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SOME INEQUALITIES FOR THE NONLINEAR MATRIX EQUATIONS
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(Communicated by S. Puntanen)

Abstract. The nonlinear matrix equations X ±A∗X−1A = Q have many applications in control
theory, dynamic programming and statistics. In the present work, by using some related matrix
equalities and linear algebraic techniques, we propose some trace and determinant inequalities
for the solution of the above nonlinear matrix equations. Furthermore, we give some inequalities
for the eigenvalues of their solutions.

1. Introduction

Let Mm,n stand for the set of all m×n complex matrices, and Mn,n will be ab-
breviated as Mn . The symbols tr(A), A∗, λi(A) and detA denote the trace, conjugate
transpose, eigenvalue and determinant of a square matrix A , respectively. The eigen-
values of a Hermitian matrix A are ordered as λ1(A) � λ2(A) � · · ·λn(A) . Let A � 0
and A > 0 denote the Hermitian positive semi-definite and positive definite matrix,
respectively.

In practice, solution bounds of the equations can give rough estimates before ac-
tually solving them and can as a check of whether the solution techniques for them
actually resulted in valid solutions. Besides, solution bounds of the equations can also
help us reduce the computational burdens. Therefore, it is necessary to study the bounds
of the solution. In [4], lower bounds for the sum of the eigenvalues of the solution to
the algebraic Riccati equation were proposed. In [5], several bounds for the traces of
the solutions of the algebraic Riccati and Lyapunov matrix equations were presented,
respectively. In [8], some inequalities for the extremal eigenvalues of the solution for
the Lyapunov matrix equations were introduced.

In this paper, we consider some inequalities of the solutions to the following non-
linear matrix equations:

X +A∗X−1A = Q (1)

and

X −A∗X−1A = Q (2)
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where A,Q,X ∈ Mn , Q > 0, X > 0, and X is unknown.
Many authors have studied Eqs. (1) and (2) and have obtained some results [1–3, 6,

9–10]. However, to our knowledge, the bounds of the solution of trace and determinant
for Eq. (1) and (2) have not been considered.

In this paper, we first give some trace and determinant inequalities for the solutions
to Eqs. (1) and (2). Then, we present some bounds for the eigenvalues of their solutions.

2. Trace and determinant inequalities for the solutions of Eqs. (1) and (2)

Firstly, we give some lemmas which are useful for obtaining the main results.

LEMMA 1. [5] Let X ,Y ∈ Mn and X � 0 , Y � 0 . Then

λn(Y )tr(X) � tr(XY ) � λ1(Y )tr(X).

If X > 0 , Y � 0 , then tr(X−1Y )tr(X) � λn(Y )n2.

LEMMA 2. [7] (a) Let X ,Y ∈ Mn and X > 0 , Y > 0 . Then

tr(XY ) � n(detX)
1
n (detY )

1
n .

(b) Let X ,Y ∈ Mn and X � 0 , Y � 0 . Then

(det(X +Y))
1
n � (detX)

1
n +(detY)

1
n .

THEOREM 1. The trace for the solution of the nonlinear equation X +A∗X−1A =
Q satisfies the following inequality:

tr(Q)−√
tr2(Q)−4n2λn(AA∗)

2
� tr(X) � tr(Q)+

√
tr2(Q)−4n2λn(AA∗)

2
. (3)

Proof. Taking the trace on both sides of the matrix equation X +A∗X−1A = Q ,
we get

tr(X)+ tr(A∗X−1A) = tr(Q).

Since AA∗ � 0, X−1 > 0, from Lemma 1 and the trace property tr(AB) = tr(BA) ,
we have

tr(Q) = tr(X)+ tr(AA∗X−1)
� tr(X)+ λn(AA∗)tr(X−1)

� tr(X)+ λn(AA∗)
n2

tr(X)
.

The above inequality can be reduced as

tr2(X)− tr(Q)tr(X)+n2λn(AA∗) � 0.
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Then, we get

tr(Q)−√
tr2(Q)−4n2λn(AA∗)

2
� tr(X) � tr(Q)+

√
tr2(Q)−4n2λn(AA∗)

2
. �

THEOREM 2. If A is nonsingular, then for the solution of Eq. (1), we have

tr(Q)−
√

tr2(Q)−4n2(det(AA∗))
1
n

2
� tr(X) �

tr(Q)+
√

tr2(Q)−4n2(det(AA∗))
1
n

2
(4)

Proof. If A is nonsingular, then AA∗ > 0. From Lemma 2 (a), we have

tr(AA∗X−1) � n(det(AA∗))
1
n (det(X−1))

1
n , and tr(X) � n(detX)

1
n .

Then

tr(Q) = tr(X)+ tr(AA∗X−1)

� tr(X)+n(det(AA∗))
1
n (det(X−1))

1
n

� tr(X)+
n2(det(AA∗))

1
n

tr(X)
.

Thus

tr2(X)− tr(Q)tr(X)+n2(det(AA∗))
1
n � 0.

So

tr(Q)−
√

tr2(Q)−4n2(det(AA∗))
1
n

2
� tr(X) �

tr(Q)+
√

tr2(Q)−4n2(det(AA∗))
1
n

2
.

�

REMARK 1. Since (det(AA∗))
1
n � λn(AA∗) , then the bound (4) is better than the

bound (3) in the case that A is nonsingular.

THEOREM 3. The solution to Eq. (1) has the bound

(detQ)
1
n −

√
(detQ)

2
n −4(det(AA∗))

1
n

2

� (detX)
1
n �

(detQ)
1
n +

√
(detQ)

2
n −4(det(AA∗))

1
n

2
(5)
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Proof. Since X > 0,A∗X−1A � 0, by Lemma 2(b), for Eq. (1), we have

(detQ)
1
n = (det(X +A∗X−1A))

1
n � (detX)

1
n +(det(AA∗))

1
n (det(X−1))

1
n ,

and then, we get

(detX)
2
n − (detQ)

1
n (detX)

1
n +(det(AA∗))

1
n � 0,

thus

(detQ)
1
n −

√
(detQ)

2
n −4(det(AA∗))

1
n

2

� (detX)
1
n �

(detQ)
1
n +

√
(detQ)

2
n −4(det(AA∗))

1
n

2
. �

Similarly, for Eq. (2), we have the following results.

THEOREM 4. For the solution of Eq. (2), we have

tr(X) � tr(Q)+
√

tr2(Q)+4n2λn(AA∗)
2

. (6)

If A is nonsingular, then

tr(X) � tr(Q)+
√

tr2(Q)+4n2(det(AA∗))1/n

2
. (7)

It is easy to verify that the bound (7) is better than the bound (6), and the bound
for detX of Eq. (2) satisfies

(detX)
1
n �

(detQ)
1
n +

√
(detQ)

2
n +4(det(AA∗))

1
n

2
.

3. Eigenvalue inequalities for the solution of Eq. (1)

LEMMA 3. [4] (a) For n×n Hermitian matrices V and W , with 1 � i, j, k � n,
the following inequalities are satisfied:

λi+ j−1(V +W) � λi(V )+ λ j(W ), i+ j � n+1,

λi+ j−n(V +W) � λi(V )+ λ j(W ), i+ j � n+1,

k

∑
i=1

λn−i+1(V +W) �
k

∑
i=1

λn−i+1(V )+
k

∑
i=1

λn−i+1(W ).

(b) For X � 0 and Y � 0 of order n, with 1 � i, j � n, we have

λi+ j−1(XY ) � λi(X)λ j(Y ), i+ j � n+1,

λi+ j−n(XY ) � λi(X)λ j(Y ), i+ j � n+1.
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THEOREM 5. Let X satisfy Eq. (1). Then for any i = 1,2, · · · ,n, when λ 2
n (Q)−

4λ1(AA∗) � 0 , we have

λ1(Q)−
√

λ 2
1 (Q)−4λn(AA∗)

2
� λi(X) � λn(Q)−√

λ 2
n (Q)−4λ1(AA∗)

2
,

or

λn(Q)+
√

λ 2
n (Q)−4λ1(AA∗)

2
� λi(X) �

λ1(Q)+
√

λ 2
1 (Q)−4λn(AA∗)

2
.

Proof. When i+ j = n+1, from Lemma 3 (a), we have

λn(Q) = λi+ j−1(Q) = λi+ j−1(X +A∗X−1A)

� λi(X)+ λ j(AA∗X−1).

Since AA∗ � 0, X−1 > 0, according to Lemma 3 (b) and the fact λn−i+1(X−1) =
1

λi(X) , we have

λ j(AA∗X−1) � λn−i+1(X−1)λi+ j−n(AA∗) =
λ1(AA∗)

λi(X)
,

then

λn(Q) � λi(X)+
λ1(AA∗)

λi(X)
,

i.e.,

λ 2
i (X)−λn(Q)λi(X)+ λ1(AA∗) � 0. (8)

On the other hand, when i+ j = n+1, again from Lemma 3, we have

λ1(Q) = λi+ j−n(Q) = λi+ j−n(X +A∗X−1A)

� λi(X)+ λ j(AA∗X−1)

� λi(X)+ λn−i+1(X−1)λi+ j−1(AA∗)

� λi(X)+
λn(AA∗)

λi(X)
.

Then, we have

λ 2
i (X)−λ1(Q)λi(X)+ λn(AA∗) � 0. (9)

Let

α1 =
λn(Q)−

√
λ 2

n (Q)−4λ1(AA∗)
2

, β1 =
λn(Q)+

√
λ 2

n (Q)−4λ1(AA∗)
2

,

α2 =
λ1(Q)−

√
λ 2

1 (Q)−4λn(AA∗)

2
, β2 =

λ1(Q)+
√

λ 2
1 (Q)−4λn(AA∗)

2
.
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When λ 2
n (Q)−4λ1(AA∗) � 0, from (8), we have

0 < λi(X) � α1, or λi(X) � β1.

And from (9), we get
α2 � λi(X) � β2.

Let a = λ1(Q) , b = λn(Q) , c = λ1(AA∗) , d = λn(AA∗) . Then

2α1 = b−
√

b2−4c,

2β1 = b+
√

b2−4c,

2α2 = a−
√

a2−4d,

2β2 = a+
√

a2−4d.

Obviously, α1 � β1 . Since a > b , c > d , then β1 � β2 . Since

(a−
√

a2−4d)− (b−
√

b2−4d)

= (a−b)+
(b+a)(b−a)√

a2−4d +
√

b2−4d

= (a−b)
(

1− a+b√
a2−4d +

√
b2−4d

)
� 0,

then a−√
a2−4d � b−√

b2−4d � b−√
b2−4c , thus α2 � α1 . Then, we have

α2 � λi(X) � α1 or β1 � λi(X) � β2. �

REMARK 2. The result of Theorem 5 has been involved in [1] and [2], but our
method is different form them.

THEOREM 6. Let X satisfy Eq. (1). Then, for any k = 1,2, · · · ,n, we have

k

∑
i=1

λn−i+1(X) �
k

∑
i=1

λn−i+1(Q)− 1
λ1(X)

k

∑
i=1

λn−i+1(AA∗),

k

∑
i=1

λi(X) �
k

∑
i=1

λi(Q)− 1
λn(X)

k

∑
i=1

λi(AA∗).

Proof. From Lemma 3 (a), we have

k

∑
i=1

λn−i+1(Q) =
k

∑
i=1

λn−i+1(X +A∗X−1A)

�
k

∑
i=1

λn−i+1(X)+
k

∑
i=1

λn−i+1(AA∗X−1)

�
k

∑
i=1

λn−i+1(X)+
k

∑
i=1

λn(X−1)λn−i+1(AA∗)

=
k

∑
i=1

λn−i+1(X)+
1

λ1(X)

k

∑
i=1

λn−i+1(AA∗).
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Then

k

∑
i=1

λn−i+1(X) �
k

∑
i=1

λn−i+1(Q)− ∑k
i=1 λn−i+1(AA∗)

λ1(X)
.

On the other hand, since

k

∑
i=1

λi(Q) =
k

∑
i=1

λi(X +A∗X−1A)

�
k

∑
i=1

λi(X)+
k

∑
i=1

λi(AA∗X−1)

�
k

∑
i=1

λi(X)+
k

∑
i=1

λ1(X−1)λi(AA∗),

then

k

∑
i=1

λi(X) �
k

∑
i=1

λi(Q)− ∑k
i=1 λi(AA∗)

λn(X)
. �

REMARK 3. For Eq. (2), similar to Theorem 5 and 6, we can also obtain some
bounds for the eigenvalues of its solutions.

4. Conclusion

In this paper, we have proposed some inequalities for the trace and determinant for
the solution of the nonlinear matrix equations, and we also give some bounds for the
eigenvalues of their solutions.
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