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QUASI–INVARIANT SETS FOR A CLASS OF IMPULSIVE

STOCHASTIC DIFFERENCE EQUATIONS WITH CONTINUOUS TIME

DINGSHI LI AND SHUJUN LONG

(Communicated by I. Perić)

Abstract. So far there have been few results presented on the attracting and quasi-invariant sets
for impulsive stochastic difference equations with continuous time. The main aim of this work
is to close this gap. By establishing a difference inequality with continuous time, we obtain
the attracting and quasi-invariant sets of systems under consideration. An example is given to
illustrate the theory.

1. Introduction

Difference equations with continuous time are difference equations in which the
unknown function is a function of continuous time. In practice, time is often involved as
the independent variable in difference equations with continuous time. In view of this
fact, we may refer to them as difference equations with continuous time. Difference
equations with continuous time appear as natural descriptions of observed evolution
phenomena in many branches of natural sciences [1, 2]. Deterministic and stochastic
difference equations with continuous time are very popular with researchers [3, 4, 10,
5, 6, 7, 8, 9].

However, besides the stochastic effect, an impulsive effect likewise exists in a wide
variety of evolutionary processes in which states are changed abruptly at certain mo-
ments of time, involving such fields as medicine and biology, economics, mechanics,
electronics and telecommunications. Recently, the asymptotic behaviors of impulsive
difference equations have attracted considerable attention. Many interesting results on
impulsive effect have been obtained [11, 12, 13]. In [14], some stability conditions
on impulsive stochastic difference equations with continuous time are given. However,
under impulsive perturbation, an equilibrium point sometimes does not exist in many
physical systems, especially, in nonlinear systems. Therefore, an interesting subject is
to discuss the invariant sets and the attracting sets of impulsive systems. Some signifi-
cant progress has been made in the techniques and methods of determining the invariant
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sets and attracting sets for delay difference equations, delay differential equations and
impulsive functional differential equations [16, 15, 17]. Unfortunately, the correspond-
ing problems for impulsive stochastic difference equations with continuous time have
not been considered.

Motivated by the above discussion, we here make a first attempt to arrive at results
on the invariant sets and attracting sets of impulsive stochastic difference equations with
continuous time.

2. Model description

For convenience, we introduce several notations and recall some basic definitions.
C(X ,Y ) denotes the space of continuous mappings from the topological space

X to the topological space Y . Especially, let C
Δ= C([−h,0] ,R) with a norm ‖ϕ‖ =

sup
−h�s�0

|ϕ (s)| , where h is a positive constant.

PC(J,H) =
{

ψ(t) : J → H | ψ(t) is continuous for all but at most countable points s ∈ J

and at these pointss ∈ J, ψ(s+) and ψ(s−) exist, ψ(s+) = ψ(s)
}

,

where J ⊂ R is an interval, H is a complete metric space, ψ(s+) and ψ(s−) denote
the right-hand and left-hand limit of the function ψ(s) , respectively. Especially, let

PC
Δ= PC ([−h,0] ,R) .
Let Rn be the space of n -dimensional real column vectors and R+ = [0,+∞). Let

(Ω,F ,{Ft}t�0,P) be a complete probability space with a filtration {Ft}t�0 satisfy-
ing the usual conditions (i.e, it is right continuous and F0 contains all P-null sets) . If
x(t) is an R-valued stochastic process on t ∈ [−τ −h,∞) , we let xt = x(t + s) : −h �
s � 0, which is regarded as a PC -valued stochastic process for t � −τ . ξ (t) is a
Ft -measurable stationary and mutually independent stochastic process satisfying

Eξ (t) = 0, Eξ 2(t) = 1,

where E be the mathematical expectation. Denote by PCb
F0

([−h,0] ,R) the family

of all bounded F0 -measurable, PC -valued random variables ϕ , satisfying ‖ϕ‖2
L2 =

sup
s∈[−h,0]

E|ϕ (s)|2 < ∞ .

In this paper, we mainly consider the following impulsive stochastic difference
equations with continuous time⎧⎨
⎩

x(t + τ) = F (t,x(t−hm), . . . ,x(t −h1),x(t))
+G(t,x(t−hm), . . . ,x(t −h1),x(t))ξ (t + τ), t > −τ, t �= tk,

x(t) = Hk (x(t−)) , t = tk,
(1)

with initial condition
xt = ϕt , t ∈ [−(τ +h),0],
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where m is a positive integer, h = max1�i�m hi , τ is a positive constant, F,G : [−τ,∞)×
Rm+1 → R, Hk : R → R, and for fixed t ∈ [−τ,0] , ϕt ∈ PCb

F0
([−h,0] ,R). The fixed

moments of time tk satisfy 0 < t1 < t2 < .. . , lim
k→∞

tk = ∞ .

Throughout this paper, we assume that for any ϕt ∈ PCb
F0

([−h,0] ,R), t ∈ [−τ,0] ,
there exists at least one solution of (1), which is denoted by x(t,−τ,ϕ) or xt(−τ,ϕ)
(simply x(t) and xt if no confusion should occur).

DEFINITION 2.1. The set S ⊂ PCb
F0

([−h,0] ,R) is called a quasi-invariant set of
(1), if there exists a constant k such that for any initial value ϕt ∈ S, t ∈ [−τ,0] , the
solution kxt(−τ,ϕ) ∈ S, t � −τ . Especially, if k = 1, S is called a invariant set.

DEFINITION 2.2. The set S ⊂ PCb
F0

([−h,0] ,R) is called a global attracting set

of (1), if for any initial value ϕt ∈ PCb
F0

([−h,0] ,R), t ∈ [−τ,0] , the solution xt(−τ,ϕ)
satisfies

dist(xt ,S) → 0, as t → ∞,

where
dist(ϕ ,S) = inf

ψ∈S
ρ (ϕ (s) ,ψ (s)) for ϕ ∈ PCb

F0
([−h,0] ,R),

where ρ (·, ·) is any distance in PCb
F0

([−h,0] ,R) .

DEFINITION 2.3. The zero solution of Eq. (1) is called mean square exponential
stable if there are positive constants λ and M � 1 such that for any initial condition
ϕt ∈ PCb

F0
([−h,0] ,R), t ∈ [−τ,0] ,

Ex2 (t) � M max
t∈[−τ,0]

‖ϕt‖2
L2

e−λ t , t � −τ.

Here λ is called the exponential convergence rate. Of course, conditions are needed to
ensure that the zero function is a solution of (1).

To establish the main results of system (1), we will employ the following assump-
tions.
(A1) For any t � −τ , there exist nonnegative functions a j(t), b j(t) and constants J1 ,
J2 such that

|F (t,x(t−hm), . . . ,x(t −h1),x(t))| �
m
∑
j=0

a j (t)
∣∣x(t−h j)

∣∣+ J1,

|G(t,x(t−hm), . . .x(t−h1),x(t))| �
m
∑
j=0

b j (t)
∣∣x(t−h j)

∣∣+ J2,

where h0 = 0.

(A2) sup
t�−τ

2
{
a2 (t)+b2 (t)

}
= μ < 1, where a(t) =

m
∑
j=0

a j (t) and b(t) =
m
∑
j=0

b j (t).

(A3) There exist constants dk � 1 such that∣∣Hk
(
x
(
t−k
))∣∣� dk

∣∣x(t−k )
∣∣ , k = 1,2, . . . .
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(A4) There exists constant α∗ � 0 such that

2 lndk

tk − tk−1
� α∗ < λ ∗, k = 1,2, . . . ,

where t0 = 0 and λ ∗ satisfies

0 < λ ∗ =
1

h+ τ
ln

1
μ

,

and

σ = 2
∞

∑
k=1

lndk < ∞, k = 1,2, . . . .

(A5) There exist nonnegative constants dk � 1 such that∣∣Hk
(
x
(
t−k
))∣∣� dk

∣∣x(t−k )
∣∣ .

(A6) For any t � −τ , there exist positive functions a j(t) and b j(t)such that

|F (t,x(t −hm), . . . ,x(t −h1),x(t))| �
m
∑
j=0

a j (t)
∣∣x(t −h j)

∣∣ ,
|G(t,x(i−hm), . . . ,x(t−h1),x(t))| �

m
∑
j=0

b j (t)
∣∣x(t −h j)

∣∣ , ,

where h0 = 0.

(A7) sup
t�−τ

{
a2 (t)+b2 (t)

}
= μ < 1, where a(t) =

m
∑
j=0

a j (t) and b(t) =
m
∑
j=0

b j (t).

3. Main results

In this section, we shall present the main results and complete the proof. Unlike
earlier studies, we does not make use of general methods such as Lyapunov methods,
It ô formula methods and so forth. However, we firstly establish a difference inequality
with continuous time, which plays an important role in this section, for obtaining our
desired results.

LEMMA 3.1. Suppose c j (t) ∈ R+, t � t0 � 0, sup
t�t0

{
m
∑
j=0

c j (t)

}
= η < 1 and b >

0. Let continuous function u(t) satisfy the following difference inequality with contin-
uous time:

u(t + τ) �
m

∑
j=0

c j (t)u(t−h j)+b, t � t0. (2)

(a) Then

u(t) � de−λ t +(1−η)−1b, t � t0, (3)
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provided that the initial condition satisfies

u(t) � de−λ t +(1−η)−1b, t ∈ [t0− τ −h,t0], (4)

where d ∈ R+ and λ satisfies

0 < λ � 1
h+ τ

ln
1
η

. (5)

(b) Then
u(t) � γ(1−η)−1b, t � t0, (6)

provided the initial condition

u(t) � γ(1−η)−1b, t ∈ [t0− τ −h,t0], (7)

where γ � 1 .

Proof. (a) Since η < 1, there exists a constant λ satisfying the inequality (5).
Then,

eλ (h+τ)η � 1. (8)

We first shall prove that for any positive ε :

u(t) < de−λ t +(1−η)−1b+ ε, t � t0. (9)

If (9) is not true, then there must be a positive number t∗ + τ > t0 such that

u(t∗ + τ) = de−λ (t∗+τ) + (1−η)−1b+ ε and u(t) < de−λ t +(1−η)−1b+ ε,

t ∈ [t0− τ −h,t∗+ τ). (10)

By (2), (8) and (3), we have

u(t∗ + τ) �
m

∑
j=0

c j (t∗)u(t∗ −h j)+b

<
m

∑
j=0

c j (t∗)
[
de−λ(t∗−h j) + (1−η)−1b+ ε

]
+b

� eλ (h+τ)ηde−λ (t∗+τ) + η(1−η)−1b+b+ ηε
= eλ (h+τ)ηde−λ (t∗+τ) + (1−η)−1b+ ηε
< de−λ (t∗+τ) + (1−η)−1b+ ε,

which contradicts the first inequality of (3). So (9) holds. Letting ε → 0 in (9), we can
get (3). The proof of part (a) is complete.

(b) We first shall prove that for any positive ε :

u(t) � γ(1−η)−1b+ ε, t � t0, (11)



940 DINGSHI LI AND SHUJUN LONG

If (11) is not true, then there must be a positive number t∗ + τ > t0 such that

u(t∗ + τ) = γ(1−η)−1b+ ε and u(t) < γ(1−η)−1b+ ε, t ∈ [t0− τ −h, t∗+ τ).
(12)

By (2) and (12), we have

u(t∗ + τ) �
m

∑
j=0

c j (t∗)u(t∗ −h j)+b

< γη(1−η)−1b+b+ ηε

� γ
(

η(1−η)−1b+b
)

+ ηε

< γ(1−η)−1b+ ε,

which contradicts the first inequality of (12). So (11) holds. Letting ε → 0 in (11), we
can get (6). The proof of part (b) is complete. �

THEOREM 3.1. If (A1)− (A4) hold, then

S =
{

φ ∈ PCb
F0

([−h,0] ,R)
∣∣∣‖φ‖2

L2 � eσ (1− μ)−1J
}

is a global attracting set of (1), where J = 2
(
J2
1 + J2

2

)
.

Proof. From (1), Condition (A1) , (a+b)2 � 2
(
a2 +b2

)
and the Hölder inequal-

ity , we have

Ex2 (t + τ) = EF2 (t,x(t−hm) , . . . ,x(t−h1) ,x(t))
+EG2 (t,x(t −hm) , . . . ,x(t−h1) ,x(t))

� E

(
m

∑
j=0

a j (t)
∣∣x(t −h j)

∣∣+ J1

)2

+E

(
m

∑
j=0

b j (t)
∣∣x(t−h j)

∣∣+ J2

)2

� 2E

(
m

∑
j=0

a j (t)
∣∣x(t−h j)

∣∣)2

+2E

(
m

∑
j=0

b j (t)
∣∣x(t−h j)

∣∣)2

+2
(
J2
1 + J2

2

)

� 2
m

∑
j=0

a j (t)
m

∑
j=0

a j (t)E
∣∣x(t −h j)

∣∣2 +2
m

∑
j=0

b j (t)
m

∑
j=0

b j (t)E
∣∣x(t−h j)

∣∣2 + J

= 2
m

∑
j=0

[a(t)a j (t)+b(t)b j (t)]Ex2(t−h j)+ J, t �= tk, k = 1,2, . . . . (13)

From Condition (A2) , we obtain

sup
t�−τ

2
m

∑
j=0

[a(t)a j (t)+b(t)b j (t)] = sup
t�−τ

2
{
a2 (t)+b2 (t)

}
= μ < 1. (14)
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For the initial conditions xt = ϕt , t ∈ [−τ,0], where ϕt ∈ PCb
F0

([−h,0] ,R) , we
have a positive constant K such that

Ex2 (t) � Ke−λ ∗t +(1− μ)−1J, t ∈ [−τ −h,0]. (15)

Then, all the conditions of the part (a) of Lemma 2.1 are satisfied by (13)− (15) . So,
we can obtain

Ex2 (t) � Ke−λ ∗t +(1− μ)−1J, t ∈ [0,t1) .

Suppose for all q = 1,2, . . . ,k , the inequalities

Ex2 (t) � d2
0d2

1 · · ·d2
q−1Ke−λ ∗t +d2

0d
2
1 · · ·d2

q−1(1− μ)−1J, t ∈ [tq−1, tq
)
, (16)

hold, where d0 = 1 and t0 = 0. Then from Condition (A3) and (16), we have

Ex2 (tk) = E
∣∣Hk
(
x
(
t−k
))∣∣2

� d2
k Ex2 (t−k )

� d2
0d2

1 · · ·d2
k−1d

2
kKe−λ ∗t +d2

0d
2
1 · · ·d2

k−1d
2
k (1− μ)−1J.

This, together with (16) and dk � 1, k = 1,2, . . . , leads to

Ex2 (t) � d2
0d2

1 · · ·d2
k−1d

2
kKe−λ ∗t +d2

0d
2
1 · · ·d2

k−1d
2
k (1− μ)−1J, t ∈ [tk − τ −h,tk] .

(17)
It follows from (13), (14), (17) and the part (a) of Lemma 2.1 that

Ex2 (t) � d2
0d2

1 · · ·d2
k−1d

2
kKe−λ ∗t +d2

0d
2
1 · · ·d2

k−1d
2
k (1− μ)−1J, t ∈ [tk,tk+1) .

By mathematical induction, we can conclude that

Ex2 (t) � d2
0d2

1 · · ·d2
k−1Ke−λ ∗t +d2

0d
2
1 · · ·d2

k−1(1− μ)−1J, t ∈ [tk−1, tk] , k = 1,2, . . . .
(18)

Noticing that d2
k � eα∗(tk−tk−1) and eσ =

∞
∏
k=1

d2
k < ∞ , by Condition (A4) , we can use

(18) to conclude that

Ex2 (t) � eα∗(t1−t0) · · ·eα∗(tk−1−tk−2)Ke−λ ∗t +d2
0d

2
1 · · ·d2

k−1(1− μ)−1J

� Keα∗t e−λ ∗t + eσ(1− μ)−1J

= Ke−(λ ∗−α∗)t + eσ (1− μ)−1J, t ∈ [tk−1, tk) , k = 1,2, . . . .

This implies that the conclusion holds and the proof is complete. �

THEOREM 3.2. If (A1)− (A4) hold, then

S =
{

φ ∈ PCb
F0

([−h,0] ,R)
∣∣∣‖φ‖2

L2 � γ(1− μ)−1J, γ � 1
}

is a quasi-invariant set of (1).
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Proof. For the initial conditions xt = ϕt , t ∈ [−τ,0], where ϕt ∈PCb
F0

([−h,0] ,R) ,
we have

Ex2 (t) � γ(1− μ)−1J, t ∈ [−τ −h,0] . (19)

By (19) and the part (b) of Lemma 2.1, we have

Ex2 (t) � γ(1− μ)−1J, t ∈ [t0,t1) .

Suppose for all q = 1,2, . . . ,k , the inequalities

Ex2 (t) � d2
0d2

1 · · ·d2
q−1γ(1− μ)−1J, t ∈ [tq−1,tq

)
, (20)

hold, where d0 = 1 and t0 = 0. Then from Condition (A3) and (20), we have

Ex2 (tk) = E
∣∣Hk
(
x
(
t−k
))∣∣2

� d2
k Ex2 (t−k )

� d2
0d2

1 · · ·d2
k−1d

2
k γ(1− μ)−1J.

This, together with (20) and dk � 1, k = 1,2, . . . , leads to

Ex2 (i) � d2
0d2

1 · · ·d2
k−1d

2
k γ(1− μ)−1J, t ∈ [tk − τ −h,tk] . (21)

It follows from (21) and the part (b) of Lemma 2.1 that

Ex2 (x) � d2
0d2

1 · · ·d2
k−1d

2
k γ(1− μ)−1J, t ∈ [tk,tk+1) ,

By mathematical induction, we can conclude that

Ex2 (t) � d2
0d2

1 · · ·d2
k−1γ(1− μ)−1J, t ∈ [tk−1,tk] , k = 1,2, . . . . (22)

Noticing that eσ =
∞
∏
k=1

d2
k < ∞ , by Condition (A4) , we can use (22) to conclude that

Ex2 (t) � d2
0d2

1 · · ·d2
k−1γ(1− μ)−1J

� eσ γ(1− μ)−1J, t ∈ [tk−1, tk) , k = 1,2, . . . .

This implies that the conclusion holds and the proof is complete. �

THEOREM 3.3. If (A1)− (A2) and (A5) hold, then

S =
{

φ ∈ PCb
F0

([−h,0] ,R)
∣∣∣‖φ‖2

L2 � (1− μ)−1J
}

is a invariant set and also a global attracting set of (1).

Proof. Since dk � 1, a direct calculation shows that α∗ = 0 and σ = 0 in Theorem
3.1 and Theorem 3.2. It follows from Theorem 3.1 the set S is a global attracting set of
(1). It follows from Theorem 3.2 the set S is a invariant set of (1). �
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If Hk (x(tk)) ≡ x(tk) , k = 1,2, . . . , the system (1) reduces to the following system
without impulses

x(t + τ) = F (t,x(t −hm), . . . ,x(t−hm),x(t))
+G(t,x(t−h), . . . ,x(t −hm),x(t))ξ (t + τ), t � −τ, (23)

with initial condition
xt = ϕt , t ∈ [−τ,0].

By Theorem 3.3, we can obtain the following result.

COROLLARY 3.1. If (A1) and (A2) hold, then

S =
{

φ ∈ PCb
F0

([−h,0] ,R)
∣∣∣‖φ‖2

L2
� (1− μ)−1J

}
is a invariant set and also a global attracting set of (23).

We easily observe x(t) = 0 is a solution of Eq. (1) from (A3) and (A6) . In the
following, we give the attractivity of the zero solution and the proof is similar to that of
Theorem 3.1.

THEOREM 3.4. If (A3) , (A4) , (A6) and (A7) hold, then the zero solution of Eq.
(1) is mean square exponential stable and the exponential convergence rate is equal to
λ ∗ −α∗ .

4. Example

In this section, we shall discuss an example in order to illustrate the effectiveness
of our results.

EXAMPLE 4.1. Consider the following impulsive stochastic difference equation
with continuous time:{

x(t +1) = asin(x(t))−bx(t −1)+1+ cx(t)ξ (t +1), t �= tk, t � −1,

x(tk) = edk
x
(
t−k
)
, t = tk,

(24)

where tk = tk−1 + ρk, k = 1,2, . . . , a,b,c,d are nonnegative constants and ρ is a posi-
tive constant. Thus

h = 1, τ = 1, F (t,x(t−hm) , . . . ,x(t−h1)x(t)) = asin(x(t))−bx(t−1)+1,

G(t,x(t−hm) , . . . ,x(t−h1) ,x(t)) = cx(t) , Hk (x(tk)) = edk
x
(
t−k
)
,

yielding

|F (t,x(t−hm) , . . . ,x(t −h1)x(t))| � a |x(t)|+b |x(t −1)|+1

|G(t,x(t−hm) , . . . ,x(t−h1) ,x(t))| � c |x(t)| , |Hk (x(tk))| = edk ∣∣x(t−k )∣∣ .
So, the parameters of Conditions (A1),(A2) and (A3) are as follows:

a0 (t) = a, a1 (t) = b, b0 (t) = c, b1 (t) = 0, J1 = 1, J2 = 0, t � −1.
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If μ = (a + b)2 + c2 < 1, 2 lndk
tk−tk−1

= 2dk

ρk < 1
2 ln 1

μ , k = 1,2, . . . , and σ = 2
∞
∑

k=1
lndk =

2
∞
∑

k=1
dk < ∞. Then the conditions (A1),(A2) , (A3) and (A4) are satisfied. So, by

Theorem 3.1, we can get that

S =
{

φ ∈ PCb
F0

([−1,0] ,R)
∣∣∣‖φ‖2

L2 � 2eσ (1− μ)−1
}

is a global attracting set of (24). By Theorem 3.2, we can get that S is a quasi-invariant
set of (24).
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