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REMARKS ON THE NUMBER OF PRIME DIVISORS OF INTEGERS
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(Communicated by K. Gyory)

Abstract. In this paper, we obtain explicit bounds for sums ∑k�n ω(k) and ∑k�n Ω(k)−ω(k) ,
where ω(k) denotes the number of distinct prime divisors of k , and Ω(k) denotes the total num-
ber of its prime divisors. Moreover, we give some better explicit bounds for the sum ∑k�n ω(k)
under assumption of the Riemann hypothesis.

1. Introduction

As usual, we let ω(k) = ∑p|k 1 be the number of distinct prime divisors of the
positive integer k . Also, we let Ω(k) = ∑pα‖k α be the total number of prime divisors
of k . In 1917, Hardy and Ramanujan [3] proved the following average results

∑
k�n

ω(k) = n loglogn+Mn+O
( n

logn

)
, (1.1)

and

∑
k�n

Ω(k) = n loglogn+M′n+O
( n

logn

)
. (1.2)

As a consequence, they obtained

∑
k�n

Ω(k)−ω(k) = (M′ −M)n+O
( n

logn

)
= n∑

p

1
p(p−1)

+O
( n

logn

)
. (1.3)

Here, M and M′ are constants defined by

M = γ +∑
p

(
log
(
1− p−1

)
+ p−1

)
= 0.2614972128 · · ·,

and
M′ = γ +∑

p

(
log
(
1− p−1

)
+(p−1)−1

)
= 1.0346538818 · · ·,
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and γ refers to Euler’s constant. The constant M is known as the Meissel-Mertens
constant [2]. To compute M and M′ (and consequently M′ −M ) we may apply rapidly
converging series

M = γ +
∞

∑
k=2

μ(k) logζ (k)
k

, and M′ = γ +
∞

∑
k=2

ϕ(k) logζ (k)
k

. (1.4)

Recently, we obtained an explicit approximation for the sum of prime powers in the
factorization of n! into prime numbers [4], from which we could imply an explicit
version of (1.2), as follows.

PROPOSITION 1.1. For n � 2 we have

n loglogn+M′n− 814921n
logn

< ∑
k�n

Ω(k) < n loglogn+M′n+
n

log2 n
. (1.5)

Our aim in this paper is to obtain similar explicit versions of (1.1) and (1.3). More
precisely, we prove the following.

THEOREM 1.2. For n � 2 we have

n loglogn+Mn− 3.8854n
logn

< ∑
k�n

ω(k) < n loglogn+Mn+
n

log2 n
. (1.6)

As a corollary of this theorem and Proposition 1.1, we find some explicit bounds
for ∑k�n Ω(k)−ω(k) .

COROLLARY 1.3. For n � 2 we have

(M′ −M)n− 814922.4427n
logn

< ∑
k�n

Ω(k)−ω(k) < (M′ −M)n+
5.3281n

logn
. (1.7)

Finally, we find some bounds for ∑k�n ω(k) under assumption of validity of the
Riemann hypothesis.

THEOREM 1.4. Assume that the Riemann hypothesis is true. For n � 7 we have

∑
k�n

ω(k) < n loglogn+Mn+0.18
√

n logn. (1.8)

THEOREM 1.5. Assume that the Riemann hypothesis is true. For every real num-
ber η > 1 there exists sufficiently large integer nη > 0 such that

∑
k�n

ω(k) > n loglogn+Mn− ηn
logn

(for n � nη ). (1.9)

More precisely, we have

nη = min
n∈Z
n�x

max
x∈R

{
Li(x)+

1
2π

√
x log(ex) =

ηx
logx

}
,

where Li(x) denotes the logarithmic integral function.
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In Section 5, we recall definition of the function Li(x) , as more as, we list some
values for η and related values of nη .

Before starting proofs, we recall a generalization of relations (1.1) and (1.2) due
to Duncan [1], where for positive real number δ he defines

Ωδ (k) = ∑
pα‖k

αδ , and Sδ (n) = ∑
k�1

Ωδ (k).

We note that Ω0(k) = ω(k) and Ω1(k) = Ω(k) . Duncan proves that for each δ � 0,
there exists an absolute constant Mδ , such that

Sδ (n) = n loglogn+Mδn+O
( n

logn

)
.

In fact, our results (1.5) and (1.6) give some explicit bounds for S1(n) and S0(n) ,
respectively. A natural question arising to mind is obtaining similar explicit bounds for
the summation Sδ (n) .

Also, we note that M0 = M and M′ = M1 , and we have rapidly converging series
representations for M and M′ as stated in (1.4). Another question is obtaining a similar
rapidly converging series for Mδ . However, we have not more evidences than equalities
in (1.4), but we guess that for given δ � 0 there exists an arithmetical function fδ such
that Mδ = γ + ∑∞

k=2( fδ (k) logζ (k))/k .

2. Proof of Theorem 1.2

Let us denote integer part and fractional part of the real number x by [x] and {x} ,
respectively. We set A (n) := ∑p�n

1
p . Then, we have

∑
k�n

ω(k) = ∑
k�n

∑
p|k

1 = ∑
p�n

∑
k�n
p|k

1 = ∑
p�n

[
n
p

]
= ∑

p�n

(
n
p
−
{

n
p

})
= nA (n)−R(n),

say. Since 0 � { n
p} < 1, we have 0 � R(n) < π(n) , where as usual, π(n) denotes the

number of prime numbers not exceeding n . Thus, we obtain

nA (n)−π(n) < ∑
k�n

ω(k) � nA (n), (for n � 1). (2.1)

Theorem 1 from [5], gives the bound

π(n) <
n

logn

(
1+

3
2logn

)

for n � 2. Thus, for n � 2 we have − n
logn (1+ 3

2 logn ) < −R(n) � 0. Also, Theorem 5
from [5] implies validity of

log logn+M− 1

2log2 n
< A (n) < loglogn+M+

1

log2 n
,
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for every n � 2. If we combine these inequalities, on one hand we obtain the right hand
side of (1.6), and on the other hand, we imply

∑
k�n

ω(k) > n log logn+Mn− n
logn

− 2n

log2 n
(for n � 2). (2.2)

To remove the term including square of log, we note that the inequality − 2n
log2 n

�− βn
logn

is equivalent to n � e
2
β . So, we take e

2
β = 2 or equivalently β = 2

log2 . Thus, we obtain

∑
k�n

ω(k) > n loglogn+Mn− (1+ β )
n

logn
(for n � 2). (2.3)

But, we have 1+ β < 3.8854. This, completes the proof of Theorem 1.2.

3. Proof of Corollary 1.3

We consider both sides of (1.5), the right hand side of (1.6), and also the inequality
(2.2) to obtain

−
(

814921n
logn

+
n

log2 n

)
<

(
∑
k�n

Ω(k)−ω(k)

)
− (M′ −M)n <

(
n

logn
+

3n

log2 n

)
,

for n � 2. For λ1 > 1, the inequality

n
logn

+
3n

log2 n
� λ1n

logn
,

is equivalent to n � e
3

λ1−1 . By taking e
3

λ1−1 = 2 we get λ1 = 1+ 3
log2 < 5.3281. This

completes implication of the right hand side of (1.7). To prove the left hand side of
(1.7), we set c := 814921, and we note that for λ2 > c , the inequality

−
(

814921n
logn

+
n

log2 n

)
� − λ2n

logn
,

is equivalent to n � e
1

λ2−c . By letting e
1

λ2−c = 2 we obtain λ2 = c+ 1
log2 < 814922.4427,

and this completes the proof of the left hand side of (1.7).

4. Proof of Theorem 1.4

Corollary 2 of [6] asserts that under validity of the Riemann hypothesis, we have

loglogn+M−B(n) < A (n) < log logn+M+B(n), (4.1)

for n � 14, where B(n) = (3logn+4)/(8π
√

n) . By considering the right hand sides
of (2.1) and (4.1), we imply

∑
k�n

ω(k) < n loglogn+Mn+
3
8π

√
n logn+

1
2π

√
n, (for n � 14).
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Now, we note that the inequality 1
2π
√

n � η1
√

n logn is equivalent to n � e
1

2πη1 . So,

by taking e
1

2πη1 = 14 we get η1 = 1
2π log14 . Thus, for n � 14 we obtain

∑
k�n

ω(k) < n loglogn+Mn+
(

3
8π

+
1

2π log14

)√
n logn.

The right hand side of last inequality, is less than U (n) := n loglogn+Mn+0.18
√

n logn .
Therefore, we get the validity of (1.8) for n � 14. In the following table, we compare
the values of S(n) := ∑k�n ω(k) and U (n) for 2 � n � 13, from which we observe
that (1.8) is valid for 7 � n � 13, too.

n 2 3 4 5 6 7 8 9 10 11 12 13
ω(n) 1 1 1 1 2 1 1 1 2 1 2 1
S(n) 1 2 3 4 6 7 8 9 11 12 14 15

U (n) > -0.04 1.4 2.8 4.3 5.8 7.4 9.0 10.6 12.2 13.9 15.6 17.3

REMARK 4.1. Meanwhile, above table shows that all solutions of the equation

∑
k�n

ω(k) = n,

are integers n = 6,7,8,9. More generally, the relation (1.1) guarantees that for every
positive integer m � 1, the equation ∑k�n ω(k) = mn (in n ) has only a finite number
of solutions. Theorem 1.2 gives an upper bound F(m) for the maximum value of such
solutions, which is trivially an upper bound for the number of them, too. Indeed, by
considering (2.3) we may take F(m) to be the largest solution of the following equation
(in n )

log logn+M− (1+ β )
1

logn
= m.

It in not very hard to verify that this solution is F(m) = eg(m) , with

g(m) =
1+ β

W ((1+ β )eM−m)
,

where W (x) denotes the Lambert W function, which is defined by W (x)eW (x) = x for
x �−e−1 . The following table shows some few values of g(m) and its very fast growth.

m g(m) ≈ m g(m) ≈ m g(m) ≈
1 4.75 6 314.46 11 46100.87
2 8.83 7 848.17 12 125308.48
3 18.98 8 2298.92 13 340617.08
4 45.76 9 6242.43 14 925886.55
5 118.09 10 16962.02 15 2516813.90
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5. Proof of Theorem 1.5

To deduce (1.9), we recall Corollary 1 of [6], which asserts that if the Riemann
hypothesis is true then we have

π(n) < Li(n)+
√

n logn
8π

, (for n � 2), (5.1)

where

Li(x) = lim
ε→0+

(∫ 1+ε

0
+
∫ x

1−ε

)
dt

logt
.

By using the left hand sides of (2.1) and (4.1), and also (5.1), for n � 14 we obtain

∑
k�n

ω(k) > n log logn+Mn−E (n),

where

E (n) = Li(n)+
1
2π

√
n log(en).

Since E (x) = x
logx + O( x

log2 x
) , for every real number η > 1 there exists sufficiently

large integer nη > 0 such that the inequality E (x) � ηx
logx is valid for x � nη , and

consequently, the inequality

∑
k�n

ω(k) > n loglogn+Mn− ηn
logn

,

is valid for n � nη . In the following tables, we use Maple software to compute and list
some values of η and related nη .

η nη η nη η nη η nη
3.5 2 1.9 18 1.5 1017 1.1 3095941
3 2 1.8 99 1.4 2721 1.05 6205177052

2.5 2 1.7 208 1.3 9623 1.04 638938158064
2 2 1.6 442 1.2 61747 1.03 2371092536596259

η nη
1.02 39943378574915806977191
1.015 683911233799360864269003256290
1.014 79826081593981598534310117227201
1.013 19384674289582672571718437522866834
1.012 11762019144998810390357072004888542360
1.011 22891804692656934125657683659627630294530
1.01 202723511741684485961583051232880823886730710
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