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SOLUTIONS OF THE MATRIX INEQUALITIES IN THE MINUS
PARTIAL ORDERING AND LOWNER PARTIAL ORDERING

YONGGE TIAN

Abstract. Two matrices A and B of the same size are said to satisfy the minus partial ordering,
denoted by B <~ A, iff the rank subtractivity equality rank(A — B) = rank(A) —rank(B) holds;
two complex Hermitian matrices A and B of the same size are said to satisfy the Lowner partial
ordering, denoted by B <" A, iff the difference A — B is nonnegative definite. In this note, we
establish general solution of the inequality BXB* <~ A induced from the minus partial ordering,
and general solution of the inequality BXB* < A induced from the Lowner partial ordering,
respectively, where (-)* denotes the conjugate transpose of a complex matrix. As consequences,
we give closed-form expressions for the shorted matrices of A relative to the range of B in
the minus and Lowner partial orderings, respectively, and show that these two types of shorted
matrices in fact are the same.
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