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OSCILLATION OF p(x)–LAPLACIAN ELLIPTIC

INEQUALITIES WITH MIXED VARIABLE EXPONENTS

YETER ŞAHİNER AND AĞACIK ZAFER

(Communicated by J. Pečarić)

Abstract. Oscillation criteria are established for p(x) -Laplacian elliptic inequalities with mixed
variable nonlinearities of the form

u
[
∇ · (A(x)|∇u|p(x)−2∇u)+ 〈b(x), |∇u|p(x)−2∇u〉−h(x,u)+g(x,u)

]
� 0, x ∈ Ω,

where β(x) > p(x) > γ(x) > 1 , Ω is an exterior domain in R
N , and

h(x,u) = ln |u| |∇u|p(x)−2 (A(x)∇u) ·∇p(x),

g(x,u) =c(x)|u|p(x)−2u+ c1(x)|u|β(x)−2u+ c2(x)|u|γ(x)−2u+ f (x).

The function h(x,u) recently introduced in [N. Yoshida, Nonlinear Anal. 74 (2011) 2563–2575]
allows employing the Riccati transformation technique commonly used in the oscillation theory
of ordinary differential equations.

It should be noted that the results obtained are new for one dimensional case as well.
Examples are given to illustrate the results.

1. Introduction

We consider the elliptic inequality with p(x)-Laplacian of the form

u
[
∇ · (A(x)|∇u|p(x)−2∇u)+ 〈b(x), |∇u|p(x)−2∇u〉

−h(x,u)+g(x,u)
]
� 0, x ∈ Ω, (E)

where β (x) > p(x) > γ(x) > 1, Ω is an exterior domain in R
N , and

h(x,u) = ln |u| |∇u|p(x)−2 (A(x)∇u) ·∇p(x),

g(x,u) =c(x)|u|p(x)−2u+ c1(x)|u|β (x)−2u+ c2(x)|u|γ(x)−2u+ f (x).

For simplicity, we take

Ω = Ω(r0) := {x ∈ R
N : |x| > r0},

where r0 > 0 is a fixed real number.
It is assumed throughout this paper that
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(i) A = (ai j)N×N is a real symmetric positive definite matrix with ai j ∈C1(Ω,R) ,

(ii) b = (bi)N×1 is a real vector with bi ∈C(Ω,R) ,

(iii) c,c1,c2, f ∈C(Ω,R) ,

(iv) p ∈C1(Ω,(1,∞)) ; γ,β ∈C(Ω,(1,∞)).

A function u ∈C1(Ω,R) with property that A(x)|∇u|p(x)−2∇u ∈C1(Ω,R) is said
to be a solution of (E ) in Ω provided that u(x) satisfies (E ) for all x ∈ Ω. A solution
is called oscillatory if the set {x ∈ Ω : u(x) = 0} is unbounded; otherwise it is said to
be nonoscillatory. (E ) is oscillatory if all solutions are oscillatory. As it is pointed out
by Yoshida [1], by defining u ln |u| := 0 when u = 0, u ln |u| becomes a continuous
function, and therefore we observe that (E ) has no singularity.

The oscillation theory of differential equations dates back to 1836, when Sturm
introduced his oscillation and comparison theorems. Since then there has been a great
deal of works concerning mostly on the oscillation of ordinary differential equations.
To the best of our knowledge, the first study on elliptic differential equations involving
a Sturmian comparison theorem for self-adjoint second order linear elliptic equations
was performed by Hartman and Wintner [3]. Later, several authors have investigated
the oscillation of partial differential equations in various forms by making use of com-
parison methods, Riccati transformations, and Picone type identities. For a sample of
works we refer to [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] and the references cited
therein. Among them we choose to mention the following works.

Usami [7] derived oscillation criteria for half-linear elliptic partial differential
equations with p -Laplacian

−∇ · (a(x)|∇u|p−2∇u
)
+ c(x)|u|p−2u = 0, p > 1

by using Riccati method.
Marik [8], by using a radialization method for

∇ · (a(x)|∇u|p−2∇u)+ 〈b(x), |∇u|p−2∇u〉+ c(x)|u|p−2u = 0

obtained via an ordinary differential equation several oscillation criteria.
Yoshida [9] has studied the oscillation of super- and sub- half-linear elliptic equa-

tions with damping of the form

∇ · (a(x)|∇u|α−1∇u) + (α +1)B(x)(|∇y|α−1∇u)

+ C(x)|u|β−1y+D(x)|u|γ−1u = f (x)

when 0 < γ < α < β by utilizing a Picone-type inequality.
Recently, there is also an increasing interest in studying equations with p(x)-

Laplacian −∇ ·
(
a(x)|∇u|p(x)−2∇u

)
, since such equations arise quite naturally in ap-

plied problems [16, 17, 18]. Indeed, the existence of weak solutions for

−∇ ·
(
a(x)|∇u|p(x)−2∇u

)
+ c(x)|u|p(x)−2u = f (x,u), x ∈ R

N .
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has been already established [19, 20, 21, 22]. For the existence and as well as the oscil-
lation theory of nonlinear elliptic differential equations, we refer the reader in particular
to the articles [23, 24, 25] and the monographs [26, 27, 28].

As far as the oscillation of p(x)-Laplacian type equations are concerned, there are
only a few works in the literature, see [1, 29] and the references cited therein. The main
reason seems to be the fact that the p(x)-Laplacian equation

−∇ ·
(
a(x)|∇u|p(x)−2∇u

)
+ c(x)|u|p(x)−2u = 0

is not half-linear, i.e a constant multiple of a solution is not a solution anymore unless
p is a constant function. However, the related elliptic inequality

u
[
∇ ·

(
a(x)|∇u|p(x)−2∇u

)
−a(x) ln |u| |∇u|p(x)−2∇p(x) ·∇u

+ |∇u|p(x)−2b(x) ·∇u+ c(x)|u|p(x)−2u
]

� 0, (1.1)

is half-linear as easily checked. This crucial observation made by Yoshida [1] is very
important, since it allows one to study such inequalities via Riccati type inequalities
with variable exponents [1, Proposition 2.1] as in linear case. This approach nicely ap-
plied to (1.1) in [1] to derive several new oscillation criteria of integral averaging type.
See also [2] for Picone type identities with applications to Sturmian comparison theory
for half-linear elliptic operators with p(x)-Laplacians. We should note that Noussair
and Swanson [30] were the first to consider the oscillation of semilinear elliptic inequal-
ities of the fom

∇ · (a(x)∇u)+ p(x) f (u) � 0 (1.2)

by making use of vector Riccati type transformation

w(x) = − α(|x|)
f (u(x))

(a∇u)(x)

where α ∈C2(0,∞) is an arbitrary positive function.
Motivated by the work of Yoshida [1], we establish new oscillation criteria for (E )

by using the arguments developed in [14] and Riccati transformation technique as in [1].
It is clear that (E ) contains (1.1) as a special case by taking c1(x) = c2(x) = f (x) ≡ 0
and A(x) = a(x)I . As opposed to most oscillation criteria in the literature including
the ones in [1] our theorems do not require information on the whole exterior domain
Ω but rather on a sequence of bounded domains in Ω . Moreover, we are not confined
ourselves to annular domains Ω(r0) only.

2. Preliminaries

Let A−1(x) be the inverse of A(x) and λmin(x) denote the smallest eigenvalue of
the matrix A(x) . As usual, by |A(x)| we mean the matrix norm induced by any vector
norm in R

N .
We will make use of the following four lemmas. The first one is the generalized

Young inequality [15, p. 17] and the next three are some Riccati type inequalities related
to elliptic inequality (E ).
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LEMMA 2.1. Let n � 2 be an integer. If the numbers qi > 1 , i = 1,2, . . . ,n, satisfy

n

∑
i=1

1
qi

= 1,

then for any real numbers u1,u2, . . . ,un, the inequality

n

∏
i=1

|ui| �
n

∑
i=1

|ui|qi

qi
. (2.1)

holds.

LEMMA 2.2. Let Ω∗ ⊂ Ω . Suppose that c1 and c2 are nonnegative on Ω∗ .
Choose η0 : Ω → (0,1) so that

(β (x)−1)η0(x) < β (x)− p(x),

and define

η1(x) =
p(x)− γ(x)+ η0(x)(γ(x)−1)

β (x)− γ(x)
,

and

η2(x) =
β (x)− p(x)−η0(x)(β (x)−1)

β (x)− γ(x)
.

If u is a solution of (E ) without any zero on Ω∗ and u(x) f (x) � 0 with f 	≡ 0 on
Ω∗ , then the vector function w defined by

w(x) =
A(x)|∇u|p(x)−2∇u

|u|p(x)−2u
, x ∈ Ω∗. (2.2)

satisfies the Riccati inequality

∇ ·w � −Cf (x)−bT (x)A−1(x)w− (p(x)−1)λmin(x)
|A(x)|q(x) |w|q(x), x ∈ Ω∗, (2.3)

where q is the conjugate of p, i.e.,

1
p(x)

+
1

q(x)
= 1

and

Cf (x) = c(x)+ (| f (x)|/η0(x)))η0(x)(c1(x)/η1(x))η1(x)(c2(x)/η2(x))η2(x). (2.4)
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Proof. We first note that (E ) can be written as

uQ(u) � 0, x ∈ Ω, (2.5)

where

Q(u) = ∇ ·
(
A(x)|∇u|p(x)−2∇u

)
− ln |u||∇u|p(x)−2 (A(x)∇u) ·∇p(x)

+〈b(x), |∇u|p(x)−2∇u〉+g(x,u)

By a direct calculation we have

∇ ·w(x) =
1

|u|p(x)−2u
∇ · (A(x)|∇u|p(x)−2∇u)

+(A(x)|∇u|p(x)−2∇u) ·
[1− p(x)

|u|p(x) ∇u− ln |u|
|u|p(x)−2u

∇p(x)
]

=
uQ[u]
|u|p(x) −

p(x)−1

|u|p(x) 〈A(x)|∇u|p(x)−2∇u,∇u〉

−
〈

b(x),
|∇u|p(x)−2∇u

|u|p(x)−2u

〉
− g(x,u)

|u|p(x)−2u
,

which in view of (2.2) and (2.5) leads to

∇ ·w � − p(x)−1

|u|p(x) 〈A(x)|∇u|p(x)−2∇u,∇u〉− 〈b(x),A−1(x)w〉− g(x,u)
|u|p(x)−2u

.

By making use of the inequalities

(∇u)T A(x)∇u � λmin(x)|∇u|2,

and
|∇u|p(x)−1

|u|p(x)−1
� |w(x)|

|A(x)| ,

we thus have

∇ ·w � −bT (x)A−1(x)w− (p(x)−1)λmin(x)
|A(x)|q(x) |w|q(x) − g(x,u)

|u|p(x)−2u
. (2.6)

Let x ∈ Ω∗ . In view of u(x) f (x) � 0 we may write

g(x,u)
|u|p(x)−2u

= c(x)+ | f (x)||u|1−p(x) + c1(x)|u|β (x)−p(x) + c2(x)|u|γ(x)−p(x).

Since ηi > 0 for i = 0,1,2 and η0 + η1 + η2 = 1, we can apply Lemma 2.1 with

u1 = (c1(x)q1(x))1/q1(x)|u|
β(x)−p(x)

q1(x) , q1 = 1/η1
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u2 = (c2(x)q2(x))1/q2(x)|u|
γ(x)−p(x)

q2(x) , q2 = 1/η2

and

u3 = (| f (x)|q3(x))1/q3(x)|u|
1−p(x)
q3(x) , q3 = 1/η0

to get

g(x,u)
|u|p(x)−2u

− c(x) =
u1(x)q1(x)

q1(x)
+

u2(x)q2(x)

q2(x)
+

u3(x)q3(x)

q3(x)
� u1(x)u2(x)u3(x)

= (c1(x)/η1(x))η1(x)(c2(x)/η2(x))η2(x)(| f (x)|/η0(x))η0(x).

Using this inequality in (2.6) completes the proof. �

In case f ≡ 0 we can similarly prove the following lemma. In fact, making use of
the convention that 00 = 1 and taking η0 = 0, it coincides with the previous lemma.

LEMMA 2.3. Let Ω∗ ⊂ Ω and f ≡ 0 . Suppose that c1 and c2 are nonnegative
on Ω∗ Define

η̂1(x) =
p(x)− γ(x)
β (x)− γ(x)

, η̂2(x) =
β (x)− p(x)
β (x)− γ(x)

.

If u is a solution of (E ) without any zero on Ω∗ , then the vector function w defined
by (2.2) satisfies the Riccati inequality

∇ ·w � −C0(x)−bT (x)A−1(x)w− (p(x)−1)λmin(x)
|A(x)|q(x) |w|q(x), x ∈ Ω∗, (2.7)

where q is the conjugate of p and

C0(x) = c(x)+ (c1(x)/η̂1(x))η̂1(x)(c2(x)/η̂2(x))η̂2(x). (2.8)

Finally, we give a lemma which will enable us to relax the nonnegativity condition
imposed on c2(x) . This can however be made possible only when the function f (x)
does not vanish on Ω[a,b] .

LEMMA 2.4. Let Ω∗ ⊂ Ω . Suppose that c1 is nonnegative on Ω∗ . Let δ1 and δ2

be positive real numbers such that δ1 + δ2 = 1 .
If u is a solution of (E ) without any zero and u(x) f (x) > 0 on Ω∗ , then the vector

function w defined by (2.2) satisfies the Riccati inequality

∇ ·w � −C(x)−bT (x)A−1(x)w− (p(x)−1)λmin(x)
|A(x)|q(x) |w|q(x), x ∈ Ω∗, (2.9)
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where q is the conjugate of p and

C(x) = c(x)+ (β (x)−1)
( δ1| f (x)|

β (x)− p(x)

) β(x)−p(x)
β(x)−1

( c1(x)
p(x)−1

) p(x)−1
β(x)−1

− (γ(x)−1)
( δ2| f (x)|

p(x)− γ(x)

) γ(x)−p(x)
γ(x)−1

( c−2 (x)
p(x)−1

) p(x)−1
γ(x)−1 (2.10)

with

c−2 (x) = −min{c2(x),0}.

Proof. Proceeding as in the proof of Lemma 2.2, we have (2.6). We may write

g(x,u)
|u|p(x)−2u

= c(x)+S1(x)+S2(x), (2.11)

where
S1(x) = c1(x)|u|β (x)−p(x) + δ1| f (x)||u|1−p(x)

and
S2(x) = δ2| f (x)||u|1−p(x) + c2(x)|u|γ(x)−p(x)

Applying Lemma 2.1 with

u1 = (c1(x)q1(x))1/q1(x)|u|
β(x)−p(x)

q1(x) , q1(x) =
β (x)−1
p(x)−1

and

u2 = (δ1| f (x)|q2(x))1/q2(x)|u|
1−p(x)
q2(x) , q2(x) =

β (x)−1
β (x)− p(x)

we have

S1(x) =
u1(x)q1(x)

q1(x)
+

u2(x)q2(x)

q2(x)
� u1(x)u2(x)

= (β (x)−1)
( δ1| f (x)|

β (x)− p(x)

) β(x)−p(x)
β(x)−1

( c1(x)
p(x)−1

) p(x)−1
β(x)−1

Similarly, with

u1 = (δ2| f (x)|q1(x))1/q1(x)|u|
1−p(x)
q1(x) , q1(x) =

p(x)−1
p(x)− γ(x)

u2 = c−2 (x)(q1(x)δ2| f (x)|)−1/q1(x)|u|γ(x)−p(x)− 1−p(x)
q1(x) , q2(x) =

p(x)−1
γ(x)−1
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we obtain

S2(x) � δ2| f (x)||u|1−p(x)− c−2 (x)|u|γ(x)−p(x)

=
u1(x)q1(x)

q1(x)
−u1(x)u2(x) � −u2(x)q2(x)

q2(x)

= −(γ(x)−1)
( δ2| f (x)|

p(x)− γ(x)

) γ(x)−p(x)
γ(x)−1

( c−2 (x)
p(x)−1

) p(x)−1
γ(x)−1

Thus, from (2.11) we get
g(x,u)

|u|p(x)−2u
� C(x).

This completes the proof. �

3. The main results

Let

Dk = {H ∈C1(Ωk,R) : H(x) > 0, x ∈ Ωk; H(x) = 0, x ∈ Γk},

where Ωk is an open bounded subset of Ω with piecewise smooth boundary Γk , and
define

K(x) = H(x) lnH(x)∇p(x)+ p(x)∇H(x)−bT (x)A−1(x)H(x), x ∈ Ω∗. (3.1)

Note that since limH→0 H lnH = 0, the function K can be made continuous on Ω∗
by defining (H lnH)(0) = 0.

THEOREM 3.1. Suppose that for any given r � r0 there exist Ω1,Ω2 ⊂Ω(r) such
that

ci(x) � 0, x ∈ Ω1∪Ω2, (i = 1,2) (3.2)

and
(−1)k f (x) � 0 (	≡ 0), x ∈ Ωk, (k = 1,2). (3.3)

If there exists a function H ∈ Dk for k = 1,2 such that

∫
Ωk

[
Cf (x)[H(x)]p(x) − |A(x)|p(x)

[p(x)]p(x)λ p(x)−1
min

|K(x)|p(x)
]
dx > 0, (3.4)

where the function Cf is as defined in (2.4) and K is as in (3.1), then (E ) is oscillatory.

Proof. Suppose on the contrary that there is a nonoscillatory solution u of (E ).
We may assume that u(x) is positive for all x ∈ Ω(a0) for some a0 � r0 sufficiently
large. Taking r = a0 , we can find Ω1 so that c1(x) � 0, c2(x) � 0 and f (x) � 0(	≡ 0)
for all x ∈ Ω1 .
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By Lemma 2.2, the inequality (2.3) holds. Multiplying (2.3) by [H(x)]p(x) and
integrating over the domain Ω1, we get∫

Ω1

Cf (x)[H(x)]p(x)dx � −
∫

Ω1

[H(x)]p(x)∇ ·w(x)dx

−
∫

Ω1

[H(x)]p(x)bT (x)A−1(x)w(x)dx

−
∫

Ω1

(p(x)−1)λmin(x)
|A(x)|q(x) [H(x)]p(x)|w(x)|q(x)dx.

Employing the higher dimensional equivalent of integration by parts formula derived
from the divergence theorem with H|Γ1 = 0, we have∫

Ω1

[H(x)]p(x)∇ ·w(x)dx = −
∫

Ω1

∇[H(x)]p(x) ·w(x)dx

= −
∫

Ω1

[
lnH(x)∇p(x)+ p(x)

∇H(x)
H(x)

]
[H(x)]p(x) ·w(x)dx

Therefore, ∫
Ω1

Cf (x)[H(x)]p(x)dx �
∫

Ω1

[u1(x) ·w(x)−u2(x)|w(x)|q(x)]dx. (3.5)

where

u1(x) = [H(x)]p(x)( lnH(x)∇p(x)+ p(x)
∇H(x)
H(x)

− [AT (x)]−1b(x)
)

and

u2(x) =
(p(x)−1)λmin(x)

|A(x)|q(x) [H(x)]p(x).

Young inequality with n = 2 leads to

u1 ·w � (u2q)−1/q(u2q)1/q|u1||w| � |u1|p (u2q)1−p

p
+u2 |w|q (3.6)

From (3.5) and (3.6), we have
∫

Ω1

Cf (x)[H(x)]p(x)dx �
∫

Ω1

|A(x)|p(x)

[p(x)]p(x)λ p(x)−1
min

∣∣∣K(x)
∣∣∣p(x)

dx.

This last inequality contradicts (3.4) when k = 1. The proof when u(x) < 0 eventually
is similar by working with Ω2 . In fact, v(x) = −u(x) > 0 solves (E ) with f replaced
by − f , and we have − f (x) � 0 on Ω2 by our assumption, and so Lemma 2.2 is
applicable with − f (x)v(x) � 0. �

If f (x)≡ 0, we obtain the following theorem. The proof is in fact a simpler version
of the proof of Theorem 3.1. It suffices to take f (x) ≡ 0 and η0(x) ≡ 0 and employ
Lemma 2.3 in this special case.
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THEOREM 3.2. Suppose that for any given r � r0 there exists an Ω1 ⊂Ω(r) such
that

ci(x) � 0, x ∈ Ω1, (i = 1,2). (3.7)

If there exists a function H ∈ D1(a,b) such that

∫
Ω1

[
C0(x)[H(x)]p(x) − |A(x)|p(x)

p(x)p(x)λ p(x)−1
min

|K(x)|p(x)
]
dx > 0, (3.8)

where the function C0 is as defined in (2.8) and K is as in (3.1), then (E ) with f (x)≡ 0
is oscillatory.

In our last theorem we remove the sign condition on c2(x) by requiring that f (x)
never vanishes in the domain of interest.

THEOREM 3.3. Suppose that for any given r � r0 there exist Ω1,Ω2 ⊂Ω(r) such
that

c1(x) � 0, x ∈ Ω1 ∪Ω2 (3.9)

and

(−1)k f (x) < 0, x ∈ Ωk, (k = 1,2). (3.10)

If there exist a function H ∈Dk and positive numbers δ1 and δ2 with δ1 +δ2 = 1 such
that

∫
Ωk

[
C(x)[H(x)]p(x) − |A(x)|p(x)

p(x)p(x)λ p(x)−1
min

|K(x)|p(x)
]
dx > 0, (3.11)

for k = 1,2 , where the function C is as defined in (2.10) and K is as in (3.1), then (E )
is oscillatory.

Proof. We proceed exactly as in the proof of Theorem 3.1, except that we employ
Lemma 2.4 instead of Lemma 2.2. �

REMARK 1. The domains Ωk , k = 1,2, could be quite complicated in general.
For many cases, it suffices to take

Ωk = Ω(ak,bk) = {x ∈ R
N : ak < |x| < bk},

where ak and bk are real numbers such that r0 < ak < bk . See the examples in the last
section.
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4. One dimensional case

Let N = 1 and R+ = [0,∞) ; a, p ∈ C1(R+,R) , a(x) > 0; β ,γ,b,c,c1,c2, f ∈
C(R+,R) , and Φ∗(y) = |y|∗−2y . Then (E ) reduces to ordinary differential inequality

y
[(

a(t)Φp(t)(y
′)
)′

+
(
b(t)−a(t)p′(t) ln |y|)Φp(t)(y

′)+ c(t)Φp(t)(y)

+ c1(t)Φβ (t)(y)+ c2(t)Φγ(t)(y)+ f (t)
]

� 0 (E1)

where
β (t) > p(t) > γ(t) > 1.

When p,β , and γ are constant (functions) and p = 2, the inequality (E1 ) in the
equality case with b≡ 0 is studied by Sun and Wong in [31]. The following corollaries
extending to variable exponents the interval oscillation criteria obtained in [31] are the
direct consequences of Theorem 3.1, Theorem 3.2, and Theorem 3.3, respectively.

Let

D(a,b) = {H ∈C1([a,b],R) : H(t) > 0, t ∈ (a,b); H(a) = H(b) = 0.

COROLLARY 4.1. Suppose for any given T � 0 there exist a1,b1,a2,b2 such that
T � a1 < b1, T � a2 < b2 and that

ci(t) � 0, t ∈ [a1,b1]∪ [a2,b2], (i = 1,2)

and
(−1)k f (t) � 0 (	≡ 0), t ∈ [ak,bk], (k = 1,2).

If there exists a function H ∈ D(ak,bk) for k = 1,2 such that

∫ bk

ak

[
Cf (t)[H(t)]p(t)− |H(t) lnH(t)a(t)p′(t)+a(t)p(t)H ′(t)−b(t)H(t)|p(t)

(a(t))p(t)−1(p(t))p(t)

]
dt > 0,

where the function Cf is as defined in Lemma 2.2 (with x replaced by t ), then (E1 ) is
oscillatory.

COROLLARY 4.2. Suppose that for any given T � there exist a,b such that T �
a < b and that

ci(t) � 0, t ∈ [a,b], (i = 1,2).

If there exists a function H ∈ D(a,b) such that

∫ b

a

[
C0(t)[H(t)]p(t)− |H(t) lnH(t)a(t)p′(t)+a(t)p(t)H ′(t)−b(t)H(t)|p(t)

(a(t))p(t)−1(p(t))p(t)

]
dt > 0,

where the function C0 is as defined in Lemma 2.3, then (E1 ) with f ≡ 0 is oscillatory.
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COROLLARY 4.3. Suppose that for any given T � there exist a1, b1, a2, b2

such that T � a1 < b1 , T � a2 < b2 and that

c1(t) � 0, t ∈ [a1,b1]∪ [a2,b2]

and
(−1)k f (t) < 0, t ∈ [ak,bk], (k = 1,2).

If there exist a function H ∈D(ak,bk) and positive numbers δ1 and δ2 with δ1 +δ2 = 1
such that

∫ bk

ak

[
C(t)[H(t)]p(t)− |H(t) lnH(t)a(t)p′(t)+a(t)p(t)H ′(t)−b(t)H(t)|p(t)

(a(t))p(t)−1(p(t))p(t)

]
dt > 0,

for k = 1,2 , where the function C is as defined in Lemma 2.4, then (E1 ) is oscillatory.

5. Examples

Two examples are given to illustrate the results. We should note that no oscillation
criterion in the literature is applicable for these cases.

EXAMPLE 5.1. Consider the nonlinear partial differential inequality (E ) with
N = 2,

p(x) = 4+3k2(|x|)), β (x) = 5+4k2(|x|), γ(x) = 3+2k2(|x|) , k(|x|) = sin2 2|x| ,

A(x) = I (Identity matrix), b(x) =
[

12k(|x|)
|x|1/4 ln

( k(|x|)
|x|1/4

) sin4|x|
|x|3/4 − (4+3k2(|x|))

4|x|2
]
x , c(x) ≡ 0 ,

and

c1(x) = m1|x|1/2 sin1/7 |x| , c2(x) = m2|x|3/2 sin9 |x| , f (x) = −|x|5/4 cos5 |x| .

With the choice of η0 = 1/5, we have η1 = 7/10, η2 = 1/10. It is easy to see
that

Cf (x) = M|x|3/4
∣∣cos |x|∣∣sin |x|, M =

10m7/10
1 m1/10

2

21/577/10
.

If we take H(x) = k(|x|)
|x|1/4 , then we calculate

K(x) = 2(4+3sin4(2|x|))sin4|x|
|x|5/4

x.

Let a1 = 2iπ + π/2, b1 = 2iπ + π , a2 = 2(i+1)π , b2 = 2(i+1)π + π/2 for i ∈ N.
Since 4 � p(x) � 7, we have

Cf (x)[H(x)]p(x) � M|cos |x||sin |x| sin
14 2|x|
|x|
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and
|K(x)|p(x)

p(x)p(x) � 27 sin4 4|x|
|x| .

∫
Ω(a1,b1)

[
Cf (x)[H(x)]p(x)−|K(x)|p(x)

p(x)p(x)

]
dx

�
∫

Ω(a1,b1)

[
M|cos |x||sin |x| sin

14 2|x|
|x| −27 sin4 4|x|

|x|
]
dx

� 2π
∫ π

π/2

[
M(−cosr)sin r sin14 2r−27 sin4 4r

]
dr

=
211Mπ
6435

−25(π)2.

Similarly,

∫
Ω(a2,b2)

[
Cf (x)H(x)p(x) − |K(x)|p(x)

p(x)p(x)

]
dx

� 2π
∫ π/2

0

[
M cosr sinr sin14 2r−27 sin4 4r

]
dr

=
211Mπ
6435

−25(π)2.

It follows that (3.4) is satisfied when m7
1m2 > 3.26× 1021 , and so we conclude

that if this condition is met, then (E ) is oscillatory by Theorem 3.1.

EXAMPLE 5.2. Consider the nonlinear partial differential inequality (E ) with
N = 2, A(x) = I (Identity matrix), c(x) ≡ 0, c1(x) = m2

1|x|1/2
∣∣cos |x|∣∣sin |x| (m1 > 0),

c2(x) = m2
2|x|

∣∣cos |x|∣∣sin |x| (m2 > 0), f (x) ≡ 0. The functions b,k, p,β ,γ are the
same as in Example 5.1.

We take η1 = η2 = 1/2, a = 2iπ +π/2, and b = 2iπ +π . It is not difficult to see
that

∫
Ω(a,b)

[
C0H(x)p(x) − |K(x)|p(x)

p(x)p(x)

]
dx

� 2π
∫ π

π/2

[
2m1m2 |cosr|sinr sin14 2r−27 sin4 4r

]
dr

=
212m1m2π

6435
−25(π)2.

We see that condition (3.8) is satisfied when m1m2 > 157.94, and so in this case
the inequality (E ) with f (x) ≡ 0 is oscillatory by Theorem 3.2.
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