
Mathematical
Inequalities

& Applications

Volume 16, Number 3 (2013), 873–885 doi:10.7153/mia-16-67

CARLEMAN ESTIMATES AND UNIQUE CONTINUATION

PROPERTY FOR ELLIPTIC OPERATORS IN BANACH SPACES

VELI B. SHAKHMUROV

(Communicated by J. Pečarić)

Abstract. The unique continuation theorems for elliptic differential-operator equations in Banach-
valued Lp -space are investigated. The operator-valued multiplier theorems and the Carleman
estimates for the equations are employed to obtain these results. In applications the unique con-
tinuation theorems for anisotropic elliptic differential equations and finite or infinite systems of
elliptic equations are studied.

1. Introduction

The aim of this paper is to present a unique continuation result for solutions of the
differential inequalities of the form:

‖Lu(x)‖E � ‖V (x)u(x)‖E , (1)

where

Lu =
n

∑
j=1

a j
∂ 2u

∂x2
j

+Au,

here a j are real numbers , A , V (x) are the possible linear operators in a Banach space
E.

We will prove that if n
(

1
p − 1

p′
)

� 2, μ = n
2 , V ∈ Lμ (Rn;L(E)) , n � 3 and

u ∈W 2
p (Rn;E (A) ,E) satisfies (1) , then u is identically zero if its support is contained

in a half space, where W 2
p (Rn;E (A) ,E) is an E -valued Sobolev-Lions type space.

We prove Carleman estimates in E -valued Lp spaces to obtain unique continuation.
Carleman estimates initiated by the works [8] and [2] . Jerison and Kenig studied the
theory of Lp Carleman estimates for Laplace operator with potential and proved unique
continuation results for elliptic constant coefficient operators in [13] . This was latter
generalized to elliptic variable coefficient operators by Sogge in [27, 28] . There were
further improvement by Wolff [33] for elliptic operators with less regular coefficients
and by Koch and Tataru [14] who considered the problem with gradients terms. A com-
prehensive introductions and historical references to Carleman estimates and unique
continuation properties may be found e.g. in [14] . Moreover, boundary value prob-
lems for differential-operator equations (DOEs) have been studied extensively by many
researchers (see [1] , [9, 10] , [18] , [15] , [23–26], [34–36] and the references therein).
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2. Notations, definitions and background

Assume R and C denote the set of all real numbers and complex numbers, re-
spectively. Let

Sϕ = { ξ ∈ C, |arg ξ | � ϕ}∪{0} ,ϕ ∈ [0 , π) .

Let E and E1 be two Banach spaces, and L(E,E1) denotes the spaces of all bounded
linear operators from E to E1 . For E1 = E we denote L(E,E1) by L(E) .

A linear operator A is said to be a ϕ -positive in a Banach space E with bound
M > 0 if D(A) is dense on E and∥∥∥(A+ ξ I)−1

∥∥∥
L(E)

� M (1+ |ξ |)−1

with λ ∈ Sϕ ,ϕ ∈ [0 , π) , I is identity operator in E. We will sometimes use A + ξ
or Aξ instead of A + ξ I for a scalar ξ and (A+ ξ I)−1 denotes the inverse of the
operator A + ξ I or the resolvent of operator A . It is known [32,§1.15.1] that there
exist fractional powers Aθ of a positive operator A and

E
(
Aθ
)

=
{

u ∈ D
(
Aθ
)

, ‖u‖E(Aθ) =
∥∥∥Aθ u

∥∥∥
E

+‖u‖ < ∞, −∞ < θ < ∞
}

.

We denote by Lp (Ω;E) the space of all strongly measurable E -valued functions on Ω
with the norm

‖u‖p,E = ‖u‖Lp(Ω;E) =
(∫

Ω
‖u(x)‖p

E dx

)1/p

, 1 � p < ∞.

By Lp,q (Ω) and Wl
p,q (Ω) let us denote respectively the (p,q)-integrable function

space and Sobolev space with mixed norms, where 1 � p,q < ∞ (see e.g. [3,§ 1,10]).
Let E0 and E be two Banach spaces and E0 is continuously and densely embed-

ded E. Let l be a positive integer.
We introduce an E -valued function space Wl

p (Ω;E0,E) (sometimes we call it
Sobolev-Lions type space, see [22]) that consist of all functions u ∈ Lp (Ω;E0) such

that are endowed with the generalized derivatives Dl
ku = ∂ l u

∂xl
k
∈ Lp (Ω;E) with the norm

‖u‖Wl
p(Ω;E0,E) = ‖u‖Lp(Ω;E0) +

n

∑
k=1

∥∥∥Dl
ku
∥∥∥

Lp(Ω;E)
< ∞, 1 � p < ∞.

The Banach space E is called an UMD-space if the Hilbert operator

(H f )(x) = lim
ε→0

∫
|x−y|>ε

f (y)
x− y

dy

is bounded in Lp (R,E) , p ∈ (1,∞) (see. e.g. [5–6]). UMD spaces include e.g. Lp , lp
spaces and Lorentz spaces Lpq, p , q ∈ (1,∞) .
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Let E1 and E2 be two Banach spaces. Let S (Rn;E) denotes a Schwartz class
i.e. the space of all E -valued rapidly decreasing smooth functions on Rn. Let F and
F−1 denote Fourier and inverse Fourier transformations, respectively. A function Ψ ∈
Cm (Rn;L(E1,E2)) is called a multiplier from Lp (Rn;E1) to Lp (Rn;E2) for p ∈ (1,∞)
if the map u → Ku = F−1Ψ(ξ )Fu, u ∈ S (Rn;E1) is well defined and extends to a
bounded linear operator

K : Lp (Rn;E1) → Lp (Rn;E2) .

We denote the set of all multipliers from Lp (Rn;E1) to Lp (Rn;E2) by Mp
p (E1,E2) .

For E1 = E2 = E it is denoted by Mp (E) . The exposition of the theory of Lp -
multipliers of the Fourier transformation, and some related references, can be found
in [ 32, §2.2.1–§2.2.4]. On the other hand, Fourier multipliers in vector-valued function
spaces, have been studied e.g. by [7] , [10] , [12] , [17–21], [31] .

A set K ⊂ L(E1,E2) is called R-bounded [6,7] if there is a constant C such that
for all T1,T2, ...,Tm ∈ K and u1,u2, ...,um ∈ E1, m ∈ N

1∫
0

∥∥∥∥∥
m

∑
j=1

r j (y)Tju j

∥∥∥∥∥
E2

dy � C

1∫
0

∥∥∥∥∥
m

∑
j=1

r j (y)u j

∥∥∥∥∥
E1

dy,

where
{
r j
}

is a sequence of independent symmetric {−1,1}-valued random variables
on [0,1] . The smallest C for which the above estimate holds is called a R-bound of the
collection K and denoted by R(K) .

Let

Un =
{

β = (β1,β2, ...βn) , β j ∈ {0,1} , j = 1,2, ...,n
}

,

ξ β = ξ β1
1 ξ β2

2 ...ξ βn
n , |β | =

n

∑
j=1

β j.

DEFINITION 1. The Banach space E is said to be a space satisfying a multiplier
condition with respect to p when for Ψ ∈C(n) (Rn;L(E1,E2)) if the set{

ξ |β |Dβ Ψ(ξ ) : ξ ∈ Rn\{0} , β ∈Un

}
is R-bounded, then Ψ ∈ Mp

p (E1,E2) .

DEFINITION 2. The ϕ -positive operator A is said to be a R-positive in a Banach
space E if there exists ϕ ∈ [0 , π) such that the set

LA =
{

ξ (A+ ξ I)−1 : ξ ∈ Sϕ

}
is R-bounded.

REMARK 1. By virtue of [12] or [34] , UMD spaces satisfy the multiplier condi-
tion with respect to p ∈ (1,∞) . Note that, in Hilbert spaces every norm bounded set
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is R-bounded. Therefore, in Hilbert spaces all positive operators are R-positive. If A
is a generator of a contraction semigroup on Lq, 1 � q � ∞ 1 or A has the bounded
imaginary powers with

∥∥(−Ait
)∥∥

L(E) � Ceν|t|,ν < π
2 or if A is a generator of a semi-

group with Gaussian bound (see e.g. [10] ) then those operators are R-positive. It
is well known (see e.g. [17]) that any Hilbert space satisfies the multiplier condition
with respect to p ∈ (1,∞) . By virtue of [21] Mikhlin conditions are not sufficient for
operator-valued multiplier theorem.

Let Hk =
{

Ψh ∈ Mp
p (E1,E2) , h = (h1h2...,hn) ∈ K

}
be a collection of multipliers

in Mp
p (E1,E2) . We say that Hk is a uniform collection of multipliers if there exists a

constant M > 0, independent on h ∈ K , such that∥∥F−1ΨhFu
∥∥

Lp(Rn;E2)
� M‖u‖Lp(Rn;E1)

for all h ∈ K and u ∈ S (Rn;E1) .
In view of [23,Theorem A0] we have

THEOREM A0 . Let E1 and E2 be two UMD spaces and let

Ψ ∈C(n) (Rn\{0} ;L(E1,E2)) , p ∈ (1,∞) .

If

sup
h∈K

R
{

ξ |β |Dβ
ξ Ψh (ξ ) : ξ ∈ Rn\{0} ,β ∈Un

}
� Kβ < ∞

then Ψh (ξ ) is a uniformly collection of multipliers from Lp (Rn;E1) to Lp (Rn;E2) .

Let Q(ξ ) =
n
∑
j=1

a jξ 2
j denote the symbol of differential operator L in (1) . Let

S± = {ξ ∈ Rn, Q(ξ ) = ±1} .

In a similar way as [29] we obtain abstract version of Stein-Tomas type restriction
result

THEOREM A1 . Let E be an UMD space. For 1
p − 1

p′ � 2
n+1 the following in-

equality ∥∥∥∥∥∥∥
∫

Sn−1±

f̂ (ω)ei(x,ω)dω±

∥∥∥∥∥∥∥
p′,E

� C‖ f‖p,E

is satisfied.

By virtue of [9, Lemma 2.3] we have:

LEMMA A1 . For λ ∈ Sϕ and ξ ∈ Sϕ1 , ϕ1 +ϕ < π there is a positive constant C
such that

|λ + ξ |� C (|λ |+ |ξ |) . (2)
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3. Carleman estimates for DOE with constant coefficients

Consider at first, the following DOE

L(D)u =
n

∑
j=1

a jD
2
ju(x)+Au(x) = f (x) , x ∈ Rn, (3)

where Dj = ∂
i∂ j

, A is a linear operator in a Banach space E , a = (a1,a2, ...,an) and ak

are certain real numbers.
Let ν = (ν1,ν2, ...,νn) is a unique vector in Rn and t is a positive parameter. It is

clear to see that

et(x,ν)L
[
ue−t(x,ν)

]
= L(D+ itν) =

n

∑
j=1

a j

(
∂
i∂ j

+ itν j

)2

u(x)+Au(x) . (4)

Consider the following DOE with parameters

L(D+ itν)u =
n

∑
j=1

a j

(
∂
i∂ j

+ itν j

)2

+Au(x) = f (x) , x ∈ Rn. (5)

CONDITION 1. Assume n � 3, p ∈ (1,∞) and 2
n+1 � 1

p − 1
p′ � 2

n . Suppose there

is a positive constant C such that Q(ξ ) =
n
∑
j=1

a jξ 2
j � C

n
∑
j=1

ξ 2
j , for all ξ �= 0.

First at all, we need the following lemma, which is proved in a similar way as
[16, Theorem 2.3] .

LEMMA 3.1. Assume the Condition1 holds. Moreover, let E be a Banach space
satisfies the multiplier condition with respect to p and A be an R-positive operator in
E. Then there is a positive constant C such that for all z ∈ C with |z| � 1 ,

‖u‖Lp′ (Rn;E) � C‖(L+ z)u‖Lp(Rn;E) , u ∈W 2
p (Rn;E (A) ,E) . (6)

Proof. First of all let us notice that by a limiting argument we only have to prove
(6) for |z| � 1 with Imz �= 0. Since symbol does not vanish, (6) is equivalent to
following ∥∥F−1Φ−1

z (ξ ) f̂ (ξ )
∥∥

p′,E � C‖ f‖p,E , (7)

where
Φz (ξ ) = (A+Q(ξ )+ z) .

To prove this inequality we use E. Stein’s theorem on analytic interpolation [30] .
Consider the family of operators

Tλ f = F−1G(λ ,z) f̂ (ξ ) , G(λ ,z) =
eλ 2

Γ
(

n
2 + λ

)Φλ
z (ξ ) .
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By Stein interpolation theorem, the estimate (7) can be follow from the following
two uniform estimates:∥∥F−1Φ−1

z (ξ ) f̂ (ξ )
∥∥

2,E � C‖ f‖2,E , for Reλ = 0, (8)

∥∥F−1Φ−1
z (ξ ) f̂ (ξ )

∥∥
∞,E � C‖ f‖1,E , for Reλ ∈

[
−n+1

2
,−n

2

]
, (9)

where
|z| � 1, Imz �= 0.

The inequality (8) follows from Plancherel theorem. Also, if Φλ (x,z) denotes the
Fourier transform of G(λ ,z) then (9) would follow from the following

‖Φλ‖∞,L(E) � C, Reλ ∈
[
−n+1

2
,−n

2

]
, |z| � 1, Imz �= 0. (10)

In a similar way as in [11, p. 288–289] we get that

Φλ (x,z) =
eλ 2

2λ+1e−π iη/2

(2π)
n
2 Γ(−λ )Γ

(
n
2 + λ

) [zH−1 (x)
]1/2(n/2+λ )

K n
2+λ

(zH)
1
2 ,

where

H (x) =

(
A+

n

∑
j=1

a jx
2
j

)
,

Kν is the operator valued Bessel potential defined by

Kνu =
∞∫

0

e−ucosht cosh(νt)dt, u ∈ L(E)

and η is the signature of Q(ξ ) .The above integral well defined. Really, due to pos-
itivity of A , the operator H (x) has a bounded inverse H−1 (x) for all x ∈ Rn, and is
uniformly positive in E. Hence, there is the fractional powers of H and the operator

(zH)
1
2 for |z| � 1, Imz �= 0 generates an anaclitic semigroup i.e. the operator function

Uz (t) = e−t(zH)
1
2 is uniformly bounded in E and has the estimate

‖Uz (t)‖L(E) � Ce−ωt , ω > 0.

Moreover, by reasoning as in [16, Theorem 2.3] and by using the resolvent properties
of the positive operator A , the estimate (10) is obtained. �

THEOREM 3.1. Assume the Condition1 holds. Suppose E is a Banach space
satisfies the multiplier condition with respect to p and A is an R-positive operator in
E. Then for t � t0 there is a positive constant C (depending only on n and p) such
that the estimate holds

‖u‖Lp′ (Rn;E) � C‖L(D+ itν)u‖Lp(Rn;E) , u ∈W 2
p (Rn;E (A) ,E) .
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Proof. By applying the Fourier transform we have from (3)

L(ξ + itν) û(ξ ) = f̂ (ξ ) ,L(ξ + itν) =
n

∑
j=1

a j (ξ j + itν j)
2 +A.

Without loss of generality we put ν = (1,0, ...,0) . Let

ψt (ξ ) =
n−1

∑
j=1

a jξ 2
j +an (ξn + it)2 =

n−1

∑
j=1

a jξ 2
j +an

(
ξ 2

n − t2
)
+2anξnti

= Q(ξ )+an
(
2ξnti− t2

)
.

Since F−1B−1
t (ξ ) f ˆ is a fundamental solution for the operatorL(D+ itν) , hence, we

obtain that the solution of the equation (3) can be represented in the form u(x) =
F−1B−1

t f ˆ . Moreover the assertion of theorem can be obtained from the following
uniform estimate ∥∥F−1B−1

t (ξ ) f̂ (ξ )
∥∥

p′,E � C‖ f‖p,E . (11)

It is clear to see that ψt (ξ ) ∈ S (ϕ) for |ξn| � t . Due to positivity of A, the operator
Bt (ξ ) is invertible in E for |ξn| � t . Also, consider the function χ ∈C∞

0 (R) such that

χ (y) = 1 if |y| ∈ [1,2] and zero otherwise; moreover,
∞
∑

j=−∞
χ
(
2− jy

)
= 1 for y �= 0.

Set χk (ξn) = χ
(
2k (ξn− t)

)
and let

Φk,t (ξ ) = χk (ξn)B−1
t (ξ ) , Bt (ξ ) = A+ ψt (ξ ) .

In order to use the localization argument, it is suffices to prove that there is a
constant C , independent of k and t , for which∥∥F−1Φk,t (ξ ) f̂ (ξ )

∥∥
p′,E � C‖ f‖p,E . (12)

If the above estimates hold then by using Minkowski’s integral inequality and
Littlewood-Paley theory (see e.g. [28]) it is not hard to see that

∥∥F−1B−1
t (ξ ) f̂ (ξ )

∥∥
p′,E � C

∥∥∥∥∥∥
(

∞

∑
k=−∞

∥∥F−1Φk,t (ξ ) f̂ (ξ )
∥∥2

E

) 1
2

∥∥∥∥∥∥
p′

� C

(
∞

∑
k=−∞

∥∥F−1Φk,t (ξ ) f̂ (ξ )
∥∥2

p′,E

) 1
2

� C

(
∞

∑
k=−∞

∥∥F−1χk (ξn) f̂ (ξ )
∥∥2

p,E

) 1
2

� C‖ f‖p,E .

Consider operator functions

Gk,t (ξ ) = χk (ξn)B−1
kt (ξ ) ,
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where

Bkt (ξ ) = A+Q(ξ )+an

[
2t
(
t +2−k

)
i− t2

]
.

By virtue of Lemma 3.1 we have

∥∥F−1Gk,t (ξ ) f̂ (ξ )
∥∥

p,E � C‖ f‖p,E . (13)

Hence, by taking differences (13) implies that we only have to prove the estimate

∥∥F−1 [gktB
−1
t B−1

kt

]
f̂ (ξ )

∥∥
p′,E � C‖ f‖p,E , (14)

where

gkt = an

[
2t
(

ξn− t−2−k
)

i
]

χk (ξn) .

Let Tk be the operator in (14) . Then if we uses the polar coordinates, ξ = ρω ,
associated to Q , it is easy to see that Minkowski’s integral inequality and the restriction
Theorem A1 give the following

‖Tk f‖p′,E � ∑
±

∞∫
0

∥∥∥∥∥∥∥
∫

Sn−1±

B−1
tρ B−1

ktρgkt (ξn) f̂ (ρω)eiρ(ω,x)dω±

∥∥∥∥∥∥∥
p′,E

ρn−1dρ

� C∑
±

∥∥∥∥∥∥
∞∫

0

ρn−1− 2n
p′ F−1

[
B−1

tρ B−1
ktρgkt (ξn) f̂ (ξ )

]∥∥∥∥∥∥
p,E

dρ ,

where

Btρ =
[
A+ ρ2 +an

(
2ξnti− t2

)]
, Bktρ =

[
A+ ρ2 +an

(
2t
(
t +2−k

)
i− t2

)]
.

It is easy that n− 1− 2n
p′ = 1. Moreover, by positivity of the operator A and by

definition of χk (ξn) we obtain

‖Tk f‖p′,E � C∑
±

∥∥∥∥∥∥
∞∫

0

ρn−1− 2n
p′
∥∥∥B−1

tρ B−1
ktρ

∥∥∥
L(E)

F−1 [gkt (ξn) f̂ (ξ )
]∥∥∥∥∥∥

p,E

dρ

� C
2
‖ f‖p,E

∞∫
0

t2−kρdρ
(1+ |ρ2 + ϕ1 (t,k)|) (1+ |ρ2 + ϕ2 (t,k)|) ,

where

ϕ1 (t,k) = an

(
2i
(
t +2−(k−1)

)
t − t2

)
, ϕ2 (t,k) = an

(
2i
(
t +2−k

)
t − t2

)
.
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From above and in view of (2) we get

‖Tk f‖p′,E � C
2
‖ f‖p,E

∞∫
0

2−kρdρ( 1
t +
∣∣ 1
t ρ2 + ψ1 (t,k)

∣∣)( 1
t +
∣∣ 1
t ρ2 + ψ2 (t,k)

∣∣)

� C
2
‖ f‖p,E

∞∫
0

2−kρdρ(
1
t0

+ 1
t0

ρ2 + |ψ1 (t,k)|
)(

1
t0

+ 1
t0

ρ2 + |ψ2 (t,k)|
) � C‖ f‖p,E ,

where

ψ1 (t,k) = an

(
2i
(
t +2−(k−1)

)
− t
)

, ψ2 (t,k) = an

(
2i
(
t +2−k

)
− t
)

. �

From the above theorem we obtain:

RESULT 3.1. Let all conditions of Theorem 3.1 hold. Then following uniform
Carleman type estimate∥∥∥e−t(x,ν)u

∥∥∥
Lp′ (Rn;E)

� C
∥∥∥e−t(x,ν)Lu

∥∥∥
Lp(Rn;E)

(15)

holds for all u ∈W 2
p (Rn;E (A) ,E) .

Now by using the Carleman estimate (15) we obtain:

THEOREM 3.2. Let all conditions of Theorem 3.1 is satisfied. Then the differential
operator (3) has a unique continuation property.

Proof. Let V ∈ Lμ (Rn;L(E)) and 1
μ = 1

p − 1
p′ and let u ∈W 2

p (Rn;E (A) ,E) is a
solution of the following differential inequality

‖L(D)u(x)‖E � ‖V (x)u(x)‖E . (16)

For simplicity of notation, we assume that u is supported in the half space

Rn
1+ =

{
x =

(
x1,x

�
) ∈ Rn, x1 > 0

}
since the technique for other cases is similar. To prove that u ≡ 0 in Rn it is sufficient
to show that there is ε > 0 so that u ≡ 0 in the strip

Sε = {x ∈ Rn, x1 � ε} .

Let us take ε so small that, if V is as above and the constant C in (14) such that

C‖V‖Lμ (Sε ;B(E)) � η < 1. (17)

In view of the estimates (15) ,(17) and by using the Hölder inequality we obtain∥∥e−tx1u
∥∥

Lp′ (Sε ;E) � C
∥∥e−tx1Lu

∥∥
Lp(Rn;E) � C

∥∥e−tx1Vu
∥∥

Lp(Sε ;E)

� C
∥∥e−tx1Vu

∥∥
Lp(Sε ;E) +C

∥∥e−tx1Lu
∥∥

Lp(Rn/Sε ;E)

� η
∥∥e−tx1u

∥∥
Lp′ (Sε ;E) +C

∥∥e−tx1Lu
∥∥

Lp(Rn/Sε ;E)
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uniformly with respect to t. Hence, we have the uniform estimate

∥∥∥et(ε−x1)u
∥∥∥

Lp′ (Sε ;E)
� C

1−η
∥∥e−tx1Lu

∥∥
Lp(Rn/Sε ;E) ,

and consequently,

∥∥∥et(ε−x1)u
∥∥∥

Lp′ (Sε ;E)
� C

1−η
‖Lsu‖Lp(Rn;E) .

Since the above inequality holds for every t > 0 this implies u ≡ 0 in Sε . �

4. Carleman estimates and unique continuation property
for anisotropic elliptic PDE

Let Ω ⊂ Rl be an open connected set with compact C2m -boundary ∂Ω . Let us
consider the following BVP on cylindrical domain Ω̃ = Rn ×Ω for the following PDE

Lu =
n

∑
k=1

akD
2
ku(x,y)+ ∑

|α |�2m

aα (y)Dα
y u(x,y) = f (x,y) , (18)

x ∈ Rn, y ∈ Ω,

Bju = ∑
|β |�mj

b jβ (y)Dβ
y u(x,y) = 0, x ∈ Rn, y ∈ ∂Ω, j = 1,2, ...,m, (19)

where Dj =−i ∂
∂y j

, y = (y1, ...,yl) . Let Ω ⊂ Rl be an open connected set with compact

C2m -boundary ∂Ω.

THEOREM 4.1. Let the following conditions be satisfied;

(1) aα ∈C
(

Ω
)

for each |α| = 2m and aα ∈ [L∞ +Lrk

]
(Ω) for each |α| = k <

2m with rk � q and 2m− k > l
rk

;

(2) b jβ ∈ C2m−mj (∂Ω) for each j , β and mj < 2m,
m
∑
j=1

b jβ

(
y

�

)
σ j �= 0, for

|β | = mj, y
� ∈ ∂G, where σ = (σ1,σ2, ...,σl) ∈ Rl is a normal to ∂Ω ;

(3) for y∈Ω , ξ ∈Rl , λ ∈ S (ϕ) , ϕ ∈ (0, π
2

)
, |ξ |+ |λ | �= 0 let λ+ ∑

|α |=2m
aα (y)ξ α

�= 0 ;
(4) for each y0 ∈ ∂Ω local BVP in local coordinates corresponding to y0

λ + ∑
|α |=2m

aα (y0)Dα ϑ (y) = 0,

Bj0ϑ = ∑
|β |=mj

b jβ (y0)Dβ u(y) = h j, j = 1,2, ...,m



CARLEMAN ESTIMATES AND UNIQUE CONTINUATION PROPERTY 883

has a unique solution ϑ ∈ C0 (R+) for all h = (h1,h2, ...,hl) ∈ Rl , and for ξ � ∈ Rl−1

with ∣∣ξ �

∣∣+ |λ | �= 0;

(5) ak > 0 , dk ∈ L∞ (Rn) , n � 3 , p ∈ (1,∞) and 2
n+1 � 1

p − 1
p′ � 2

n .
Then:
(a) for λ ∈ S (ϕ0) , sufficiently large |λ | , t � t0 the Carleman type estimate∥∥∥e−t(x,ν)u

∥∥∥
Lp′q(Ω̃)

� C
∥∥∥e−t(x,ν) (L+ λ )u

∥∥∥
Lpq(Ω̃)

holds for u ∈W 2
p,q

(
Ω̃
)
.

(b) for V ∈ Lμ
(
Ω̃
)

and 1
μ = 1

p − 1
p′ if u ∈W 2

p,q

(
Ω̃
)
is a solution of the differential

inequality
‖(L+ λ )u(x, .)‖Lq(Ω) � ‖V (x)u(x, .)‖Lq(Ω)

then u is identically zero if its support is contained in a half space.

Proof. Let E = Lq (Ω) . By virtue of [5] the space Lq (Ω) is UMD for q∈ (1,∞) .
Consider the following operator A which is defined by

D(A) = W 2m
q (Ω;Bju = 0) , Au = ∑

|α |�2m

aα (y)Dαu(y) .

The problem (18)− (19) can be rewritten in the form (3) , where u(x) = u(x, .) ,
f (x) = f (x, .) are functions with values in E = Lq (Ω) . Then by virtue of [10, Theorem
3.6 and Theorem 8.2] the operator A is R-positive in Lq . Moreover, it is known that
the embedding W 2m

q (Ω) ⊂ Lq (Ω) is compact (see e.g. [32, Theorem 3.2.5] ). Then by
virtue of (5) condition and by using interpolation properties of Sobolev spaces (see e.g.
[32, § 4] ) it is clear to see that (2) condition of the Theorem 3.1 are fulfilled too. Hence,
by virtue of Theorems 3.1 and 3.2 we obtain the assertions. �

5. Carleman estimates and unique continuation property for infinite systems of
elliptic equations

Consider the following infinity systems of PDE

Lu =
n

∑
k=1

akD
2
kum (x)+dmum (x) = fm (x) , x ∈ Rn, m = 1,2, ....

Let

D = {dm} , dm > 0, u = {um} , Du = {dmum} , m = 1,2, ...,

lq (D) =

⎧⎨
⎩u : u ∈ lq,‖u‖lq(D) = ‖Du‖lq =

(
∞

∑
m=1

|dmum|q
) 1

q

< ∞

⎫⎬
⎭ ,

x ∈ Rn, 1 < q < ∞.
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THEOREM 5.1. Assume ak > 0 , n � 3 , p ∈ (1,∞) and 2
n+1 � 1

p − 1
p′ � 2

n .
Then:
(a) t � t0 the Carleman type estimate∥∥∥e−t(x,ν)u

∥∥∥
Lp�(Rn;lq)

� C
∥∥∥e−t(x,ν) (L+ λ )u

∥∥∥
Lp(Rn;lq)

holds for u ∈W 2
p (Rn; lq (D) , lq) .

(b) for V ∈ Lμ
(
Ω̃;L(E)

)
and 1

μ = 1
p − 1

p�
if u ∈W 2

p (Rn; lq (D) , lq) is a solution
of the differential inequality

‖Lu(x)‖lq � ‖V (x)u(x)‖lq

then u is identically zero if its support is contained in a half space.

Proof. Let E = lq and A be infinite matrices, such that

A = [dmδ jm] , m, j = 1,2, ...∞.

It is clear to see that this operator A is R- positive in lq and all other conditions
of Theorem 3.1 are hold. Therefore, by virtue of Theorems 3.1 and 3.2 we obtain the
assertions. �
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