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Abstract. In this paper, we prove that Hp(K (r),K (r′)) �K (
√

2/2) and Hq(K (r),K (r′))�
K (

√
2/2) for all r ∈ (0,1) if and only if p � 1− 4[K (

√
2/2)]4/π2 = −3.789 · · · and q �

(log2)/[log(π/2)− logK (
√

2/2)] = −4.1805 · · · , where Hp(x,y) denotes the Hölder mean of
order p of two positive numbers x and y , r′ =

√
1− r2 , and K (r) denotes the complete elliptic

integral of the first kind, respectively.

1. Introduction

Throughout this paper, we denote r′ =
√

1− r2 for 0 < r < 1. Legendre’s com-
plete elliptic integrals of the first and second kinds [13, 14] are defined by⎧⎪⎪⎨

⎪⎪⎩
K = K (r) =

∫ π/2
0 (1− r2 sin2 θ )−1/2dθ ,

K ′ = K ′(r) = K (r′),

K (0) = π/2, K (1) = ∞

and ⎧⎪⎪⎨
⎪⎪⎩

E = E (r) =
∫ π/2
0 (1− r2 sin2 θ )1/2dθ ,

E ′ = E ′(r) = E (r′),

E (0) = π/2, E (1) = 1,

respectively.
Recently, the complete elliptic integrals have been the subject of intensive re-

search. In particular, many remarkable properties and inequalities can be found in the
literature [1–7, 9–12].

For p ∈ R the Hölder mean Hp(x,y) of order p of two positive numbers x and y
is defined by

Hp(x,y) =

⎧⎨
⎩
( xp+yp

2

)1/p
, p �= 0,

√
xy, p = 0.

(1.1)
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As is known to all, Hp(x,y) is continuous and strictly increasing with respect to
p ∈ R for fixed x,y > 0 with x �= y . The main properties of the Hölder mean are given
in [15].

In [8, Theorem 3.31], Anderson et al. studied the monotonicity and convexity of
K (r)E (r) in (0,1) , and obtained the following inequality:

H0(K (r),E (r) >
π
2

(1.2)

for all r ∈ (0,1) .
In a recent paper [9] Wang et al. generalized (1.2) and proved the following opti-

mal power mean inequality for the complete elliptic integrals:

Hp(K (r),E (r)) >
π
2

, (1.3)

for all r ∈ (0,1) if and only if p � −1/2.
Notice that in [8, Lemma 3.32(1), (3)], Anderson, Vamanamurthy and Vuorinen

studied the monotonicity of K (r)K (r′) and K (r)p + K (r′)p for p ∈ [−3,0) and
r ∈ (0,1) , and established the following inequalities:

H0(K (r),K (r′)) � K
(√

2/2
)

(1.4)

and

K
(√

2/2
)
� Hp(K (r),K (r′)) < π/21+1/p (1.5)

for all r ∈ (0,1) and p ∈ [−3,0) .
It is natural to ask what are the least value p and the greatest value q such that

Hp(K (r),K (r′)) � K (
√

2/2) and Hq(K (r),K (r′)) � K (
√

2/2) for all r ∈ (0,1) .
The main purpose of this paper is to answer this question. Our main result is the fol-
lowing Theorem 1.1.

THEOREM 1.1. Inequalities

Hp(K (r),K (r′)) � K
(√

2/2
)
, (1.6)

and

Hq(K (r),K (r′)) � K
(√

2/2
)
. (1.7)

hold for all r ∈ (0,1) if and only if p � 1− 4[K (
√

2/2)]4/π2 = −3.789 · · · and q �
(ln2)/

[
ln(π/2)− lnK (

√
2/2)

]
= −4.1805 · · ·.
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2. Some Lemmas

In order to establish our main result we need several lemmas, which we present in
this section.

For 0 < r < 1, the following formulas were presented in [8, Appendix E, pp. 474–
475]:

dK

dr
=

E − r′2K
rr′2

,
dE

dr
=

E −K

r
,

d(E − r′2K )
dr

= rK ,
d(K −E )

dr
=

rE

r′2
,

K E ′ +K ′E −K K ′ =
π
2

. (2.1)

The following Lemma 2.1 can be found in [8, Theorem 3.21 (7), and Exercise 3.43
(16) and (46)].

LEMMA 2.1. (1) For c ∈ [1/2,∞) , r′cK is strictly decreasing from [0,1) onto
(0,π/2];

(2)
[
E 2 − (r′K )2

]
/r4 is strictly increasing from (0,1) onto (π2/32,1);

(3)(E − r′2K )/(r2K ) is strictly decreasing from (0,1) onto (0,1/2) .

LEMMA 2.2. Let r ∈ (0,1) . Then the function f (r) = (E − r′2K )(E ′ − r2K ′)
/(r2r′2K K ′) is strictly increasing from (0,

√
2/2) (or strictly decreasing from

(
√

2/2,1) , respectively) onto (0,π2/{4[K (
√

2/2)]4}) .

Proof. By differentiation, we have

f ′(r) =
rK (r2K )− (E − r′2K )[2rK + r2(E − r′2K )/(rr′2)]

r4K 2

×
(

E ′ − r2K ′

r′2K ′

)
+

(
E − r′2K

r2K

)

× −rK ′(r′2K ′)− (E ′ − r2K ′)[−2rK ′ − r′2(E ′ − r2K ′)/(rr′2)]
r′4K ′2 ,

=r[ f1(r)− f1(r′)], (2.2)

where

f1(r) =
(E − r′2K )

r2K
· (E

′)2− (rK ′)2

r′4
· 1
(rK ′)2 . (2.3)
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From (2.3) and Lemma 2.1 (1)–(3) we know that f1(r) is strictly decreasing in
(0,1) . Then (2.2) leads to the conclusion that f ′(r) > 0 for r ∈ (0,

√
2/2) and f ′(r) < 0

for r ∈ (
√

2/2,1) . Hence f (r) is strictly increasing in (0,
√

2/2) and strictly decreas-
ing in (

√
2/2,1) . Moreover, making use of Lemma 2.1 (3) and (2.1) we clearly see that

f (0+) = f (1−) = 0 and

f (
√

2/2) =
4
[
E (

√
2/2)− (1/2)K (

√
2/2)

]2
K (

√
2/2)

2 =
π2

4[K (
√

2/2)]4
. �

LEMMA 2.3. Let p∈R and g(r)= (K /K ′)p−1 (E −r′2K )/(E ′−r2K ′) . Then
g(r) is strictly increasing in (0,1) if and only if p � 1−4[K (

√
2/2)]4/π2 =−3.789 · · ·,

and g(r)< 1 for r∈ (0,
√

2/2) and g(r)> 1 for r∈ (
√

2/2,1) if p � 1−4[K (
√

2/2)]4

/π2 . Moreover, if p < 1−4K (
√

2/2)
4
/π2 , then there exists r0 = r0(p) ∈ (0,

√
2/2) ,

such that g(r0) = g(r0
′) = 1 , g(r) < 1 for r ∈ (0,r0)∪ (

√
2/2,r0

′) , and g(r) > 1 for
r ∈ (r0,

√
2/2)∪ (r0

′,1)

Proof. Simple computations lead to

g
(√

2/2
)

= 1 (2.4)

and

g′(r)
g(r)

=(p−1)

(
E − r′2K

rr′2K
+

E ′ − r2K ′

rr′2K ′

)
+

rK

E − r′2K
+

rK ′

E ′ − r2K ′

=(p−1)
K E ′ +K ′E −K K ′

rr′2K K ′ +
r(K E ′ +K ′E −K K ′)
(E − r′2K )(E ′ − r2K ′)

=
π

2rr′2K K ′

[
p−1+

r2r′2K K ′

(E − r′2K )(E ′ − r2K ′)

]
. (2.5)

From Lemma 2.2 one can obtain that r2r′2K K ′/
[
(E − r′2K )(E ′ − r2K ′)

]
is

strictly decreasing from (0,
√

2/2) (or strictly increasing from (
√

2/2,1) , respectively)
onto (4[K (

√
2/2)]4/π2,∞) . Then (2.4) and (2.5) lead to the conclusion that g(r) is

strictly increasing in (0,1) if and only if p � 1−4[K (
√

2/2)]4/π2 = −3.789 · · ·, and
g(r)< 1 for r∈ (0,

√
2/2) and g(r)> 1 for r∈ (

√
2/2,1) if p � 1−4[K (

√
2/2)]4/π2 .

Moreover, if p < 1− 4[K (
√

2/2)]4/π2 , then from (2.5) we know that there exists
r1 ∈ (0,

√
2/2) , such that g′(r1) = g′(r1

′) = 0, g′(r) > 0 for r ∈ (0,r1)∪ (r1
′,1) and

g′(r) < 0 for r ∈ (r1,r1
′) . Hence g(r) is strictly increasing in (0,r1)∪ (r1

′,1) and
strictly decreasing in (r1,r1

′) . Therefore, Lemma 2.3 follows from (2.4) and the mono-
tonicity of g(r) . �
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3. Proof of Theorem 1.1

Proof. If p = 0, then inequality (1.6) reduces to inequality (1.4). Thus, we only
need to prove inequality (1.6) for p �= 0. Let

F(r) =
1
s

ln
K (r)s +K (r′)s

2
(s �= 0). (3.1)

Then simple computation leads to

F ′(r) =
1
s

sK s−1(E − r′2K )/(rr′2)− sK ′s−1(E ′ − r2K ′)/(rr′2)
K s +K ′s

=
K s−1(E − r′2K )−K ′s−1(E ′ − r2K ′)

rr′2(K s +K ′s)

=
K ′s−1(E ′ − r2K ′)
rr′2(K s +K ′s)

[(
K

K ′

)s−1 E − r′2K
E ′ − r2K ′ −1

]
. (3.2)

We divide the proof into two cases.
Case 1. s � 1−4[K (

√
2/2)]4/π2 . Then from (3.2) and Lemma 2.3 we know that

F ′(r) < 0 for r ∈ (0,
√

2/2) and F ′(r) > 0 for r ∈ (
√

2/2,1) . Hence, F(r) is strictly
decreasing in (0,

√
2/2) and strictly increasing in (

√
2/2,1) . Then (3.1) leads to the

conclusion that
1
s

ln
K (r)s +K (r′)s

2
� lnK

(√
2

2

)
(3.3)

for all r ∈ (0,1) .
Therefore, inequality (1.6) follows from (3.3).
Case 2. s < 1− 4[K (

√
2/2)]4/π2 . Then from (3.2) and Lemma 2.3 we clearly

see that F ′(r) < 0 for r ∈ (0,r0)∪ (
√

2/2,r0
′) and F ′(r) > 0 for r ∈ (r0,

√
2/2)∪

(r0
′,1) . Hence, F(r) is strictly decreasing in (0,r0)∪ (

√
2/2,r0

′) , strictly increasing
in (r0,

√
2/2)∪ (r0

′,1) , and

sup
r∈(0,1)

F(r) = max

{
lim
r→0

F(r),F(
√

2/2), lim
r→1

F(r)
}

= max

{
ln(π/2)− 1

s
ln2, lnK

(√
2/2
)}

. (3.4)

Further, if (ln2)/
[
ln(π/2)− lnK (

√
2/2)

]
< s < 1− 4[K (

√
2/2)]4/π2 , then from

(3.4) we have sup
r∈(0,1)

F(r) = ln(π/2)− (ln2)/s and

1
s

ln
K (r)s +K (r′)s

2
< ln

(π
2

)
− 1

s
ln2 (3.5)
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for all r ∈ (0,1) ; if s � (ln2)/
[
ln(π/2)− lnK (

√
2/2)

]
, then from (3.4) we get

sup
r∈(0,1)

F(r) = lnK (
√

2/2) and

1
s

ln
K (r)s +K (r′)s

2
� lnK

(√
2

2

)
(3.6)

for all r ∈ (0,1) .
Therefore, inequality (1.7) follows from (3.6).
Finally, we prove that the parameters

p = 1− 4[K (
√

2
2 )]4

π2

and

q =
ln2

ln(π
2 )− lnK (

√
2

2 )

are the best possible parameters such that inequalities (1.6) and (1.7) hold for all r ∈
(0,1) , respectively.

If q < s < p , then from the monotonicity of F(r) we know that there exists r ∈
(
√

2/2,r′0) , such that F(r) < F(
√

2/2) and Hs(K (r),K (r′)) < K (
√

2/2) . More-
over, equation (3.4) and inequality (3.5) imply that there exists δ = δ (s) ∈ (0,1) , such
that F(r) > lnK (

√
2/2) and Hs(K (r),K (r′)) > K (

√
2/2) for r ∈ (0,δ ) . �
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elliptic integrals, Integral Transforms and Special Functions, 23,7 (2012), 521–527.
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