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(Communicated by D. Hinton)

Abstract. A new version of the well-known Lyapunov-type inequality for n-dimensional quasi-
linear systems is obtained. The results of this paper generalize some previous results on this
topic.

1. Introduction

The well-known Lyapunov inequality for second-order linear differential equation

x′′ +q(t)x = 0 (1)

states that if q(t) � 0 is continuous and equation (1) has a nonzero solution x(t) satis-
fying the boundary condition:

x(a) = x(b) = 0, x(t) �≡ 0, t ∈ (a, b)

then ∫ b

a
q(t)dt >

4
b−a

.

This result has found many applications in the study of various properties of solu-
tions of differential equations such as oscillation theory, disconjugacy and eigenvalue
problems. Also, there have been many proofs and generalizations of the Lyapunov
inequality. For example, we refer to the papers [1–8] and the references therein. How-
ever,until now, there have been only a few results obtained for differential systems.
Recently, De Nápoli and Pinasco [4] have obtained the following results:

THEOREM A. Consider the following (p,q)-quasilinear system:

(φp(u′))′ +h1(t)|u|α−2u|v|β = 0,

(φq(v′))′ +h2(t)|u|α |v|β−2v = 0,
(2)
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where 1 < p, q < +∞ , φp(u) = |u|p−2u and h1 , h2 are real nonnegative continuous
functions and α , β are non-negative numbers satisfying

α
p

+
β
q

= 1. (3)

If hi(t) > 0 for t ∈ [a, b] and i = 1, 2 and equation (2) has a nontrivial solution (u, v)
satisfying the boundary condition u(a) = u(b) = v(a) = v(b) = 0 , then the following
inequality holds:

2α+β � (b−a)α+β−1
(∫ b

a
h1(t)dt

)α
p
(∫ b

a
h2(t)dt

) β
q

. (4)

More recently, Çakmak and Tiryaki [1] have considered the following 2-dimensional
system:

(r1(t)φp(u′))′ + f1(t)|u|α−2u|v|β = 0,

(r2(t)φq(v′))′ + f2(t)|u|θ |v|γ−2v = 0,
(5)

where
(i) r1 , r2 , f1 , f2 are real valued continuous functions such that r1(t) > 0 and r2(t) > 0
for all t ∈ R .
(ii) the exponents satisfy 1 < p,q < +∞ and the positive parameters α,β ,θ and γ
yield α

p + β
q = 1 and θ

p + γ
q = 1.

They have obtained the following result:

THEOREM B. If system (5) has a real nonzero solution (u(t), v(t)) such that
u(a) = u(b) = v(a) = v(b) = 0 where a, b ∈ R with a < b being consecutive zeros,
then the following inequality holds:

2θ+β �
(∫ b

a
(r1(t))

1
1−p dt

)θ (p−1)
p
(∫ b

a
(r2(t))

1
1−q dt

)β(q−1)
q
(∫ b

a
f +
1 (t)dt

)θ
p
(∫ b

a
f +
2 (t)dt

)β
q

,

(6)
where f +

i (t) = max{ fi(t), 0} for i = 1,2.

Now, in this paper, we will give a generalization of the above results to n-dimensional
quasilinear differential systems.

2. Main result and its proof

Let us consider the following n -dimensional quasilinear system:

(r1(t)φp1(x
′
1))

′ + f1(t)φq1,1(x1)ψq1,2(x2)ψq1,3(x3)ψq1,4(x4) · · ·ψq1,n(xn) = 0,

(r2(t)φp2(x
′
2))

′ + f2(t)ψq2,1(x1)φq2,2(x2)ψq2,3(x3)ψq2,4(x4) · · ·ψq2,n(xn) = 0,(
r3(t)φp3(x

′
3)
)′ + f3(t)ψq3,1(x1)ψq3,2(x2)φq3,3(x3)ψq3,4(x4) · · ·ψq3,n(xn) = 0,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
(rn(t)φpn(x

′
n))

′ + fn(t)ψqn,1(x1)ψqn,2(x2) · · ·ψqn,n−1(xn−1)φqn,n(xn) = 0,

(7)
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where 1 < pk < +∞ for k = 1,2, · · · ,n ; qi, j are nonnegative constants for i, j = 1,2, · · · ,n ;
φp(u) = |u|p−2u ; ψq(u) = |u|q for q � 0; rk ∈ C1([a, b],(0, +∞)) for k = 1,2, · · · ,n
and fk(t) ∈C[a,b] for k = 1,2, · · · ,n .

The main result of this paper is the following theorem.

THEOREM 1. Let a < b and assume that there exist nontrivial solutions (e1, e2, · · · ,en)
of the following linear homogeneous equation:

(p1 −q1,1)e1−q2,1e2−q3,1e3−·· ·−qn,1en = 0;

−q1,2e1 +(p2−q2,2)e2−q3,2e3 −·· ·−qn,2en = 0;

−q1,3e1−q2,3e2 +(p3−q3,3)e3 −·· ·−qn,3en = 0;

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
−q1,ne1−q2,ne2 −·· ·−qn−1,nen−1 +(pn−qn,n)en = 0,

(8)

where ek � 0 for k = 1,2, · · · ,n and ∑n
k=1 e2

k > 0 . Suppose that there exists a nonzero
solution (x1(t), x2(t), · · · ,xn(t)) of (7) satisfying xk(a) = xk(b) = 0 and xk(t) �≡ 0 for
k = 1,2, · · · ,n. Then we have

n

∏
k=1

(∫ b

a
f +
k (t)dt

)ek

> 2Qn
n

∏
k=1

(∫ b

a
(rk(t))

1
1−pk dt

)(1−pk)ek

, (9)

where f +
k (t) = max{ fk(t), 0} for k = 1,2, · · · ,n and Qn = ∑n

j=1 p je j.

COROLLARY 1. Assume that

n

∑
j=1

q j,k = pk, k = 1,2, · · · ,n. (10)

If there exists a nonzero solution (x1(t), x2(t), · · · , xn(t)) of (7) which satisfies xk(a) =
xk(b) = 0 and xk(t) �≡ 0 for k = 1,2, · · · ,n, then we have

n

∏
k=1

∫ b

a
f +
k (t)dt > 2Pn

n

∏
k=1

(∫ b

a
(rk(t))

1
1−pk dt

)1−pk

, (11)

where f +
k (t) = max{ fk(t), 0} for k = 1,2, · · · ,n and Pn = ∑n

j=1 p j.

3. Proof of the main result

Proof of Theorem 1. Consider the k -th equation of (7) and assume that |xk(ck)| =
maxa�t�b |xk(t)| for some ck ∈ (a, b) and for k = 1,2, · · · ,n . Then from xk(t) �≡ 0,
we see that |xk(ck)| > 0 and x′k(ck) = 0. Now from xk(a) = 0 and using the Hölder’s
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inequality, we obtain

|xk(ck)| =
∣∣∫ ck

a x′k(t)dt
∣∣

�
∫ ck
a |x′k(t)|dt =

∫ ck
a (rk(t))

− 1
pk (rk(t))

1
pk |x′k(t)|dt

�
(∫ ck

a (rk(t))
− p′k

pk dt

) 1
p′k (∫ ck

a rk(t)|x′k(t)|pkdt
) 1

pk

=
(∫ ck

a (rk(t))
1

1−pk dt

) 1
p′k (∫ ck

a rk(t)|x′k(t)|pkdt
) 1

pk ,

(12)

where p′k = pk
pk−1 . From (12), we obtain

|xk(ck)|pk �
(∫ ck

a
(rk(t))

1
1−pk dt

)pk−1 ∫ ck

a
rk(t)|x′k(t)|pkdt. (13)

Multiplying the k -th equation of (7) by xk(t) and integrating over [a, ck] and using
integration by parts, we obtain

− ∫ ck
a

(
rk(t)φpk(x

′
k(t))

)′
xk(t)dt

= −rk(t)φpk(x
′
k(t))xk(t)|ck

a +
∫ ck
a rk(t)|xk(t)|pkdt

=
∫ ck
a rk(t)|x′k(t)|pkdt

=
∫ ck
a fk(t)ψqk,1(x1(t))ψqk,2(x2(t)) · · ·φqk,k(xk(t))xk(t) · · ·ψqk,n(xn(t))dt

�
∫ ck
a f +

k (t)|x1(t)|qk,1 |x2(t)|qk,2 · · · |xk(t)|qk,k · · · |xn(t)|qk,ndt

� |x1(c1)|qk,1 |x2(c2)|qk,2 · · · |xk(ck)|qk,k · · · |xn(cn)|qk,n
∫ ck
a f +

k (t)dt.

Substituting the above inequality into (13), we obtain

1 � |x1(c1)|qk,1 |x2(c2)|qk,2 · · · |xk(ck)|qk,k−pk |xk+1(ck+1)|qk,k+1 · · · |xn(cn)|qk,n

×
(∫ ck

a (rk(t))
1

1−pk dt

)pk−1

· ∫ ck
a f +

k (t)dt.

Hence, from the above inequality, we obtain

∫ ck

a
f +
k (t)dt � |xk(ck)|pk−qk,k ∏

j �=k

|x j(c j)|−qk, j

(∫ ck

a
(rk(t))

1
1−pk dt

)1−pk

. (14)

Similarly, by using xk(b) = 0, we can show that

∫ b

ck

f +
k (t)dt � |xk(ck)|pk−qk,k ∏

j �=k

|x j(c j)|−qk, j

(∫ b

ck

(rk(t))
1

1−pk dt

)1−pk

. (15)

Since the function h(x) = x1−p is convex for x > 0 and p > 1, the Jensen’s inequality

h

(
x+ y

2

)
<

1
2

[h(x)+h(y)] ,
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implies that(∫ ck

a
(rk(t))

1
1−pk dt

)1−pk

+
(∫ b

ck

(rk(t))
1

1−pk dt

)1−pk

> 2pk

(∫ b

a
(rk(t))

1
1−pk dt

)1−pk

.

(16)
Now, (14), (15) and (16) imply that

∫ b

a
f +
k (t)dt > |xk(ck)|pk−qk,k ∏

j �=k

|x j(c j)|−qk, j2pk

(∫ b

a
(rk(t))

1
1−pk dt

)1−pk

. (17)

Raising the both sides of the inequality (17) to the power ek for each k = 1,2, · · · ,n
respectively, and multiplying the resulting inequalities side by side, we obtain

n

∏
k=1

(∫ b

a
f +
k (t)dt

)ek

>

[
n

∏
k=1

|xk(ck)|θk

]
2Qn

n

∏
k=1

[∫ b

a
(rk(t))

1
1−pk dt

](1−pk)ek

, (18)

where θk = (pk −qk,k)ek −∑ j �=k q j,ke j for k = 1,2, · · · ,n . By assumption, equation (8)
has nonzero solutions (e1,e2, · · · ,en) such that θk = 0 for k = 1,2, · · · ,n , where ek � 0
for k = 1,2, · · · ,n and at least one e j > 0 for j ∈ {1,2, · · · ,n} . Choosing one of the
solutions (e1,e2, · · · ,en) , we obtain from (18) the inequality (9). This completes the
proof of Theorem 1. �

Proof of Corollary 1. From the proof of Theorem 1, we see that condition (10)
implies that e1 = e2 = · · · = en = 1 is a nonzero solution of (8). Now Corollary 1 is a
direct consequence of Theorem 1. �

EXAMPLE 1. Consider system (2). Clearly (2) is a special case of (7) where
n = 2, r1(t) = r2(t) = 1, p1 = p , p2 = q , q1,1 = α , q1,2 = β , q2,1 = α , q2,2 = β
and f +

k (t) = hk(t) for k = 1,2. Note that the condition (8) of Theorem 1 is satisfied
if e1 = α/p,e2 = β/q and α/p+ β/q = 1. Under these conditions, we can see that
the inequality (9) of Theorem 1 reduces the inequality (4) of Theorem A. Also, if there
exists a nonzero solution (u(t),v(t)) of (2) satisfying condition u(a) = u(b) = v(a) =
v(b) = 0 and p = 2α , q = 2β , then by Corollary 1, we have the following inequality:

2p+q

(b−a)p+q−2 <

∫ b

a
f +
1 (t)dt

∫ b

a
f +
2 (t)dt,

which agrees with the inequality (4) with p = 2α and q = 2β .

EXAMPLE 2. Consider system (5). Again, (5) is a special case of (7) where n = 2,
p1 = p , p2 = q , q1,1 = α , q1,2 = β , q2,1 = θ and q2,2 = γ . Note that the condition (8)
of Theorem 1 is satisfied if e1 = θ/p , e2 = β/q and α/p+β/q = 1 and θ/p+ γ/q =
1. Hence, also in this case the inequality (9) of Theorem 1 reduces to the inequality (6)
of Theorem B. Moreover, if we assume that (i) and (ii)′ : p = α + θ , q = β + γ and
the other conditions of Theorem B hold, then we obtain from Corollary 1 the following
inequality:

2p+q
(∫ b

a
(r1(t))

1
1−p dt

)1−p(∫ b

a
(r2(t))

1
1−q dt

)1−q

<
∫ b

a
f +
1 (t)dt

∫ b

a
f +
2 (t)dt.
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EXAMPLE 3. Consider system (5) again. Assume that (i) and (ii)′′ : (p−α)(q−
γ) = β θ . Then it is easy to see that the condition (8) of Theorem 1 is satisfied if we
choose e1 = θ > 0, e2 = p−α > 0. Hence by Theorem 1 we can obtain the following
inequality:

2pθ+q(p−α)
(∫ b

a (r1(t))
1

1−p dt
)(1−p)θ (∫ b

a (r2(t))
1

1−q dt
)(1−q)(p−α)

<
(∫ b

a f +
1 (t)dt

)θ (∫ b
a f +

2 (t)dt
)p−α

.

REMARK 1. It is evident that Theorem 1 is a natural generalization of Theorem
A and Theorem B. Corollary 1 and examples 1–3 show that Theorem 1 yields new
inequalities which are not covered by Theorem A and Theorem B even for the case
n = 2.
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[5] A. TIRYAKI, M. UNAL AND D. ÇAKMAK, Lyapunov-type inequalities for nonlinear systems, J. Math.
Anal. Appl. 332 (2007), 497–511.

[6] X. YANG AND K. LO, Lyapunov-type inequality for a class of even-order differential equations, Appl.
Math. Comput. 215 (2010), 3884–3890.

[7] X. YANG, Y. I. KIM AND K. LO, Lyapunov-type inequality for a class of odd-order differential
equations, J. Compu. Appl. Math. 234 (2010), 2962–2968.

[8] X. YANG, Y. I. KIM AND K. LO, Lyapunov-type inequality for a class of quasilinear systems, Math.
Comput. Model. 53 (2011), 1162–1166.

(Received March 1, 2012) Xiaojing Yang
Department of Mathematics

Tsinghua University
Beijing 100084

China
e-mail: yangxj@mail.tsinghua.edu.cn

Yong-In Kim
Department of Mathematics

University of Ulsan
Ulsan, 680-749

Korea
e-mail: kyiode@hotmail.com

Kueiming Lo
School of Software, Tsinghua University

Key Laboratory for Information System Security
Ministry of Education of China

Beijing 100084, China
e-mail: gluo@tsinghua.edu.cn

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


