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NONLINEAR GRONWALL–BELLMAN TYPE

INTEGRAL INEQUALITIES WITH MAXIMA

YONG YAN

(Communicated by J. Pečarić)

Abstract. Integral inequalities with maxima of the unknown function are useful in the study of
control theory. Known results were given for Gronwall-Bellman type integral inequalities with
the maxima in the form of linear dependence on the unknown function with a single delay term.
In this paper we consider a general form of nonlinear integral inequalities with the maxima and
more than one delay terms. Requiring neither monotonicity nor separability of given functions,
we apply monotonization to estimate the unknown function. Our result can be used to weaken
conditions for some known results. We apply our result to prove boundedness of solutions for a
differential equation with the maxima and an integral equation with maxima separately.

1. Introduction

Gronwall-Bellman inequality [1, 2] is an important tool in the study of existence,
uniqueness, boundedness, stability, invariant manifolds and other qualitative properties
of solutions of differential equations and integral equations. There can be found a lot
of its generalization in various cases from literatures (e.g. [3, 4, 6, 5, 7]). A significant
work was made by Bihari [8] for the integral inequality

u(t) � c+
∫ t

0
g(s)ω(u(s))ds, t � 0, (1.1)

where c > 0 is a constant, g is continuous and nonnegative function and ω is contin-
uous and nondecreasing positive function. Replacing t with a function α(t) in (1.1),
Lipovan [9] investigated the retarded integral inequality

u(t) � c+
∫ t

t0
f (s)ω(u(s))ds+

∫ α(t)

α(t0)
g(s)ω(u(s))ds, t0 � t < t1.

Their results were further generalized by Agarwal, Deng and Zhang [10] in 2005 to the
inequality

u(t) � a(t)+
n

∑
i=1

∫ αi(t)

αi(t0)
fi(t,s)ωi(u(s))ds, t0 � t < t1,
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where the constant c is replaced with a function a(t) and fi ’s are continuous func-
tions, ωi ’s are continuous and nondecreasing positive functions, αi ’s are continuously
differentiable and nondecreasing functions. Another aspect of integral inequalities is to
consider the unknown u composited with a given function on the left hand side, which
has been developed (see [11, 12, 13, 14, 15]) since Ou-Yang (called Ou-Iang in some
references) [16] discussed the inequality

u2(t) � c2 +2
∫ t

0
f (s)u(s)ds, t � 0, (1.2)

where f is a nonnegative continuous function and c is a nonnegative constant. On the
basis of discussion (see in [3, 17, 11, 19, 18]) on integral inequalities in multi-variables,
for example,

u(x,y) � c+
∫ x

0

∫ y

0
b(s,t)ω(u(s,t))dtds,

Wang [19] generalized the idea of [10] to the inequality

up(x,y) � c(x,y)+
n

∑
i=1

∫ bi(x)

bi(x0)

∫ ci(y)

ci(y0)
fi(x,y,s, t)ωi(u(s,t))dtds,

where c(x,y) is a function, bi ’s and ci ’s are continuously differentiable and nonde-
creasing functions, all fi ’s are continuous and nonnegative functions.

Along with the development of automatic control theory and its applications to
computational mathematics and modeling, attentions were also attracted to integral in-
equalities with the maxima of the unknown function. Actually, many problems in the
control theory can be modeled in the form of differential equations with the maxima of
the unknown function ([22, 20, 21]). For example, the equation describing the work of
the regulator ([23]) can be presented as

T0u
′(t)+u(t)+q max

s∈[t−h,t]
u(s) = f (t), (1.3)

where T0 and q are constants. Equations involving maxima of unknown function are
called differential equations with maxima [22, 20, 21]. In 2010 Golev [20] considered
the following initial value problem{

x′(t) = f (t,x(t), max
s∈[t−h,t]

x(s)), t ∈ [0,t1),

x(t) = μ(t), t ∈ [−h,0].
(1.4)

Such a problem again requires a new type of integral inequalities as a tool to investigate
its qualitative properties. There have been given some results for integral inequalities
containing the maxima of the unknown function ([25, 24, 26, 27]). Concretely, in 2010
Hristova and Stefanova [25] discussed the following system of integral inequalities

u(t) � a(t)+q1(t)
∫ t
t0

[
p1(s)u(s)+ p2(s) max

ξ∈[s−h,s]
u(ξ )

]
ds

+q2(t)
∫ α(t)

α(t0)

[
p3(s)u(s)+ p4(s) max

ξ∈[s−h,s]
u(ξ )

]
ds, t ∈ [t0, t1),

u(t) � ψ(t), t ∈ [α(t0)−h,t0].

(1.5)
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where a is a continuous and nondecreasing positive function, pi ’s and ψ are nonneg-
ative continuous functions, α is a nondecreasing function, qi(t) � 1 are continuous
functions. Recently, Henderson and Hristova [26] considered the following system of
integral inequalities

ϕ(u(t)) � a(t)+
∫ t
t0

[
p1(s)ω(u(s))+ p2(s)ω( max

ξ∈[s−h,s]
u(ξ ))

]
ds

+
∫ α(t)

α(t0)

[
p3(s)ω(u(s))+ p4(s)ω( max

ξ∈[s−h,s]
u(ξ ))

]
ds, t ∈ [t0, t1),

u(t) � ψ(t), t ∈ [α(t0)−h,t0],

(1.6)

where a , pi ’s, ω , ϕ and ψ are nonnegative continuous functions and α is a nonneg-
ative continuously differentiable and nondecreasing function. They require that both
a(t) � 1 and α are nondecreasing, ϕ is strictly increasing such that lim

t→∞
ϕ(t) = ∞ , and

ω satisfies the following: (i) ω is nondecreasing on [0,∞) and positive on (0,∞) , (ii)
ω(tx) � tω(x) for all 0 � t � 1 and all x > 0, and (iii)

∫ ∞
1 dx/ω(x) = ∞ .

In this paper we generally consider the system of integral inequalities

ϕ(u(t)) � a(t)+
m
∑
i=1

∫ αi(t)
αi(t0) fi(t,s)ωi(u(s))ds

+
m+n
∑

j=m+1

∫ α j(t)
α j(t0) f j(t,s)ω j

(
max

ξ∈[s−h,s]
g(u(ξ ))

)
ds, t ∈ [t0, t1),

u(t) � ψ(t), t ∈ [J(t0)−h, t0],

(1.7)

where a , fi ’s, ωi ’s and g are nonnegative continuous functions, αi ’s are nonnegative
continuously differentiable and nondecreasing functions and J(t0) := min

1�i�m+n
αi(t0) .

As required in previous works ([25, 24, 26]), we suppose that 0 � αi(t) � t , h > 0 is
a constant and ωi ’s are definitely positive, i.e., ωi(s) > 0 for s > 0. In this paper we
require neither monotonicity of a , ωi ’s, fi ’s and g nor a(t) � 1. We monotonize those
ωi ’s to make a sequence of functions in which each possesses stronger monotonicity
than previous one so as to give an estimation for the unknown function. We can use our
result to discuss inequalities (1.5) and (1.6), giving the stronger results under weakder
conditions. Finally, we apply our result to prove boundedness of solutions for a differ-
ential equation with maxima and an integral equation with maxima separately.

2. Main result

Consider the system (1.7) of integral inequalities with t0 < t1 in R+ := [0,∞) .
Suppose that

(H1) all αi : [t0, t1) → R+ (i = 1,2, . . . ,m + n) are continuously differentiable and
nondecreasing such that αi(t) � t on [t0,t1) ;

(H2) g,ϕ : R+ → R+ and ψ : [J(t0)− h,t0] → R+ are continuous functions, ϕ is
strictly increasing such that lim

t→∞
ϕ(t) = ∞ ;
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(H3) all fi(t,s)( i = 1,2, . . . ,m+n ) are continuous and nonnegative functions on [t0,t1)
× [J(t0), t1) ;

(H4) all ωi ( i = 1,2, . . . ,m+n ) are continuous and positive on R+ ;

(H5) a(t) is continuous and nonnegative function on [t0, t1) .

THEOREM 2.1. Suppose that (H1 -H5) hold, max
s∈[J(t0)−h,t0]

ψ(s) � ϕ−1(a(t0)) , and

u ∈C([J(t0)−h, t1),R+) satisfies system (1.7) of integral inequalities. Then

u(t) � ϕ−1
{

W−1
m+n

(
Wm+n(rm+n(t))+

∫ αm+n(t)

αm+n(t0)
max

ι∈[t0,t]
fm+n(ι,s)ds

)}
(2.1)

for all t ∈ [t0,T ] , where W−1
i is the inverse of the function

Wi(u) :=
∫ u

ui

dx
ω̃i(ϕ−1(x))

, u � ui, i = 1, . . . ,m+n, (2.2)

ui > 0 is a given constant, ω̃i is defined recursively by

ω̃1(t) := max
τ∈[0,t]

{ω1(τ)},

ω̃i+1(t) := max
τ∈[0,t]

{
ωi+1(τ)
ω̃i(τ)

}
ω̃i(t), i = 1,2, . . . ,m−1,

ω̃m+1(t) := max
τ∈[0,t]

⎧⎨
⎩

ω̂m+1( max
s∈[0,τ]

{g(s)})
ω̃m(τ)

⎫⎬
⎭ ω̃m(t),

ω̃ j+1(t) := max
τ∈[0,t]

⎧⎨
⎩

ω̂ j+1( max
s∈[0,τ]

{g(s)})
ω̃ j(τ)

⎫⎬
⎭ ω̃ j(t), j = m+1, . . . ,m+n−1,

ω̂ j(t) := max
τ∈[0,t]

{ω j(τ)}, j = m+1, . . . ,m+n,

ri(t) is defined by r1(t) := max
τ∈[t0,t]

{a(τ)} and

ri+1(t) := W−1
i

(
Wi(ri(t))+

∫ αi(t)

αi(t0)
max

ι∈[t0,t]
fi(ι,s)ds

)
, i = 1,2, . . . ,m+n−1,

(2.3)
and T < t1 is the largest number such that

Wi(ri(T ))+
∫ αi(T )

αi(t0)
max

ι∈[t0,T ]
f (ι,s)ds �

∫ ∞

ui

dz
ω̃i(ϕ−1(z))

, i = 1,2,3, . . . ,m+n.

(2.4)
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For the special choice that n = m = 2, ωi(s) = s , i = 1,2,3,4, ϕ(s) = s , f1(t,s) =
q1(t)p1(s) , f2(t,s) = q2(t)p3(s) , f3(t,s) = q1(t)p2(s) , f4(t,s) = q2(t)p4(s) , α1(s) =
α3(s) = s and α2(s) = α4(t) = α(s) , where pi , qi are continuous and nonnegative
functions and α is nonnegative continuously differentiable and nondecreasing func-
tions, our Theorem 2.1 gives an estimate for the unknown u in system (1.5). Unlike
[25] we require neither the monotonicity of a nor the condition qi(t) � 1, i = 1,2. In
the special case that n = m = 2, ωi(s) = ω(s) , fi(t,s) = pi(s) , i = 1,2,3,4, g(s) = s ,
α1(t) = α3(t) = t , α2(t) = α4(t) = α(t) , system (1.7) is in the form of (1.6). Obvi-
ously, our Theorem 2.1 is applicable to more general forms than Theorem 6 in [26].
Even if ωi(s) is enlarged to max

1�i�m+n
ωi(s) such that (1.7) is changed into the form of

(1.6) where m = n = 2, our theorem gives a finer estimate. For example, the system of
inequalities

u(t) � 3+2
∫ t
1 s

√
u(s)+1ds+2

∫√
t

1
ts

t+1 ( max
ξ∈[s−h,s]

u(ξ )+1)ds, t ∈ [1,t1),

u(t) � t +2, t ∈ [1−h,1],
(2.5)

implies that

u(t) � 3+2
∫ t
1 s(u(s)+1)ds+2

∫√
t

1 s( max
ξ∈[s−h,s]

u(ξ )+1)ds, t ∈ [1, t1),

u(t) � t +2, t ∈ [1−h,1].
(2.6)

by enlarging
√

s+1 and t/(t +1) to s+1 and 1 respectively. Applying our Theorem
2.1, we obtain

u(t) � t4 +6t2 +9
4

et , t ∈ [1, t1). (2.7)

On the other hand, Theorem 6 of [26] gives from (2.6) that

u(t) � 4et2+t−2, t ∈ [1, t1). (2.8)

Clearly, (2.7) is sharper than (2.8) for large t .
As in [28], we say μ1 ∝ μ2 for μ1,μ2 : A ⊂ R → R\ {0} if μ2(s)/μ1(s) is non-

decreasing on A . In order to prove the theorem, we need the following Lemma.

LEMMA 1. Suppose that

(C1) all αi : [t0, t1) → R+ (i = 1,2, . . . ,m + n) are continuously differentiable and
nondecreasing such that αi(t) � t on [t0,t1);

(C2) ψ ∈C([J(t0)−h,t0],R+) , pi ∈C([t0,t1),R+) for i = 1,2, . . . ,m+n;

(C3) all hi (i = 1,2, . . . ,m + n) are continuous and nondecreasing on R+ and are
positive on (0,∞) such that h1 ∝ h2 ∝ . . . ∝ hm+n ;

(C4) a(t) is continuously differentiable in t and nonnegative on [t0,t1) , max
s∈[J(t0)−h,t0]

ψ(s)

� a(t0) .
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If u ∈C([J(t0)−h, t1),R+) satisfies the system of inequalities

u(t) � a(t)+
m
∑
i=1

∫ αi(t)
αi(t0)

pi(s)hi(u(s))ds

+
m+n
∑

j=m+1

∫ α j(t)
α j(t0)

p j(s)h j

(
max

ξ∈[s−h,s]
u(ξ )

)
ds, t ∈ [t0,t1),

u(t) � ψ(t), t ∈ [J(t0)−h,t0],

(2.9)

then

u(t) � H−1
m+n

(
Hm+n(r̂m+n(t))+

∫ αm+n(t)

αm+n(t0)
pm+n(s)ds

)
(2.10)

for all t ∈ [t0,T1] , where H−1
i is the inverse of the function

Hi(u) :=
∫ u

ui

dx
hi(x)

, u � ui > 0, i = 1,2, . . . ,m+n, (2.11)

r̂m+n(t) is defined by r̂1(t) := a(t0)+
∫ t
t0
|a′(s)|ds and

r̂i+1(t) := H−1
i

(
Hi(r̂i(t))+

∫ αi+1(t)

αi+1(t0)
pi(s)ds

)
, i = 1,2, . . . ,m+n−1, (2.12)

and T1 < t1 is the largest number such that

Hi(r̂i(T1))+
∫ αi(T1)

αi(t0)
pi(s)ds �

∫ ∞

ui

dz
hi(z)

, i = 1,2,3, . . . ,m+n. (2.13)

Proof. From (2.12) we see that r̂1(t) is differentiable and nondecreasing on [t0,t1)
and r̂1(t) = a(t0)+

∫ t
t0
|a′(s)|ds � a(t) , r̂1(t0) = a(t0) . From (2.9) we get

u(t) � r̂1(t)+
m
∑
i=1

∫ αi(t)
αi(t0) pi(s)hi(u(s))ds

+
m+n
∑

j=m+1

∫ α j(t)
α j(t0)

p j(s)h j

(
max

ξ∈[s−h,s]
u(ξ )

)
ds, t ∈ [t0,t1),

u(t) � ψ(t), t ∈ [J(t0)−h,t0].

(2.14)

Define a function z(t) : [J(t0)−h,t1) → R+ by

z(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r̂1(t)+
m
∑
i=1

∫ αi(t)
αi(t0)

pi(s)hi(u(s))ds

+
m+n
∑

j=m+1

∫ α j(t)
α j(t0) p j(s)h j

(
max

ξ∈[s−h,s]
u(ξ )

)
ds, t ∈ [t0,t1),

r̂1(t0), t ∈ [J(t0)−h,t0].

The function z(t) is nondecreasing and the inequality

u(t) � z(t) (2.15)
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holds for t ∈ [J(t0)−h,t1) . Note that max
s∈[t−h,t]

z(s) = z(t) for t ∈ [J(t0), t1) . Then from

(2.14), (2.15) and the definition of z(t) , we get for t ∈ [t0, t1)

z(t) � r̂1(t)+
m

∑
i=1

∫ αi(t)

αi(t0)
pi(s)hi(u(s))ds+

m+n

∑
j=m+1

∫ α j(t)

α j(t0)
p j(s)h j

(
max

ξ∈[s−h,s]
u(ξ )

)
ds,

� r̂1(t)+
m

∑
i=1

∫ αi(t)

αi(t0)
pi(s)hi(z(s))ds+

m+n

∑
j=m+1

∫ α j(t)

α j(t0)
p j(s)h j(z(s))ds. (2.16)

Then, from (2.16) we obtain (2.10) by Theorem 2.1 of [10], where we choose fi(t,s) =
pi(s) , a(t) = r̂1(t) and ωi(t) = hi(t) , i = 1,2, . . . ,m+n . This completes the proof. �

Proof of Theorem 2.1. First of all, we monotonize some given functions fi , ωi ,
g , a in system (1.7) of integral inequalities. Let

g̃(t) := max
τ∈[0,t]

{g(τ)}, t � 0, ã(t) := max
τ∈[t0,t]

{a(τ)}, t � t0 (2.17)

ω̂ j(t) := max
τ∈[0,t]

{ω j(τ)}, t � 0, j = m+1, . . . ,m+n. (2.18)

Consider a sequence of functions ωi(t) , which can be calculated recursively by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω̃1(t) := max
τ∈[0,t]

{ω1(τ)}, t � 0,

ω̃i+1(t) := max
τ∈[0,t]

{
ωi+1(τ)

ω̃i(τ)

}
ω̃i(t), t � 0, i = 1,2, . . . ,m−1,

ω̃m+1(t) := max
τ∈[0,t]

{
ω̂m+1(g̃(τ))

ω̃m(τ)

}
ω̃m(t), t � 0,

ω̃ j+1(t) := max
τ∈[0,t]

{
ω̂ j+1(g̃(τ))

ω̃ j(τ)

}
ω̃ j(t), t � 0, j = m+1, . . . ,m+n−1.

(2.19)

Obviously, ω̃i ’s are nondecreasing. From (2.2) we observe that the function Wi is
strictly increasing. Thus its inverse W−1

i is well defined, continuous and increasing in
its corresponding domain. The sequence {ω̃i(t)} defined in (2.19) consists of nonde-
creasing nonnegative functions on R+ and satisfies

ωi(t) � ω̃i(t), i = 1,2, . . . ,m,

ωi(t) � ω̂i(t), i = m+1,2, . . . ,m+n,

ω̂i(g̃(t)) � ω̃i(t), i = m+1, . . . ,m+n. (2.20)

Moreover,

ω̃i ∝ ω̃i+1, i = 1,2, . . . ,m+n (2.21)

because the ratio ω̃i+1/ω̃i , i = 1,2, . . . ,m+n , are all nondecreasing. Furthermore, let

f̃i(t,s) := max
ι∈[t0,t]

fi(ι,s), (2.22)
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which is nondecreasing in t for each fixed s and satisfies f̃i(t,s)� fi(t,s) � 0 for all i =
1,2, . . . ,m+n. We note that ã(t) � a(t) and f̃i(t,s) � fi(t,s) and they are continuous
and nondecreasing in t . From the monotonicity of g̃(t) we obtain the inequality

max
ξ∈[s−h,s]

g(u(ξ )) � max
ξ∈[s−h,s]

g̃(u(ξ )) � g̃( max
ξ∈[s−h,s]

u(ξ )), ∀s ∈ [J(t0), t1). (2.23)

From (1.7) and the definition of f̃i(t,s) we get

ϕ(u(t)) � ã(t)+
m

∑
i=1

∫ αi(t)

αi(t0)
f̃i(t,s)ωi(u(s))ds

+
m+n

∑
j=m+1

∫ α j(t)

α j(t0)
f̃ j(t,s)ω j

(
max

ξ∈[s−h,s]
g(u(ξ ))

)
ds, t ∈ [t0,t1),

u(t) � ψ(t), t ∈ [J(t0)−h,t0]. (2.24)

Consider the auxiliary system of inequalities with (2.24)

ϕ(u(t)) � ã(σ)+
m

∑
i=1

∫ αi(t)

αi(t0)
f̃i(σ ,s)ωi(u(s))ds

+
m+n

∑
j=m+1

∫ α j(t)

α j(t0)
f̃ j(σ ,s)ω j

(
max

ξ∈[s−h,s]
g(u(ξ ))

)
ds (2.25)

for all t ∈ [t0,σ ] , where σ is chosen arbitrarily such at t0 � σ � T . Having u(t) �
ψ(t) , t ∈ [J(t0)−h, t0] and (2.25), we claim

u(t) � ϕ−1
{

W−1
m+n

(
Wm+n(r̃m+n(σ ,t))+

∫ αm+n(t)

αm+n(t0)
f̃m+n(σ ,s)ds

)}
(2.26)

for all t0 � t � σ � T3 , where

r̃1(σ , t) := ã(σ),

r̃i+1(σ , t) := W−1
i

(
Wi(r̃i(σ ,t))+

∫ αi(t)

αi(t0)
f̃i(σ ,s)ds

)
, i = 1,2, . . . ,m+n−1, (2.27)

and T3 < t1 is the largest number such that

Wi(r̃i(σ ,T3))+
∫ αi(T3)

αi(t0)
fi(σ ,s)ds �

∫ ∞

ui

dz
ω̃i(ϕ−1(z))

, i = 1,2,3, . . . ,m+n. (2.28)

Notice that T � T3 . In fact, Wi is strictly increasing by (2.2), so its inverse W−1
i is

continuous and increasing in its corresponding domain by (2.2). It follows from (2.22)
and (2.27) that f̃i(σ ,s) and r̃i(σ ,t) are nondecreasing in σ . Thus, T3 satisfying (2.28)
gets smaller as σ is chosen larger. In particular, T3 satisfies the same (2.4) as T when
σ = T . From (2.23), (2.25) and the definitions of g̃(t) , ω̃i(t) and ω̂i(t) , we obtain

ϕ(u(t)) � ã(σ)+
m

∑
i=1

∫ αi(t)

αi(t0)
f̃i(σ ,s)ωi(u(s))ds

+
m+n

∑
j=m+1

∫ α j(t)

α j(t0)
f̃ j(σ ,s)ω̂ j

(
g̃( max

ξ∈[s−h,s]
u(ξ ))

)
ds
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� ã(σ)+
m

∑
i=1

∫ αi(t)

αi(t0)
f̃i(σ ,s)ω̃i(u(s))ds+

m+n

∑
j=m+1

∫ α j(t)

α j(t0)
f̃ j(σ ,s)

×ω̃ j

(
max

ξ∈[s−h,s]
u(ξ )

)
ds, t ∈ [t0,σ ],

u(t) � ψ(t), t ∈ [J(t0)−h, t0]. (2.29)

Notice that max
s∈[J(t0)−h,t0]

ψ(s) � ϕ−1(ã(σ)) because max
s∈[J(t0)−h,t0]

ψ(s) � ϕ−1(a(t0)) and

a(t0) = ã(t0) � ã(σ) . Define a function z(t) : [J(t0)−h,σ ]→ R+ such that

z(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ã(σ)+
m
∑
i=1

∫ αi(t)
αi(t0) f̃i(σ ,s)ω̃i(u(s))ds

+
m+n
∑

j=m+1

∫ α j(t)
α j(t0) f̃ j(σ ,s)ω̃ j

(
max

ξ∈[s−h,s]
u(ξ )

)
ds, t ∈ [t0,σ ],

ã(σ), t ∈ [J(t0)−h, t0].

Clearly, z(t) is nondecreasing. By (2.29) and the definition of z(t) we have

u(t) � ϕ−1(z(t)), t ∈ [J(t0)−h,σ ]. (2.30)

Since z(t) is nondecreasing and ϕ(t) is strictly increasing, from (2.30) we obtain

max
ξ∈[s−h,s]

u(ξ ) � max
ξ∈[s−h,s]

ϕ−1(z(ξ )) � max
ξ∈[s−h,s]

ϕ−1(z(s))

= ϕ−1( max
ξ∈[s−h,s]

z(ξ )), s ∈ [J(t0),σ ]. (2.31)

It follows from (2.30), (2.31) and the definition of z(t) that

z(t) � ã(σ)+
m
∑
i=1

∫ αi(t)
αi(t0)

f̃i(σ ,s)ω̃i(ϕ−1(u(s)))ds

+
m+n
∑

j=m+1

∫ α j(t)
α j(t0) f̃ j(σ ,s)ω̃ j

(
ϕ−1( max

ξ∈[s−h,s]
u(ξ ))

)
ds,t ∈ [t0,σ ],

z(t) � ã(σ), t ∈ [J(t0)−h,t0].

(2.32)

In order to demonstrate the basic condition of monotonicity, let b(t) := ϕ−1(t) ,
which is clearly a continuous and nondecreasing function on R+ . Thus, for each i ,
ω̃i(b(t)) is continuous and nondecreasing on R+ and ω̃i(b(t))> 0 for t > 0. Moreover,
since ω̃i(t) ∝ ω̃i+1(t) , we see that the ratio ω̃i+1(b(t))/ω̃i(b(t)) is also a continuous
and nondecreasing function on R+ and postive on the (0,∞) , implying that ω̃i(b(t)) ∝
ω̃i+1(b(t)) for i = 1,2, . . . ,m+n−1. By Lemma 1 and (2.32), we have

u(t) � W−1
m+n

(
Wm+n(r̃m+n(σ ,t))+

∫ αm+n(t)

αm+n(t0)
f̃m+n(σ ,s)ds

)
(2.33)

for t0 � t � σ � T3 . It follows from (2.30) and (2.33) that

u(t) � ϕ−1
{

W−1
m+n

(
Wm+n(r̃m+n(σ ,t))+

∫ αm+n(t)

αm+n(t0)
f̃m+n(σ ,s)ds

)}
(2.34)
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for t0 � t � σ � T3 . This proves (2.26).
Finally, from (1.7) we have

ϕ(u(σ)) � ã(σ)+
m

∑
i=1

∫ αi(σ)

αi(t0)
f̃i(σ ,s)ω̃i(u(s))ds+

m+n

∑
j=m+1

∫ α j(σ)

α j(t0)
f̃ j(σ ,s)

×ω̃ j

(
max

ξ∈[s−h,s]
u(ξ )

)
ds,

u(t) � ψ(t), t ∈ [J(t0)−h,t0],

namely, the auxiliary system of integral inequalities (2.25) hold for t = σ . By (2.26),
we get for σ ∈ [t0,T ]

u(σ) � ϕ−1
{

W−1
m+n

(
Wm+n(r̃m+n(σ ,σ))+

∫ αm+n(σ)

αm+n(t0)
f̃m+n(σ ,s)ds

)}

� ϕ−1
{

W−1
m+n

(
Wm+n(rm+n(σ))+

∫ αm+n(σ)

αm+n(t0)
f̃m+n(σ ,s)ds

)}
,

where we apply the facts that r̃(σ ,σ) = r(σ) and T3 = T , which can be easily verified
and found in the sentences after (2.4) respectively. This proves (2.1) because σ is
arbitrarily chosen. This completes the proof. �

Remark that T is defined by (2.4). In particular, (2.1) is true for all t ∈ [t0,t1)
when all ω̃i ( i = 1,2, . . . ,m + n ) and ϕ satisfy

∫ ∞
ui

ds
ω̃i(ϕ−1(s)) = ∞ . In particular, we

have the following:

COROLLARY 2.2. Suppose that (H1 -H5) hold, and u∈C(J(t0)−h, t1),R+) sat-
isfies

ϕ(u(t)) � c+
m
∑
i=1

∫ αi(t)
αi(t0) fi(t,s)ωi(u(s))ds

+
m+n
∑

j=m+1

∫ α j(t)
α j(t0) f j(t,s)ω j

(
max

ξ∈[s−h,s]
g(u(ξ ))

)
ds, t ∈ [t0, t1),

u(t) � ψ(t), t ∈ [J(t0)−h,t0],

(2.35)

where c � 0 is a constant. Then

u(t) � ϕ−1
{

W−1
m+n

(
Wm+n(rm+n(t))+

∫ αm+n(t)

αm+n(t0)
f̃m+n(t,s)ds

)}
(2.36)

for all t ∈ [t0, t3) , where W−1
i is the inverse of Wi , Wi is defined in (2.2), r i(t) is

defined by r 1(t) := ϕ(M) and

r i+1(t) := W−1
i

(
Wi(r i(t))+

∫ αi(t)

αi(t0)
f̃i(t,s)ds

)
, i = 1,2, . . . ,m+n−1, (2.37)
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M := max(maxs∈[J(t0)−h,t0] ψ(s),ϕ−1(c)) , t3 < t1 is the largest number such that

Wi(ri(t3))+
∫ αi(t3)

αi(t0)
fi(t3,s)ds �

∫ ∞

ui

dz
ω̃i(ϕ−1(z))

, i = 1,2,3, . . . ,m+n, (2.38)

and ω̃i and f̃i are defined by (2.19) and (2.22) respectively.

Proof. From (2.35) and the definition of M we get

ϕ(u(t)) � ϕ(M)+
m

∑
i=1

∫ αi(t)

αi(t0)
fi(t,s)ωi(u(s))ds

+
m+n

∑
j=m+1

∫ α j(t)

α j(t0)
f j(t,s)ω j

(
max

ξ∈[s−h,s]
g(u(ξ ))

)
ds, t ∈ [t0,t1),

u(t) � ψ(t), t ∈ [J(t0)−h,t0]. (2.39)

Then, from (2.39) we obtain (2.36) by our Theorem 2.1, where we choose a(t) ≡ M .
This completes the proof. �

3. Applications

In this section, we apply our result to prove boundedness of solutions for a differ-
ential equation with the maxima and an integral equation with maxima separately.

3.1. Differential equation with the maxima

Consider a system of differential equations with maxima{
x′(t) = F(t,x(t), max

s∈[β (t),α(t)]
g(x(s))), t � t0,

x(t) = ψ1(t), t ∈ [α(t0)−h,t0],
(3.1)

where ψ1 ∈C([α(t0)−h,t0],R) , F ∈C(R+ ×R
2,R) , α,β ∈C1([t0,∞),R+) , α(t) is

a nondecreasing function, β (t) � t , α(t) � t and 0 < α(t)−β (t) � h for t � t0 , and
both t0 � 0 and h > 0 are constants.

Equation (3.1) is more general than the equation considered in Section 3 of [24]
such that results of integral inequalities obtained in [24] do not work. We will give an
estimate for solutions of system (3.1).

COROLLARY 3.1. Suppose in system (3.1) that

|F(t,x,y)| � h1(t)μ1(|x|)+h2(t)μ2(|y|), (3.2)

where hi ∈C([t0,∞),R+) , g∈C([0,∞),R+) and μi ∈C(R+,(0,∞)) such that μi(u) >
0 for u > 0 , i = 1,2 . For given u1 > 0 and u2 > 0 , let

Q1(u) :=
∫ u

u1

ds/ max
τ∈[0,s]

{μ1(τ)}, u � u1,
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Q2(u) :=
∫ u

u2

ds/{max
τ∈[0,s]

{μ̃2(g̃(τ))/ max
τ1∈[0,τ]

{μ1(τ1)}} max
τ∈[0,s]

{μ1(τ)}}, u � u2,

g̃(t) := max
s∈[0,t]

{g(s)}, t � 0, μ̃2(t) := max
s∈[0,t]

{μ2(s)}, t � 0.

Then every solution x(t,t0,ψ1) of system (3.1) has the estimate

|x(t, t0,ψ1)| � Q−1
2

(
Q2(γ2(t))+

∫ t

t0
h2(s)ds

)
, ∀t ∈ [t0,t∗], (3.3)

where γi(t) are defined by γ1(t) := maxs∈[α(t0)−h,t0] |ψ1(s)| and

γ2(t) := Q−1
1

(
Q1(γ1(t))+

∫ t

t0
h1(s)ds

)
and t∗ is the largest number such that

Q1(γ1(t∗))+
∫ t∗

t0
h1(s)ds �

∫ ∞

u1

ds
max

τ∈[0,s]
{μ1(τ)} ,

Q2(r2(t∗))+
∫ t∗

t0
h2(s)ds �

∫ ∞

u2

ds

max
τ∈[0,s]

{ μ̃2(g̃(τ))
max

τ1∈[0,τ]
μ1(τ1)

} max
τ∈[0,s]

{μ1(τ)}
. (3.4)

Proof. Let M = maxs∈[α(t0)−h,t0] |ψ1(s)| and x(t) := x(t,t0,ψ1) , the solution of
system (3.1) defined for all t � α(t0)−h . Function x(t) satisfies the integral equation

x(t) = ψ1(t0)+
∫ t

t0
F(s,x(s), max

ξ∈[β (s),α(s)]
g(x(ξ )))ds, t � t0,

x(t) = ψ1(t), t ∈ [α(t0)−h,t0]. (3.5)

By (3.2) we get from (3.5) that

|x(t)| � |ψ1(t0)|+
∫ t

t0
|F(s,x(s), max

ξ∈[β (s),α(s)]
x(ξ ))|ds

� M +
∫ t

t0
h1(s)μ1(x(s))ds+

∫ t

t0
h2(s)μ2(| max

ξ∈[β (s),α(s)]
g(x(ξ ))|)ds

� M +
∫ t

t0
h1(s)μ1(x(s))ds+

∫ t

t0
h2(s)μ̃2( max

ξ∈[β (s),α(s)]
g̃(|x(ξ )|))ds, t � t0,

|x(t)| � |ψ1(t)| � M, t ∈ [α(t0)−h,t0]. (3.6)

Set u(t) := |x(t)| for t ∈ [α(t0)−h,∞) and change the variable η = α(s) in the second
integral of (3.6). Then, using the inequality max

ξ∈[β (s),α(s)]
u(ξ ) � max

ξ∈[α(s)−h,α(s)]
u(ξ ) , we

obtain

u(t) � M +
∫ t

t0
h1(s)μ1(u(s))ds

+
∫ α(t)

α(t0)
h2(α−1(η))(α−1(η))′μ̃2( max

ξ∈[η−h,η]
g̃(u(ξ )))dη , t � t0,

u(t) � M, t ∈ [α(t0)−h,t0]. (3.7)
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Using our Corollary 2.2 to specified m = n = 1, ϕ(u) = u , f1(t,s) = h1(s) , α1(t) = t ,
α2(t) = α(t) , f2(t,s) = h2(s)(α−1(s))′ , c = M and ωi(u) = μi(u) , i = 1,2, from (3.7)
we obtain

|u(t)| � Q−1
2

(
Q2(γ2(t))+

∫ t

t0
h2(s)ds

)
(3.8)

for all t ∈ [t0, t∗] , where t∗ is given as in (3.4). Inequality (3.8) proves the validity of
inequality (3.3). �

Our Corollary 3.1 actually gives a condition for boundedness of solutions. Con-
cretely, observing from (3.3), we see that if∫ t

t0
h1(s)ds < ∞,

∫ t

t0
h2(s)ds < ∞ ∀t ∈ [t0, t∗],

then every solution x(t,t0,ψ) of (3.1) is bounded on [t0,t∗] .
Next, we discuss the uniqueness of solutions for system (3.1).

COROLLARY 3.2. Suppose that g(s) = s and

|F(t,x1,y1)−F(t,x2,y2)| � h1(t)μ1(|x1− x2|)+h2(t)μ2(|y1 − y2|) (3.9)

for all t ∈ [t0, t1] and all xi,yi ∈R (i=1,2), where hi ∈C([t0,∞),R+) and μi ∈C(R+,R+)
are both nondecreasing such that μi(0) = 0 , μi(u) > 0 for u > 0 , μ2/μ1 is also non-
decreasing and

∫ 1
0 ds/μi(s) = +∞ , i = 1,2 . Then system (3.1) has at most one solution

on [t0, t1] .

Proof. g(s) = s . From (3.1) we get{
x′(t) = F(t,x(t), max

s∈[β (t),α(t)]
x(s)), t � t0,

x(t) = ψ1(t), t ∈ [α(t0)−h,t0].
(3.10)

Assume that (3.10) has two different solutions u(t) = u(t,t0,ψ1) and v(t) = v(t,t0,ψ1) ,
defined for t � α(t0)−h . Then u(t) and v(t) satisfy the integral equations

u(t) = ψ1(t0)+
∫ t

t0
F(s,u(s), max

ξ∈[β (s),α(s)]
u(ξ ))ds, t ∈ [t0,t1],

v(t) = ψ1(t0)+
∫ t

t0
F(s,v(s), max

ξ∈[β (s),α(s)]
v(ξ ))ds, t ∈ [t0, t1],

and u(t) = v(t) = ψ1(t) for t ∈ [α(t0)−h,t0] . It implies that

|u(t)− v(t)| �
∫ t

t0
|F(s,u(s), max

ξ∈[β (s),α(s)]
u(ξ ))−F(s,v(s), max

ξ∈[β (s),α(s)]
v(ξ ))|ds

�
∫ t

t0
h1(s)μ1(|u(s)− v(s)|)ds

+
∫ t

t0
h2(s)μ2(| max

ξ∈[β (s),α(s)]
u(ξ )− max

ξ∈[β (s),α(s)]
v(ξ )|)ds
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�
∫ t

t0
h1(s)μ1(|u(s)− v(s)|)ds

+
∫ t

t0
h2(s)μ2( max

ξ∈[β (s),α(s)]
|u(ξ )− v(ξ )|)ds ∀t ∈ [t0, t1]. (3.11)

Let φ(t) := |u(t)− v(t)| for t � α(t0)−h . Noting that

max
ξ∈[β (s),α(s)]

u(ξ ) � max
ξ∈[α(s)−h,α(s)]

u(ξ ),

from (3.11) we obtain

φ(t) �
∫ t

t0
h1(s)μ1(φ(s))ds (3.12)

+
∫ α(t)

α(t0)
h2(α−1(η))(α−1(η))′μ2( max

ξ∈[η−h,η]
φ(ξ ))dη , t � t0,

φ(t) � 0, t ∈ [α(t0)−h,t0]. (3.13)

Using our Corollary 2.2 to specified m = n = 1, ϕ(u) = u , ϕ(u) = u , f1(t,s) = h1(s) ,
α1(t) = t , α2(t) = α(t) , f2(t,s) = h2(s)(α−1(s))′ , g(t) = t , c = 0, and ωi(t) = hi(t) ,
i = 1,2, from (3.12) we obtain

φ(t) � Q̂−1
2

(
Q̂2(γ 2(t))+

∫ t

t0
h2(s)ds

)
(3.14)

for all t ∈ [t0, t1] , where

Q̂1(u) :=
∫ u

1

ds
μ1(s)

, Q̂2(u) :=
∫ u

1

ds
μ2(τ)

, u � 1, (3.15)

r 1(t) := 0, (3.16)

r 2(t) := Q̂−1
1

(
Q̂1(r 1(t))+

∫ t

t0
h1(s)ds

)
. (3.17)

By the definition of Q̂i and properties of μi , noting that
∫ 1
0 ds/μi(s) = +∞ (i = 1,2) ,

we obtain
lim

u→0+
Q̂i(u) = −∞, lim

u→−∞
Q̂−1

i (u) = 0, i = 1,2. (3.18)

Since
∫ t
t0

h1(s)ds is finite on a finite interval [t0,t1] , by (3.16) we obtain

Q̂1(r 1(t))+
∫ t

t0
h1(s)ds = −∞. (3.19)

Thus, we obtain γ 2(t)= 0 from (3.17), (3.18) and (3.19) immediately. Similarly, noting
that

∫ t
t0

h2(s)ds is finite on finite interval [t0,t1] , from (3.18) we obtain

Q̂2(r 2(t))+
∫ α(t)

α(t0)
h2(s)ds = −∞. (3.20)

Thus, we conclude from (3.14), (3.18) and (3.20) that |u(t)− v(t)| � 0, which implies
that u(t) = v(t) for all t ∈ [t0,t1] . The uniqueness is proved. �
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3.2. Integral equation with maxima

Consider the system of integral equations with maxima{
xp(t) = a(t)+

∫ t
t0

f (t,s,x(s), max
ξ∈[β (s),α(s)]

x2(ξ ))ds, t � t0,

x(t) = ψ2(t), t ∈ [α(t0)−h,t0],
(3.21)

where r ∈ C([t0,R) , ψ2 : [α(t0)− h,t0] → R , f : R+ ×R
3 → R and both t0 � 0 and

h > 0 are constants. Suppose that

(a1 ) | f (t,s,x,y)|� p1(t,s)|x|q + p2(t,s)|y|
q
2 , where pi ∈C([t0,∞)× [t0,∞),R+) , pi(t,s)

is nondecreasing in t for each fixed s ;

(a2 ) α,β ∈ C1([t0,∞),R+) , α(t) is nondecreasing function, β (t) � t , α(t) � t and
0 < α(t)−β (t) � h for t � t0 ;

(a3 ) a(t) is continuous [t0,∞) and p,q are constants such that p � q > 0.

Firstly, we give an estimate for solutions of (3.21).

COROLLARY 3.3. Suppose that (a1) , (a2) and (a3) hold and

max
s∈[α(t0)−h,t0]

|ψ2(s)| � |a(t0)|
1
p .

Let x(t, t0,ϕ) be a solution of the Cauchy problem (3.21) defined for t � α(t0)− h.
Then

1) In the case p > q,

|x(t, t0,ϕ)| �
{

( max
τ∈[0,t]

{|a(τ)|}) p−q
p +

∫ t

t0
(p1(t,s)+ p2(t,s))ds

} 1
p−q

; (3.22)

2) In the case p = q,

|x(t, t0,ϕ)| � ( max
τ∈[0,t]

{|a(τ)|}) 1
p exp

(
1
p

∫ t

t0
(p1(t,s)+ p2(t,s))ds

)
, (3.23)

for t � t0 .

Proof. Let ã(t) := max
τ∈[0,t]

{|a(τ)|} . Then ã(t) is a continuous and nondecreasing

function on [t0,∞) . From (3.21) and condition (a1 ) we obtain

|x(t)|p � |a(t)|+
∫ t

t0
| f (t,s,x(s), max

ξ∈[β (s),α(s)]
x(ξ ))|ds

� ã(t)+
∫ t

t0
p1(t,s)|x(s)|qds+

∫ t

t0
p2(t,s)| max

ξ∈[β (s),α(s)]
x2(ξ )|q/2ds

� ã(t)+
∫ t

t0
p1(t,s)|x(s)|qds+

∫ t

t0
p2(t,s)( max

ξ∈[β (s),α(s)]
|x(ξ )|2)q/2ds (3.24)
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for all t � t0 . Let u(t) = |x(t)| for t ∈ [J(t0)−h,∞) . Then

up(t) � ã(t)+
∫ t

t0
p1(t,s)uq(s)ds

+
∫ t

t0
p2(t,s)( max

ξ∈[β (s),α(s)]
u2(ξ ))q/2ds, t � t0,

u(t) = |ψ2(t)|, t ∈ [α(t0)−h,t0]. (3.25)

Making the change of variables s = α−1(η) in the second integral of (3.25) and us-
ing the inequality max

ξ∈[β (s),α(s)]
u(ξ ) � max

ξ∈[α(s)−h,α(s)]
u(ξ ) , which follows from condition

(a2 ), we obtain

up(t) � ã(t)+
∫ t

t0
p1(t,s)uq(s)ds

+
∫ α(t)

α(t0)
p2(t,α−1(η))(α−1(η))′( max

ξ∈[η−h,η]
u2(ξ ))q/2dη , t � t0,

u(t) = |ψ2(t)|, t ∈ [α(t0)−h,t0]. (3.26)

Notice that max
s∈[α(t0)−h,t0]

|ψ2(s)|� (ã(t0))1/p because max
s∈[α(t0)−h,t0]

|ψ2(s)| � |a(t0)|
1
p and

|a(t0)|
1
p � (ã(t0))1/p . Using Theorem 2.1 to specified f1(t,s) = p1(t,s) , f2(t,s) =

p2(t,α−1(s))(α−1(s))′ , ω1(u) = uq , ω2(u) = uq/2 , g(u)=u2 and ϕ(u) = up , from
(3.26) we obtain that

1) if p > q then

u(t) �
{

(ã(t))
p−q
p +

p−q
p

∫ t

t0
(p1(t,s)+ p2(t,s))ds

} 1
p−q

, t � t0;

2) if p = q then

u(t) � (ã(t))1/p exp

(
1
p

∫ t

t0
(p1(t,s)+ p2(t,s))ds

)
, t � t0.

This completes the proof. �
Our Corollary 3.3 actually gives a condition of boundedness for solutions. Con-

cretely, observing from (3.22) and (3.23), we see that if

ã(t) < ∞,

∫ t

t0
(p1(t,s)+ p2(t,s))ds < ∞ ∀t ∈ [t0,∞),

then every solution x(t,t0,ψ) of (3.21) is bounded on [t0,∞) .
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