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ON k–QUASI–M–HYPONORMAL OPERATORS

SALAH MECHERI

Abstract. In this present article we introduce a new class of operators which we will be called the
class of k -quasi-M -hyponormal operators that includes hyponormal an M -hyponormal opera-
tors. A part from other results, we show that following results hold for a k -quasi M -hyponormal
operator T :
(i) T has the Bishop’s property (β ).
(ii) The spectral mapping theorem holds for the essential approximate point spectrum of T .
(iii) Every non-zero isolated point in the spectrum of T is a simple pole of the resolvent of T .
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