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Abstract. The article discusses several improvements of well known inequalities for trigonomet-
ric functions. We utilize the monotonicity of the Riemann zeta function, as well as the Dirichlet
eta, beta and lambda functions, to shorten the proofs of known inequalities for trigonometric
functions, and to obtain new ones.

1. Introduction

The purpose of this work is to suggest a method which leads to short proofs for a
family of trigonometric inequalities; among them, the inequality of Becker and Stark
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The main tool in doing so is to express the power series expansions of trigonometric
functions in terms of the Riemann zeta function and the Dirichlet eta, beta and lambda
functions,
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The expansions we use are, [7, Section 3:14],
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Let us demonstrate a short proof of (1.6). Starting with the partial fraction expansion
of the meromorphic function tan(πx/2) , we get for |x| < 1 that
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which is precisely (1.6). A similar approach may be applied to (1.7)–(1.12). Surely, ex-
pansions (1.6)–(1.12) are much simpler than the equivalent presentations which involve
Bernoulli and Euler numbers. The chief benefit of these expansions lies, however, in the
monotonic decreasing behavior of the coefficients ζ (2k) and λ (2k) , and the increasing
behavior of η(2k) and β (2k+1) . The decreasing of ζ (2k) and λ (2k) is obvious. To
show that η(p) is monotone increasing, write
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which is a decreasing function of p . A similar argument shows that β (p) is increasing
as well.

In Section 2 we use the monotonic behavior of the coefficients to give short proofs
to inequalities (1.1)–(1.5).

In Section 3 we apply the same idea to the three one-sided inequalities, [4],
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We shall give lower bounds to the functions in the left-hand sides of (1.13)–(1.14), as
well as improve the given upper bounds.

Section 4 is devoted to the two-sided inequality for the remainder of the power
series of the tangent function,
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proved by Chen and Qi in [3]. Using the power series (1.6), we provide a short proof to
these inequalities.

All the above inequalities, as well as many others, can be found in the extensive
review of Qi et al, [5]. Associated inequalities for Bessel functions are discussed by
Baricz [1, Chapter 3].

2. Inequalities (1.1)–(1.5)

We begin by proving the Becker-Stark inequality (1.1). Since
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for all k � 1, we use expansion (1.6) to obtain for |x| < 1,

1+
(8/π2)x2

1− x2 = 1+
8

π2

∞

∑
k=1

x2k � tan(πx/2)
πx/2

� 1+
8

π2 λ (4)
∞

∑
k=1

x2k = 1+
(π2/12)x2

1− x2 .

(2.1)
Rewriting (2.1) as

(8/π2)+ (1−8/π2)(1− x2)
1− x2 � tan(πx/2)

πx/2
� 1− (1−π2/12)x2

1− x2 , (2.2)

it becomes clear that (2.2) implies (1.1).
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Next, since 1 < ζ (2k) � ζ (2) = π2/6 for all k � 1, we deduce from (1.8) that for
|x| < 1,

2
π

x
1− x2 =

2
π

∞

∑
k=1

x2k−1 � 1
πx

− cot(πx) � 2
π

ζ (2)
∞

∑
k=1

x2k−1 =
π
3

x
1− x2 ,

which is (1.3).
The proof of inequality (1.4) is a similar one-liner. Since π3/32 = β (3) � β (2k+

1) < 1 for all k � 1, we get from (1.7),

1+
π2

8
x2

1− x2 = 1+
4
π
·β (3)

∞

∑
k=1

x2k � sec
πx
2

� 1+
4
π

∞

∑
k=1

x2k = 1+
4
π

x2

1− x2 , (2.3)

and (1.4) follows.
Finally, the proof of inequality (1.5) is similarly short. Since π2/12 = η(2) �

η(2k) < 1 for all k � 1, we have from (1.9) that for |x| < 1,
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which yields (1.5) by a simple algebraic manipulation.
Note that the left hand side of (2.5) coincides with Redheffer’s inequality in (1.2)

for |x| < 1. While numerous proofs were suggested for this inequality, ours is by far
the shortest. We remind the reader that Redheffer’s inequality holds also for |x| � 1,
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This is positive for small z > 0 only if π
2 − 2

1+a � 0, hence a � 4
π −1 is necessary. Next,
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Inequalities (2.5) and (2.6) may be improved if we take additional exact terms of
the corresponding power series. For example, if we note that η(2) < η(4) � η(2k) <
1, k � 2, we get
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which is obviously an improvement of (2.5).

Similarly, since β (3) < β (5) � β (2k+1) < 1 for all k � 2, then
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which improves (2.6).

Evidently, one can further improve the above inequalities by considering further
terms of the corresponding power series.
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3. Inequalities (1.13)–(1.15)

The following claim generalizes and improves inequalities (1.13)–(1.15).

THEOREM 3.1. For all |x| < 1 ,
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Proof. The right hand sides in inequalities (3.1)–(3.3) are, respectively, the loga-
rithms of the right hand sides of (2.1), (2.3) and (2.4).

We now turn to the left hand side inequalities in (3.1)–(3.3). Since η(2k) increases
and η(2) = π2/12, we have by (1.10),
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for 0 < |x| < 1. Thus, the lower bound in (3.1) is verified.
Next, as λ (2k) decreases and λ (2) = π2/8, it follows by (1.11) that
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for 0 < |x| < 1, as claimed in (3.2).
Finally, as for inequality (3.3), we observe that ζ (2k) decreases and ζ (2) = π2/6;

so by (1.12),
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for 0 < |x| < 1, which is the lower bound in (3.3). �

We note that the upper bounds in (3.1)–(3.3) are better for all |x| < 1 than those
in (1.13)–(1.15). This is so since ln(1 + t) < t for t > 0. Further, as x → 1− , the
upper bounds of (3.1)–(3.3) are of a strictly smaller order of magnitude than those in
(1.13)–(1.15), since ln(1+ t)� t as t → +∞ .

Moreover, near x = 0 all the upper and the lower bounds of (3.1)–(3.3) are asymp-
totically strict, since their respective ratios satisfy limt→0 ln(1+at)/a ln(1+ t) = 1.
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An equivalent way to write (3.1)–(3.3) is
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The inequalities (3.5) and (3.6) bring to mind the following results of Zhu and Sun [8],
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which were achieved by different methods. The main drawback of (3.4)–(3.8) are the
powers −π2/12, π2/6, π2/8, π2/12 and π2/16 which provide poor bounds near
x = 1. In fact, the simple rational bounds (2.2), (2.5) and (2.6) are better near x = 1.
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and the right hand side of (4.1) follows.
In order to prove the left hand side of (4.1), we begin by showing that

λ (2k+2N) � 8
π2 λ (2N +2)λ (2k), k,N = 1,2,3, . . . (4.2)

and that the inequality is strict for all k > 1. Indeed, for k = 1, (4.2) is an equality,
since λ (2) = π2/8. For k � 2, we recall that λ (2k) is decreasing, so

8
π2 λ (2k)λ (2N +2) � 8

π2 λ (4)λ (4) =
8

π2

π4

96
π4

96
< 1.

On the other hand, we obviously have λ (2k+2N) > 1, hence (4.2) is verified. Conse-
quently,

tan
πx
2

− 4
π

N

∑
k=1

λ (2k)x2k−1 =
4
π

∞

∑
k=1

λ (2k+2N)x2k+2N−1

� 8
π2 λ (2N +2)x2N 4

π

∞

∑
k=1

λ (2k)x2k−1 =
8

π2 λ (2N +2)x2N tan
πx
2

,

and the proof is complete. �

Since inequality (4.2) is strict for all k � 2, the left hand side of (4.1) may be
improved in the spirit of Section 2 by taking additional exact terms of the power series.
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Here 8/π2 ≈ 0.8105, π4/120≈ 0.8117.
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