from the generalized maximum principle
(Theorem 3.2). [

REMARKS.

1. A similar result (but weaker) to Theorem 4.1, case a). can be stated if we do
not impose smoothness or sign conditions on the coefficient ag. The function Py /w
satisfies a generalized maximum principle in Q if @, =...=a; =0 in Q (qq is of
arbitrary sign in Q) and if

4dn+4
(diamQ)?’
2. If m=2 and ag > 1 the result of Theorem 4.1, case a). can be sharpened,

i.e., a maximum principle for the the function P} = ((Au)? +u?) /agw; holds if (4.6) is
replaced by

max{1 +supag,2} < (4.9)
Q

A
supag — 1+ supﬂ <0. (4.10)
Q Q ao

The next result allows ag to be large if a,,_; is large
THEOREM 4.2. Let u be a classical solution of (2.1). We consider the function

P3
Py = (A" 'u)? 4 2a, o (A" 2u)* + (A" u)? 4+ i
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Suppose that ay,_1, am—2 >0 and A(1/ay_2) <0 in Q. If

2
ag dn+4
4.11
Sp{zam 1+1}<(diam9)2’ @10
2
> max {1+ supal7 1+ supay_3}, (4.12)
2am 1 Q
m > sup{|a1| +...+ |Clm 3‘} (413)
and
&2
( 0 +1) ann>1 inQ (4.14)
2amfl

then, the function P3/w) satisfies a generalized maximum principle in Q.

The proof is similar to the proof of Theorem 4.1 and hence is omitted.

REMARK. The coefficient ag can be replaced by a,,—;, j=4,...,m—1 if there
existsa j=4,...,m— 1 such that

2
ayy— m—j
> 2 4.15
2am—1 kinax { +supak} ( )
2
3 +2>sup{|ao\+ Nam—j-1l+lam—jl+ ...+ |am-s|}, (4.16)
Am—1
and
az
-l—l ap—n>1 InQ. 4.17)
2am 2

We now show that the uniqueness result and the maximum principle (1.2) holds.

THEOREM 4.3. There is at most one classical solution of the boundary value
problem (1.1) provided the coefficients ay_1,...,ay satisfy the conditions imposed in
Theorem 4.1 or Theorem 4.2.

Proof. Suppose that the hypotheses of Theorem 4.1 are satisfied. Define u =

u; —up, where u; and uy are solutions of (1.1). Then u; and u; satisfy the equation
(2.1) and

u=Au=---=A""'yu=0 onoQ. (4.18)

Hence, by Theorem 3.1 either
(i) there exists a constant k € IR such that

L= inQ, (4.19)

or
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(ii)
P
—L " does not attain a maximum in Q.
wi
Case (i) By continuity (4.19) holds in Q. By the boundary conditions (4.18) we
obtain P; =0 on 9Q, i.e., k= 0. It follows that Py =0 in €, which means u =0 in
Q. Hence u; = uy in Q.
Case (ii) From

and (4.18) we get

i.e., uy = up in Q.
We can argue similarly if we are under the hypotheses of Theorem 4.2. [

THEOREM 4.4. We consider the boundary value problem (1.1), where f =0 in
Qand gy =--=gn =0 on dQ. Then (1.2) holds for all solutions of (1.1) provided
the coefficients a,,—1,...,ag are subject to one of the conditions imposed in Theorem
4.1 or Theorem 4.2.

Proof. Suppose that the hypotheses of Theorem 4.1 are satisfied. By Theorem 3.1

we see that ) 5 )
P ma
% max PL = max X < (MaXog [u])”

< - in Q.
w1 aQ Wi aQ Wi minggo wi

This inequality proves the desired result. [l

REMARK. The boundary value problem

A"u+2"u=0 inQ=(0,7)x (0,m)
u=Au=---=A"1u=00n0Q,

has (at least) the solutions u;(x,y) =0 and wuy(x,y) = sinxsiny in €. This example
shows that if we do not impose some restrictions on the coefficients a,,_1,...,ap, then
the uniqueness result (Theorem 4.3) might be violated. To obtain a uniqueness result
one must impose the restriction (4.9).

Our last result, as well as the preceeding ones, are valid for functions containing
terms of the form (A’u)? and for boundary conditions of the form Alu = 0. Here, we
state and prove a maximum principle result for the homogeneous equation A"u = 0
utilizing a different class of functions, in particular, functions containing the squares of
certain second gradient terms. Now, we state our first result of this type

THEOREM 4.5. Suppose that u € C*"*1(Q)NC>"~1(Q) is a solution of A"u=0.
Furthermore, let

(4—n)

T2 AMm—2,\|2 _ m—2_\ m—1\
Py = V(A" u)|" = V(A" “u) - V(A" 'u) 207 2)

(A" 1y)?, (4.20)
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Then Py takes its maximum value on 0Q.
Proof. First we calculate
APy = 2|V3 (A" 2u) |2 42V (A" 2u) : V2 (A" Lu) (4.21)
— V(A" L) |2 = V2 (A" 2u) V2 (A" )
—VQ(A’”_zu) : Vz(A’“_lu) — V(A’“_Zu) -V(A™u)
4— 4 —
( n)‘V(Am—lu)F_MAm—luAmu.

(n+2) (n+2)
Upon simplifying (4.21) we see that
6
APy = 2|V3 (A" 2u))? — V(A" )%,
2= AV @) — V()

The proof now follows by substituting w for A”~2x in the well-known inequality (see
(9D 3

V3 2 > V(A 2

Vil > |V (aw),

which holds for functions w € C?(Q).

REMARK. We note that the smoothness conditions for u are more strict than in
our previous results; this is due to the presence of a gradient terms in P;. Secondly,
when Dirchlet boundary conditions are present, one can deduce an apriori bound on
|V(A™24)|? using this result (see [9] for more details). Lastly, additional results using
functions similiar to P4 are proven in the next section of this paper.

5. The cases m =4,m=3 and m =2
In this final section, we treat the particular cases m =4, m =3 and m = 2.
Itis interesting to note that the following results cannot be deduced from the results

of Section 3.

THEOREM 5.1. Let u be a classical solution of (2.1), where m = 4. Assume that

a3z >0 inQ, (5.22)
a >0 inQ, (5.23)
ap >0, A(l/ap) <0 inQ, (5.24)
and
ar—ag—1>0, A(l/(az—ap—1))<0 inQ. (5.25)
are satisfied.
We define the function
1 —ap—1 —ap—1
Ps = 3 (At Au)’+ a—ZO(A2u +u)?+ %(A%)z + 2 ;0 (Au)?



MAXIMUM PRINCIPLES FOR A CLASS OF LINEAR ELLIPTIC EQUATIONS OF EVEN ORDER 817

If
(a1 +az)? 8n+8
o @3(ax—ap—1)  (diamQ)?’

(5.26)

then, the function Ps/wy satisfies a generalized maximum principle in Q.
If ay =0 and a3 > 0 in Q a similar result holds for Ps/w, under the restriction

as 8n+8

< ) 5.27
Sgp (ap—ap—1) = (diamQ)?2 (5-27)

If
4a3a; > (a1 +a3)?, a1 >0 inQ, (5.28)

(5.22), (5.24) and (5.25) are satisfied then the function Ps attains its maximum value
on dQ.

The proof is similar to the proof of Theorem 4.1 and hence is omitted.

With the aid of the above theorem we can establish a uniqueness result.

THEOREM 5.2. Suppose that m = 4 and one of the following conditions hold:

(a) a3, a; =0 (as, a; constants), a; >0, ag >0 in Q, n =2 and the curvature
of dQ is strictly positive;

(b) the hypotheses of Theorem 5.1.

Then there exists at most one classical solution of the boundary value problem

(1.1).

Proof. (a) For a proof see Theorem 1, [5].
(b) The proof is achieved by arguing exactly as in Theorem 4.3. [

THEOREM 5.3. Let u be a classical solution of (2.1), where m =2 and a; =
const. >0, ag >0 in Q.

Suppose that
1 (ag—1)? 2n+2
- — —_—. 5.29
o (“1 ar ( a0 ) ) = ({diamQ)? 29
Let 1 1
P = E(Au —au)*+ E(Au)2 +u?.

Then the function Pg/wy satisfies a generalized maximum principle in Q.

If

a()—l 2

a > ( ) inQ, (5.30)
aop

then the function Pg attains its maximum value on dQ (here the assumption (5.29) is
not needed).
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The proof is similar to the proof of Theorem 4.1.

REMARK. A classical result ([1]) tells us that the boundary value problem

{A2u—a1(x)Au+ao(x)u:finQCIRn (5.31)

u=g,Au=nh ondQ,

has a unique solution if aj,a¢ > 0 and if Aag < 0 or A(1/ap) <0 in Q.

Theorem 5.3 tells us that if a; > 1 and ap > 0 then the boundary value problem
(5.31) has a unique solution. We see that no smoothness restrictions are needed on the
coefficient ag.

To contrast the above results we now deduce some maximum principle results,
using auxiliary functions containing the squares of certain gradients of order greater
than two, for the cases m =3 and m = 4.

THEOREM 5.4. Let u € C'(Q)NC3(Q) be a solution to (1.1) for m=3. Define,

1
P; = |V3u* + S Vu: V(A2u) — V*(Au) : (VZu) 4 B (x)u® + (A%u)? (5.32)
+ im(x) |V (Au)* + |Vul? where, B(x),$(x) € C*(Q).
2(n+5) ’ ’
Furthermore, assume that
9n|Vay|? 9 , a a5 3|Vay|?
Z— Z -najy, —-— 2 1+—=, ) .
B 3 ay > snaj, - > max + 16" 160, (5.33)
AB 2 3ag 3|Vaol* 6|VB[*
AN 0 .
A9 2\VoP [y 3a 3(n—3)
— > — — .
3 /max{Z, o 4 'sp where y(x) =2¢(x) + 3175 (5.35)
Then P; attains its maximum value on 9.
Proof. By a straightforward calculation, we have
1 1
AP; = 2|V*ul® + 5 V(u) -V(A%u) + 5 Vu- V(Au) (5.36)
-7
+ {z¢ + Z+ 5] [(V2(Au) : V2(Au) + V(Au) - V(A%u))]

+AO|V(Au) > +2V¢ - V(IV(Au)[?) + 2A%u u + 2|Vu?
+ABu* +2VB -V (u?) + 2Buru+ 2B |Vul|> +2Vu - V(Au)
+2|V(A%u) > — |V (Au)|?.

From the inequalities

6 1
42 > 2 2 22> 2 2 9
[Vl —n—l—SW (Au)|7,  |V7ul n(Au) (see [8, 9])
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we deduce that
AP; > %Vu -agVu+y(x)V(Au) - V(A%u) + 20|V (Au) |? (5.37)
+%w. [(Va)A2u + a2V (A2u) — (Vay)Au — arV (Au) + (Vao )]
+AOV (Au) -V (Au) +2Ve - V(|V(Au)[?) + ABu*+2VB - V(u?)
+2Buru+2B|Vul* + %(Au)z +20%u(a N’ u — ay Au+ agu)
+2|V(A%u)|* +2Vu - V(Au).

To complete the proof, we first establish a set of useful inequalities involving the
term |V(Au)|?:

2Vu-V(Au) > —|Vul® — |V(Au)?, (5.38)
20 19 a0 40V () - (820 + 9 (8% > V()P [%—%] L (539
2
202 (4 P +2V0 - V(¥ (80) )+ 52 9 (80) > |V () [%—@] . (5.40)
2 al Ad B 2 [AQ 3a%
\V\ Vu V() + == V(8w > [V () [?—@} (5.41)

Secondly, the following inequalities involving |Vu|? and (A%u)? hold:

2
IV(A2u)2 + %Vu V(A2u) + (C;_O - 1) Vul? > |Vu]? B—O - (1 + “iﬂ . (5.42)

16
a2, 1 2 2o w2 3Val
3 (A7u)” + 2(Va2) Vuru+ 2 \Vu\ [Vu| [ 64, (5.43)
a , .- 5 2 2 a 3na%
2 (A%u)? — 20, Nudu+ — (Au)? > (Au)? , (5.44)
3 3n 3 2
B 2 1 2 2 2 [B 3n|Vay
= —=Vu- = > e ALY I .
3 |Vu| ZVu V(a)Au+ W (Au)” > |Vul 3 3 (5.45)
Lastly, we state several inequalities for u?:
AB 2 2 2[AB L4
=F 2 4 2agul A - 320 4
4u+a0u u—|—3( u)> > u 4 3512 , (5.46)
AB 5 V(ao)-(Vu) 2 2o 2 [AB 3[Val
R SRR el P > | == — ,
1 + 2 u+3[3\Vu\ zu |~ 325 | (5.47)
2
B 12+ 2Bulu + 32 (Au)? > 12 [% - 3”2B } , (5.48)

ﬁ AB 6|VB
Tu2+2Vﬁ-V(u2)+§ﬂ\Vu\2 >u? [T—T} (5.49)
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Utilizing (5.33), (5.34), (5.35) and (5.38)—(5.49) we see that P; is subharmonic in
Q. O

Next we obtain a maximum principle result for the equation A*u + ag(x)u = 0
utilizing an auxiliary function containing the second gradient of A%u.

THEOREM 5.5. Suppose that u € C°(Q)NC’(Q) be a solution to (1.1) where
m=4 and a3 =ay =a, =0. Let

Py = |V2(A%u)|> — V(A%u) - V(A u) — [2(4,11"2)] (Au)? (5.50)

+ B(x) [ + (Au)* + (A%u)* + (A*u)?], where B(x) € C*(Q).

Furthermore, we require that for ag > 0,

3
B? > ga%, (5.51)

15 4—
(AB)? > max { 15[32,20[3261%, §|Vao\2,5 (n n ;) a%} . (5.52)
Then Pg achieves its maximum value on 0Q.

Proof. Applying the Laplacian to Pg yields

4—n

m) (A3u)agu (5.53)
+AB [u2 + (Au)? + (A%u)* + (A3u)2] +2B[|Vu|* + uAu

+|V(A%u) [ 4+ AulPu + |V (A3u) ? + (Au)agu + |V (Au)|* + Aud’u]
+2VB - [V(i?) + V((A%u)?) + V((Au)*) + V((Au)?)].

APg > —V(A%u) - agVu — V(A*u) - (Vag)u — (

Utilizing a series of inequalities similar to (5.38)—(5.49) leads to

APg > |V(A%u))? [? — %] +u? [% — 4?2] (5.54)
gy
w8 [
+(A%u)? _% - %&'ﬁ)aﬁ + (Au)? [% —4%2]
+(Au)? {% — %} .
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From conditions (5.51) and (5.52) it follows that APg > 0. [

Finally we state a few applications of the last two results. We impose the boundary

i 2 . . .
conditions u = % = % =0 on (2.1) in the case m = 3. Using integration by parts

(see[8]) and Theorem 5.4 we obtain the following integral bound for |V (Au)|?:

(R R

—17
< area(Q Viul+ [ V(Au)]? + (A2)? ).
area( @) (V%7 + (57T 0 ) V(@0 + (8)
Now we consider (2.1) with m = 4 subject to the boundary conditions u = Au =

2
A= w = 0. From Theorem 5.5 we deduce:

/Q(A3u)2dx

< area(Q) {w}n;gx {(281;4_42) +B) (Nu)? + |V (A%u)*] .
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