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PARTIAL ORDERING AND LÖWNER PARTIAL ORDERING

YONGGE TIAN

(Communicated by J. Pečarić)

Abstract. Two matrices A and B of the same size are said to satisfy the minus partial ordering,
denoted by B �− A , iff the rank subtractivity equality rank(A−B) = rank(A)− rank(B) holds;
two complex Hermitian matrices A and B of the same size are said to satisfy the Löwner partial
ordering, denoted by B �L A , iff the difference A−B is nonnegative definite. In this note, we
establish general solution of the inequality BXB∗ �− A induced from the minus partial ordering,
and general solution of the inequality BXB∗ �L A induced from the Löwner partial ordering,
respectively, where (·)∗ denotes the conjugate transpose of a complex matrix. As consequences,
we give closed-form expressions for the shorted matrices of A relative to the range of B in
the minus and Löwner partial orderings, respectively, and show that these two types of shorted
matrices in fact are the same.

1. Introduction

Throughout this note, let Cm×n and Cm
H denote the collections of all m×n com-

plex matrices and all m×m complex Hermitian matrices, respectively; the symbols
A∗ , r(A) and R(A) stand for the conjugate transpose, the rank and the range (column
space) of a matrix A ∈ Cm×n , respectively; Im denotes the identity matrix of order m ;
[A, B ] denotes a row block matrix consisting of A and B . The Moore–Penrose inverse
of a matrix A ∈ C

m×n , denoted by A† , is defined to be the unique matrix X ∈ C
n×m

satisfying the matrix equations

(i) AXA = A, (ii) XAX = X , (iii) (AX)∗ = AX , (iv) (XA)∗ = XA.

Further, let EA = Im−AA† and FA = In−A†A , both of which are orthogonal projectors
and their ranks are given by r(EA) = m− r(A) and r(FA) = n− r(A) . A well-known
property of the Moore–Penrose inverse is (A†)∗ = (A∗)† . Hence, if A = A∗ , then both
A† = (A†)∗ and AA† = A†A hold. The inertia of a matrix A ∈ Cm

H is defined to be
the triplet In(A) = { i+(A), i−(A), i0(A)}, where i+(A) , i−(A) and i0(A) are the num-
bers of the positive, negative and zero eigenvalues of A counted with multiplicities,
respectively. For a matrix A ∈ Cm

H , both r(A) = i+(A)+ i−(A) and i0(A) = m− r(A)
hold.

The definitions of two well-known partial orderings on matrices of the same size
are given below.
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DEFINITION 1.1. (a) Two matrices A, B ∈ Cm×n are said to satisfy the minus
partial ordering, denoted by B �− A , iff the rank subtractivity equality r(A−
B) = r(A)− r(B) holds, or equivalently, both R(A− B) ∩R(B) = {0} and
R(A∗ −B∗)∩R(B∗) = {0} hold.

(b) Two matrices A, B ∈ Cm
H are said to satisfy the Löwner partial ordering, denoted

by B �L A , iff the difference A− B is nonnegative definite , or equivalently,
A−B = UU∗ for some matrix U.

In this note, we consider the following two matrix inequalities

BXB∗ �− A, (1.1)

BXB∗ �L A (1.2)

induced from the minus and Löwner partial orderings, and examine the relations of
their solutions, where A ∈ Cm

H and B ∈ Cm×n are given, and X ∈ Cn
H is unknown. This

consideration is motivated by some recent work on rank and inertia optimizations of
A−BXB∗ in [7, 13, 14]. We shall derive general solutions of (1.1) and (1.2) by using
the given matrices and their generalized inverses, and then discuss some algebraic prop-
erties of these solutions. In particular, we give solutions of the following constrained
rank and Löwner partial ordering optimization problems

max
BXB∗�−A

r(BXB∗), min
BXB∗�−A

r(A−BXB∗ ), (1.3)

max
�L

{BXB∗ |BXB∗ �L A}, min
�L

{A−BXB∗ |BXB∗ �L A}. (1.4)

Eqs. (1.1) and (1.2) are equivalent to determining elements in the following matrix sets:

S1 = {Z ∈ C
m
H | Z �− A, R(Z) ⊆ R(B)}, (1.5)

S2 = {Z ∈ C
m
H | Z �L A, R(Z) ⊆ R(B)}. (1.6)

The matrices Z in (1.5) and (1.6) can be regarded as two constrained approximations of
the matrix A in partial orderings. In particular, a matrix Z ∈ S1 that has the maximal
possible rank is called a shorted matrix of A relative to R(B) in the minus partial
ordering (see [9, 11]); while the maximal matrix in S2 is called a shorted matrix of A
relative to R(B) in the Löwner partial ordering (see [1, 2]). Our approaches to (1.1)–
(1.4) link some previous and recent work in [1, 2, 3, 4, 5, 9, 10, 11] on shorted matrices
of A relative to given subspaces in partial orderings, and some recent work on the rank
and inertia of the matrix function A− BXB∗ in [7, 13, 14]. It is obvious that there
always exists a matrix X that satisfies (1.1), say, X = 0. Hence, what we need to do is
to derive a general expression of X that satisfies (1.1). Eq. (1.2) may have no solutions
unless the given matrices A and B in (1.2) satisfy certain conditions.

This note is organized as follows. In Section 2, we present some known results on
ranks and inertias of matrices and matrix equations, and then solve two homogeneous
matrix equations with symmetric patterns. In Section 3, we use the results obtained in
Section 2 to derive the general solution of (1.1), and give an analytical expression for
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the shorted matrix of A relative to R(B) in the minus partial ordering. In Section 4,
we derive necessary and sufficient conditions for (1.2) to have a solution, and then give
the general solution of (1.2). We show in Section 5 an interesting fact that the shorted
matrices of A relative to R(B) in the minus and Löwner partial orderings are the same.

2. Preliminary results

In order to characterize matrix equalities that involve the Moore–Penrose inverses,
we need the following rank and inertia expansion formulas.

LEMMA 2.1. ([8]) Let A ∈ C
m×n, B ∈ C

m×k and C ∈ C
l×n be given . Then , the

following rank expansion formulas hold

r[A, B ] = r(A)+ r(EAB) = r(B)+ r(EBA), (2.1)

r

[
A
C

]
= r(A)+ r(CFA) = r(C)+ r(AFC), (2.2)

r

[
A B
C CA†B

]
= r

[
A
C

]
+ r[A, B ]− r(A). (2.3)

LEMMA 2.2. ([13]) Let A ∈ Cm
H, B ∈ Cm×n, and D ∈ Cn

H. Then , the following
inertia expansion formulas hold

i±
[

A B
B∗ 0

]
= r(B)+ i±(EBAEB), (2.4)

i±
[

A B
B∗ D

]
= i±(A)+ i±(D−B∗A†B) f or R(B) ⊆ R(A). (2.5)

In order to solve (1.1) and (1.2), we also need the following results on solvability
conditions and general solutions of two simple linear matrix equations.

LEMMA 2.3. Let A ∈ Cm×n and B ∈ Cm×p be given . Then , the following hold .

(a) [12] The matrix equation AX = B is consistent if and only if R(B) ⊆ R(A). In
this case , the general solution can be written as X = A†B + FAU, where U ∈
Cn×p is arbitrary .

(b) [6] Under B ∈ Cm×n, the matrix equation AX = B has a solution 0 �L X ∈ Cn
H

if and only if R(B) ⊆ R(A), AB∗ �L 0 and r(AB∗) = r(B). In this case , the
general nonnegative definite solution can be written as

X = B∗(AB∗)†B+FAUFA, (2.6)

where 0 �L U ∈ Cn
H is arbitrary .

LEMMA 2.4. Let A ∈ C
m×n and B ∈ C

m
H be given . Then , the following hold .
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(a) [4] The matrix equation
AXA∗ = B (2.7)

has a solution X ∈ C
n
H if and only if R(B)⊆R(A), or equivalently , AA†B = B.

(b) [13] Under X ∈ C
n
H, the general Hermitian solution of (2.7) can be written in the

following two forms

X = A†B(A†)∗ +U −A†AUA†A, (2.8)

X = A†B(A†)∗ +FAV +V ∗FA, (2.9)

respectively , where U ∈ C
n
H and V ∈ C

n×n are arbitrary .

LEMMA 2.5. Let P∈Cm×n and Q∈Cm×k be given . Then , the general solutions
X ∈ Cn

H and Y ∈ Ck
H of the matrix equation

PXP∗ = QYQ∗ (2.10)

can be written as

X = X1WX∗
1 +X2, Y = Y1WY ∗

1 +Y2, (2.11)

where W ∈ Cm
H is arbitrary , and X1 ∈ Cn×m, X2 ∈ Cn

H, Y1 ∈ Ck×m and Y2 ∈ Ck
H are

the general solutions of the following matrix equations

PX1 = QY1, PX2P
∗ = 0, QY2Q

∗ = 0, (2.12)

or alternatively , the general solution of (2.10) can be written in the following pair of
parametric form

X = ÎnFHUFHÎ∗n +U1−P†PU1P
†P, (2.13)

Y = ĨkFHUFHĨ∗k +U2−Q†QU2Q
†Q, (2.14)

where H = [P, −Q ], În = [ In, 0 ], Ĩk = [0, Ik ], and U ∈ C
n+k
H , U1 ∈ Cn

H and U2 ∈ Ck
H

are arbitrary .

Proof. It is easy to verify that the pair of matrices X and Y in (2.11) are both
Hermitian. Substituting the pair of matrices into (2.10) gives

PXP∗ = PX1WX∗
1 P∗ = QY1WY ∗

1 Q∗ = QYQ∗,

which shows that (2.11) satisfies (2.10). Also, assume that X0 and Y0 are any pair of
solutions of (2.10), and set

W = (PX0P
∗)† = (QY0Q

∗)†, X1 = P†PX0P
∗, Y1 = Q†QY0Q

∗,

X2 = X0−P†PX0P
†P, Y2 = Y0 −Q†QY0Q

†Q.
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Then , (2.11) reduces to

X = P†PX0P
∗(PX0P

∗)†(P†PX0P
∗)∗ +X0−P†PX0P

†P

= P†(PX0P
∗)(PX0P

∗)†(PX0P
∗)(P†)∗ +X0−P†PX0P

†P

= P†PX0P
†P+X0−P†PX0P

†P = X0,

Y = Q†QY0Q
∗(QY0Q

∗)†(Q†QY0Q
∗)∗ +Y0−Q†QY0Q

†Q

= Q†(QY0Q
∗)(QY0Q

∗)†(QY0Q
∗)(Q†)∗ +Y0−Q†QY0Q

†Q

= Q†QY0Q
†Q+Y0−Q†QY0Q

†Q = Y0,

that is, any pair of solutions of (2.10) can be represented by (2.11). Thus, (2.11) is the
general solution of (2.10).

Solving the latter two equations in (2.12) by Lemma 2.4(b) yields the following
general solutions

X2 = U1−P†PU1P
†P, Y2 = U2−Q†QU2Q

†Q, (2.15)

where U1 ∈ Cn
H and U2 ∈ Ck

H are arbitrary. To solve the first equation in (2.12), we

rewrite it as [P, −Q ]
[
X1

Y1

]
= 0. Solving this equation by Lemma 2.3(a) gives the gen-

eral solution

[
X1

Y1

]
= FHV1, where V1 is an arbitrary matrix. Hence, the general expres-

sions of X1 and Y1 can be written as

X1 = ÎnFHV1, Y1 = ĨkFHV1. (2.16)

Substituting (2.15) and (2.16) into (2.11) gives (2.13) and (2.14). �

LEMMA 2.6. Let B ∈ Cm×n and A ∈ Cm
H be given . Then , the general solution

X ∈ Cn
H of the quadratic matrix equation

(BXB∗)A(BXB∗) = BXB∗ (2.17)

can be expressed in the following parametric form

X = U(U∗B∗ABU)†U∗ +V −B†BVB†B, (2.18)

where U ∈ Cn×n and V ∈ Cn
H are arbitrary .

Proof. Substituting (2.18) into BXB∗ gives BXB∗ = BU(U∗B∗ABU)†U∗B∗ . It is
easy to verify by the definition of the Moore–Penrose inverse that

(BXB∗)A(BXB∗) = BU(U∗B∗ABU)†U∗B∗ABU(U∗B∗ABU)†U∗B∗

= BU(U∗B∗ABU)†U∗B∗ = BXB∗.
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Hence, (2.18) satisfies (2.17). On the other hand, for any Hermitian solution X0 of
(2.17), set U = B†BX0B†B and V = X0 in (2.18). Then , (2.18) reduces to

X = B†BX0B
†B(B†BX0B

∗ABX0B
†B)†B†BX0B

†B+X0−B†BX0B
†B

= B†BX0B
†B(B†BX0B

†B)†B†BX0B
†B+X0−B†BX0B

†B

= B†BX0B
†B+X0−B†BX0B

†B = X0.

This result indicates that all solutions of (2.17) can be represented through (2.18).
Hence, (2.18) is the general solution of (2.17). �

3. General solution of BXB∗ �− A

A well-known necessary and sufficient condition for the rank subtractivity equality
in Definition 1.1 to hold is

r(A−B) = r(A)− r(B)⇔ R(B) ⊆ R(A), R(B∗) ⊆ R(A∗) and BA†B = B, (3.1)

see [8]. Applying (3.1) to (1.1), we can convert (1.1) to a system of matrix equations.

LEMMA 3.1. Eq. (1.1) is equivalent to the following system of matrix equations

BXB∗ = AYA, (BXB∗)A†(BXB∗) = BXB∗, (3.2)

where Y ∈ Cm
H is an unknown matrix .

Proof. From (3.1), the minus partial order BXB∗ �− A in (1.1) is equivalent to

R(BXB∗) ⊆ R(A) and (BXB∗)A†(BXB∗) = BXB∗. (3.3)

By Lemma 2.4(a), the first range inclusion in (3.3) holds if and only if the first matrix
equation in (3.2) is solvable for Y . Thus, (3.2) and (3.3) are equivalent. �

THEOREM 3.2. Let A ∈ Cm
H and B ∈ Cm×n be given , and S1 be as given in

(1.6) . Also define

M =
[

A B
B∗ 0

]
, H = [B, −A ], În = [ In, 0 ], B̂ = [B, 0 ], A1 = EBA, B1 = EAB.

Then , the following hold .

(a) The general Hermitian solution of the inequality

BXB∗ �− A (3.4)

can be written as

X = ÎnFHU(U∗FHB̂∗A†B̂FHU)†U∗FHÎ∗n +V −B†BVB†B, (3.5)

where U ∈ C
(m+n)×(m+n) and V ∈ C

n
H are arbitrary .
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(b) The general expression of the matrices in (1.5) can be written as

Z = B̂FHU(U∗FHB̂∗A†B̂FHU)†U∗FHB̂∗, (3.6)

where U ∈ C(m+n)×(m+n) is arbitrary . The global maximal and minimal inertias
and ranks of Z in (3.6) and the corresponding A−Z are given by

max
Z∈S1

i±(Z) = i∓(M)+ i±(A)− r[A, B ], (3.7)

max
Z∈S1

r(Z) = r(M)+ r(A)−2r[A, B ], (3.8)

min
Z∈S1

i±(A−Z ) = r[A, B ]− i∓(M), (3.9)

min
Z∈S1

r(A−Z ) = 2r[A, B ]− r(M). (3.10)

The shorted matrix of A relative to R(B), denoted by φ−(A |B), which is a
matrix Z that satisfies (3.8) , is given by

φ−(A |B) = B̂FH(FHB̂∗A†B̂FH)†FHB̂∗. (3.11)

Proof. Applying Lemma 2.5 to the first equation in (3.2), we obtain the general
solutions of X and Y as follows

X = ÎnFHTFHÎ∗n +V −B†BVB†B, Y = ÎmFHTFHÎ∗m +W −A†AWA†A, (3.12)

where T ∈ C
m+n
H , V ∈ Cn

H and W ∈ Cm
H are arbitrary . Substituting (3.12) into the

second equation in (3.2) leads to the following quadratic matrix equation

(B̂FHTFHB̂∗)A†(B̂FHTFHB̂∗) = B̂FHTFHB̂∗.

By Lemma 2.6, the general solution of this quadratic matrix equation is given by

T = U(U∗FHB̂∗A†B̂FHU)†U∗ +W1− (B̂FH)†(B̂FH)W1(B̂FH)†(B̂FH),

where U ∈ C(m+n)×(m+n) and W1 ∈ C
m+n
H are arbitrary. Substituting this T into the

matrix X in (3.12) gives

X = ÎnFHU(U∗FHB̂∗A†B̂FHU)†U∗FHÎ∗n
+[ ÎnFHW1FHÎ∗n − ÎnFH(B̂FH)†(B̂FH)W1(B̂FH)†(B̂FH)FHÎ∗n ]+V −B†BVB†B.

(3.13)

It is easy to verify from BÎn = B̂ that

B[ ÎnFHW1FHÎ∗n − ÎnFH(B̂FH)†( B̂FH)W1(B̂FH )†(B̂FH)FHÎ∗n ]B∗

= B̂FHW1FHB̂∗ − (B̂FH)(B̂FH)†( B̂FH)W1(B̂FH )†(B̂FH)(B̂FH)∗ = 0.

This fact shows that the second term on the right-hand side of (3.13) is a solution to
BXB∗ = 0. Also, note from Lemma 2.4(b) that V −B†BVB†B is the general solution to
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BXB∗ = 0. Hence, the second term on the right-hand side of (3.13) can be represented
by the third term of the same side, so that (3.13) reduces to (3.5).

Substituting (3.5) into BXB∗ gives

Z = BXB∗ = B̂FHU(U∗FHB̂∗A†B̂FHU )†U∗FHB̂∗, (3.14)

as required for (3.6). Note further that this Z satisfies

(U∗FHB̂∗A†)Z(A†B̂FHU) = U∗FHB̂∗A†B̂FHU. (3.15)

Both (3.14) and (3.15) imply

i±(Z) = i±(U∗FHB̂∗A†B̂FHU) � i±(FHB̂∗A†B̂FH ) (3.16)

and

max
Z∈S1

i±(Z) = i±(FHB̂∗A†B̂FH), max
Z∈S1

r(Z) = r(FHB̂∗A†B̂FH). (3.17)

Recall that the inertia of a Hermitian matrix does not change under Hermitian congru-
ence operations. Applying (2.4) to FHB̂∗A†B̂FH and simplifying by Hermitian congru-
ence operations, we obtain

i±(FHB̂∗A†B̂FH) = i±
[
B̂∗A†B̂ H∗

H 0

]
− r(H) = i±

⎡
⎣B∗A†B 0 B∗

0 0 −A
B −A 0

⎤
⎦− r[A, B ]

= i±

⎡
⎣ 0 1

2B∗A†A B∗
1
2A†AB 0 −A

B −A 0

⎤
⎦− r[A, B ] = i±

⎡
⎣0 0 B∗

0 A −A
B −A 0

⎤
⎦− r[A, B ]

= i±

⎡
⎣0 0 B∗

0 A 0
B 0 −A

⎤
⎦− r[A, B ] = i∓

[
A B
B∗ 0

]
+ i±(A)− r[A, B ]. (3.18)

Substituting (3.18) into (3.17) leads to (3.7) and (3.8). Also, note that

min
X∈S1

i±(A−Z ) = i±(A)− max
X∈S1

i±(Z).

Thus, (3.9) and (3.10) follow from (3.7) and (3.8). �

4. General solution of BXB∗ �L A

In this section, we derive an analytical expression for the general solution of (1.2)
by using generalized inverses of matrices, and show some algebraic properties of the
solution.

THEOREM 4.1. Let A ∈ Cm
H and B ∈ Cm×n be given , and let S2 be as given in

(1.6) . Then , the following hold .
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(a) There exists an X ∈ Cn
H such that

BXB∗ �L A (4.1)

if and only if
EBAEB �L 0 and r(EBAEB) = r(EBA), (4.2)

or equivalently ,

i+

[
A B
B∗ 0

]
= r[A, B ] and i−

[
A B
B∗ 0

]
= r(B). (4.3)

In this case , the general Hermitian solution of (4.1) can be written in the follow-
ing parametric form

X = B†A(B†)∗ −B†AEB(EBAEB)†EBA(B†)∗ −UU∗+FBV +V ∗FB, (4.4)

where U, V ∈ Cn×n are arbitrary . Correspondingly , the general expression of
the matrices in S2 can be written as

Z = A−AEB(EBAEB)†EBA−BUU∗B∗. (4.5)

(b) Under (4.2) , the shorted matrix of A relative to R(B), denoted by φL(A |B),
which is the maximizer in S2, can uniquely be written as

φL(A |B) = A−AEB(EBAEB)†EBA. (4.6)

The rank and inertia of φL(A |B) and A−φL(A |B) satisfy

i+[φL(A |B) ] = i+(A)+ r(B)− r[A, B ], (4.7)

i−[φL(A |B) ] = i−(A), (4.8)

i+[A−φL(A |B) ] = r[A−φL(A |B) ] = r[A, B ]− r(B). (4.9)

Proof. It is obvious that (4.1) is equivalent to

BXB∗ = A−YY ∗ (4.10)

for some matrix Y . In other words, (4.1) can be relaxed to a matrix equation with two
unknown matrices. From Lemma 2.4(a), (4.10) is solvable for X ∈ Cn

H if and only if
EB(A−YY ∗ ) = 0, that is,

EBYY ∗ = EBA. (4.11)

From Lemma 2.3(b), (4.11) is solvable for YY ∗ if and only if EBAEB �L 0 and r(EBAEB)
= r(EBA) , establishing (4.2), which is further equivalent to (4.3) by (2.1) and (2.4). In
this case, the general nonnegative definite solution of (4.11) can be written as

YY ∗ = AEB(EBAEB)†EBA+BB†WBB†, (4.12)
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where 0 �L W ∈ Cm
H is arbitrary. Substituting the YY ∗ into (4.10) gives

BXB∗ = A−AEB(EBAEB)†EBA−BB†WBB†. (4.13)

By Lemma 2.4(b), the general Hermitian solution of (4.13) can be written as

X = B†A(B†)∗ −B†AEB(EBAEB)†EBA(B†)∗ −B†W (B†)∗ +FBV +V ∗FB, (4.14)

where V ∈ C
n×n is arbitrary . Replacing the matrix 0 �L B†W (B†)∗ ∈ C

n
H in (4.14)

with a general matrix 0 �L U ∈ Cn
H yields (4.4), which is also the general Hermitian

solution of (4.1). Substituting (4.4) into BXB∗ gives (4.5).
Eq. (4.6) follows from (4.5) by noticing BUU∗B∗ �L 0.
It follows from (4.2) that R(EBAEB) = R(EBA) . In this case, applying (2.5) to

(4.6) and simplifying by Hermitian congruence transformations, we obtain

i±[φL(A |B) ] = i±[A−AEB(EBAEB)†EBA ] = i±
[
EBAEB EBA
AEB A

]
− i±(EBAEB)

= i±
[
0 0
0 A

]
− i±(EBAEB) = i±(A)− i±(EBAEB),

i±[A−φL(A |B) ] = i±[AEB(EBAEB)†EBA ] = i±
[−EBAEB EBA

AEB 0

]
− i∓(EBAEB)

= i±
[

0 EBA
AEB 0

]
− i∓(EBAEB) = r(EBA)− i∓(EBAEB).

Hence, we further find from that (2.1) and (4.2) that

i+[φL(A |B)] = i+(A)− i+(EBAEB) = i+(A)− r(EBA) = i+(A)+ r(B)− r[A, B ],

i−[φL(A |B) ] = i−(A)− i−(EBAEB) = i−(A),

i+[A−φL(A |B) ] = r(EBA)− i−(EBAEB) = r(EBA) = r[A, B ]− r(B),

i−[A−φL(A |B) ] = r(EBA)− i+(EBAEB) = 0,

establishing (4.7)–(4.9). �

5. An equality for the shorted matrices of A relative to R(B) in the minus and
Löwner partial orderings

Since S1 and S2 in (1.5) and (1.6) are defined from different matrix inequalities,
the two sets are not necessarily the same, as demonstrated in Theorems 3.2(b) and
4.1(a). However, they may have some common matrices. In this section, we show an
interesting fact that the shorted matrices of A relative to R(B) in the minus and Löwner
partial orderings are the same.

THEOREM 5.1. Let A ∈ C
m
H and B ∈ C

m×n be given , and S1 and S2 be as
given in (1.5) and (1.6) . If (4.1) has a solution , then the two shorted matrices in S1

and S2 are the same, namely ,

φ−(A |B) = φL(A |B). (5.1)
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Proof. Note from (3.11) and (4.6) that (5.1) holds if and only if

B̂FH(FHB̂∗A†B̂FH)†FHB̂∗ = A−AEB(EBAEB)†EBA. (5.2)

It is easy to derive from (2.2) that

r( B̂FH ) = r

[
B
H

]
− r(H) = r(A)+ r(B)− r[A, B ]. (5.3)

Under (4.2), (3.17) reduces to

r(FHB̂∗A†B̂FH ) = r(M)+ r(A)−2r[A, B ] = r(A)+ r(B)− r[A, B ]. (5.4)

Both (5.3) and (5.4) imply that R(FHB̂∗ ) = R(FHB̂∗A†B̂FH ). In this case, applying
(2.5) to the difference of both sides of (5.2) and simplifying by elementary matrix op-
erations, we obtain

r[A−AEB(EBAEB)†EBA− B̂FH(FHB̂∗A†B̂FH)†FHB̂∗ ]

= r

[
FHB̂∗A†B̂FH FHB̂∗

B̂FH A−AEB(EBAEB)†EBA

]
− r(FHB̂∗A†B̂FH)

= r

⎡
⎣B̂∗A†B̂ B̂∗ H∗

B̂ A−AEB(EBAEB)†EBA 0
H 0 0

⎤
⎦−2r(H)− r(A)− r(B)+ r[A, B ] (by (2.4))

= r

⎡
⎢⎢⎣

B∗A†B 0 B∗ B∗
0 0 0 −A
B 0 A−AEB(EBAEB)†EBA 0
B −A 0 0

⎤
⎥⎥⎦− r(A)− r(B)− r[A, B ]

= r

⎡
⎢⎢⎣

B∗A†B 0 B∗ 0
0 0 0 −A
B 0 A−AEB(EBAEB)†EBA 0
0 −A 0 0

⎤
⎥⎥⎦− r(A)− r(B)− r[A, B ]

= r

[
B∗A†B B∗

B A−AEB(EBAEB)†EBA

]
+ r(A)− r(B)− r[A, B ]

= r

([
B∗A†B B∗

B A

]
−

[
0 0
0 AEB(EBAEB)†EBA

])
+ r(A)− r(B)− r[A, B ]

= r

⎡
⎣B∗A†B B∗ 0

B A AEB

0 EBA EBAEB

⎤
⎦− r(EBAEB)+ r(A)− r(B)− r[A, B ] (by (2.5))

= r

⎡
⎣B∗A†B B∗ 0

B A 0
0 0 0

⎤
⎦− r(EBA)+ r(A)− r(B)− r[A, B ]

= r

[
B∗A†B B∗

B A

]
+ r(A)−2r[A, B ] = 0 (by (2.3)),
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which means that (5.2) is an equality. �
The minus and Löwner partial orderings in Definition 1.1 can accordingly be de-

fined for linear operators on a Hilbert space. Also, note that the results in this note
are derived from some ordinary algebraic operations of the given matrices and their
Moore–Penrose inverses. Hence, it is no doubt that most of the conclusions in this note
can be extended to operator algebra, in which the Moore–Penrose inverses of linear
operators were defined.
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