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SOLUTIONS OF THE MATRIX INEQUALITIES IN THE MINUS

PARTIAL ORDERING AND LÖWNER PARTIAL ORDERING

YONGGE TIAN

Abstract. Two matrices A and B of the same size are said to satisfy the minus partial ordering,
denoted by B �− A , iff the rank subtractivity equality rank(A−B) = rank(A)− rank(B) holds;
two complex Hermitian matrices A and B of the same size are said to satisfy the Löwner partial
ordering, denoted by B �L A , iff the difference A−B is nonnegative definite. In this note, we
establish general solution of the inequality BXB∗ �− A induced from the minus partial ordering,
and general solution of the inequality BXB∗ �L A induced from the Löwner partial ordering,
respectively, where (·)∗ denotes the conjugate transpose of a complex matrix. As consequences,
we give closed-form expressions for the shorted matrices of A relative to the range of B in
the minus and Löwner partial orderings, respectively, and show that these two types of shorted
matrices in fact are the same.

Mathematics subject classification (2010): 15A03, 15A09, 15A24, 15B57.
Keywords and phrases: Minus partial ordering, Löwner partial ordering, Hermitian matrix, matrix
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