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ON INEQUALITIES FOR QUERMASSINTEGRALS AND

DUAL QUERMASSINTEGRALS OF DIFFERENCE BODIES

WEIDONG WANG

(Communicated by Y. Burago)

Abstract. In this paper, inequalities for quermassintegrals and dual quermassintegrals of differ-
ence bodies are given. In particular, an extension of the Rogers-Shephard inequality is obtained.

1. Introduction

Let K n denote the set of convex bodies (compact, convex subsets with non-empty
interiors) in Euclidean space R

n and let K n
o denote the set of convex bodies containing

the origin in their interiors in R
n . Denote by S n

o the set of star bodies (about the origin)
in R

n and by Sn−1 the unit sphere in R
n . By V (K) we denote the n -dimensional

volume of body K and for the standard unit ball B in R
n we set ωn = V (B) .

If K ∈ K n , then its support function hK = h(K, ·) : R
n → (−∞,∞) is defined by

(see [2, 8])
h(K,x) = max{x · y : y ∈ K}, x ∈ R

n,

where x · y denotes the standard inner product of x and y .
For each K,L ∈ K n and λ ,μ � 0 (not both zero), the Minkowski linear combi-

nation λK + μL ∈ K n is defined by (see [2, 8])

h(λK + μL, ·) = λh(K, ·)+ μh(L, ·). (1.1)

If K ∈ K n , the difference body DK of K is defined by (see [8])

DK = K +(−K), (1.2)

For the difference body DK , the affine invariant V (DK)/V (K) is estimated by
(see [8])

2n � V (DK)
V (K)

� (2n
n ). (1.3)
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Equality in the first inequality in (1.3) holds if and only if K is a centrally symmetric
convex body, and in the second inequality in (1.3) if and only if K is a simplex. The
right-hand side inequality of (1.3) is known as Rogers-Shephard inequality (see [6, 8]).
For further study on difference bodies one may see [1, 3, 6, 7] or book [8].

For K ∈K n , the quermassintegrals Wi(K) (i = 0,1, · · · ,n) of K are given by (see
[2, 8])

Wi(K) =
1
n

∫
Sn−1

h(K,u)dSi(K,u), (1.4)

where Si(K, ·)(i = 0,1, · · · ,n−1) are positive Borel measures called mixed surface area
measures on Sn−1 . Sn−1(K, ·) is the Lebesgue measure on Sn−1 .

From (1.4), we easily see that

W0(K) = V (K). (1.5)

For K ∈ S n
o and any real i , the dual quermassintegrals W̃i(K) of K are defined

by (see [2, 8])

W̃i(K) =
1
n

∫
Sn−1

ρ(K,u)n−idu. (1.6)

Obviously,

W̃0(K) =
1
n

∫
Sn−1

ρ(K,u)ndu = V (K). (1.7)

In this paper, we continue to study difference bodies by quermassintegrals and
dual quermassintegrals. First, we extend the left-hand side inequality of (1.3) to quer-
massintegrals of difference bodies as follows:

THEOREM 1.1. If K ∈ K n , i = 0,1, · · · ,n−1 , then

Wi(DK)
Wi(K)

� 2n−i, (1.8)

with equality if and only if K is a centrally symmetric convex body.

By letting i = 0 in (1.8) and combining it with (1.5), the left-hand side inequality
of (1.3) is obtained.

Further, for the polar of difference body, we establish the following inequality of
dual quermassintegrals.

THEOREM 1.2. If K ∈ K n
o , i is real and i �= n, then for i < n or n < i < n+1 ,

W̃i(D∗K)
W̃i(K∗)

� 1
2n−i , (1.9)

with equality if and only if K is a centered convex body; for i > n+ 1 , the inequality
sign in (1.9) is reversed.

From Theorem 1.2 we also get
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THEOREM 1.3. If K ∈ K n
o , i is real and 0 � i < n, then

W̃i(D∗K)W̃i(K) � ω2
n

2n−i , (1.10)

with equality if and only if i = 0 and K is a centered ellipsoid or 0 < i < n and K is a
centered ball.

In particular, let i = 0 in Theorem 1.3 and together with (1.7), we have:

COROLLARY 1.4. If K ∈ K n
o , then

V (D∗K)V (K) � ω2
n

2n ,

with equality if and only if K is a centered ellipsoid.

Our second aim is to give an extension of the Rogers-Shephard inequality for the
dual quermassintegrals of difference bodies.

THEOREM 1.5. If K ∈K n , i is integer and i < n, then there exits a point x0 ∈ K
such that

W̃i(DK) � (2n−i
n )W̃i(K− x0), (1.11)

with equality if and only if K is a simplex.

Obviously, taking i = 0 in Theorem 1.5 and noting that V (K − x0) = V (K) , we
get from inequality (1.11) the Rogers-Shephard inequality.

2. Preliminaries

If K is compact star-shaped (about the origin) in R
n , its radial function ρK =

ρ(K, ·) is defined by (see [2, 8])

ρ(K,u) = max{λ � 0 : λu ∈ K}, (2.1)

for all u ∈ Sn−1 . If ρK is positive and continuous, K is called a star body (about the
origin). Two star bodies K and L are said to be dilates (of one another) if ρK(u)/ρL(u)
is independent of u ∈ Sn−1 .

If K is compact star-shaped with respect to x ∈ R
n , its radial function ρK(x, ·)

with respect to x is defined, for all u ∈ Sn−1 such that the line through x parallel to u
intersects K , by (see [3])

ρK(x,u) = max{λ � 0 : x+ λu∈ K}. (2.2)

From (2.1) and (2.2), it easily follows

ρK(x,u) = ρK−x(u), (2.3)

for u ∈ Sn−1 . We call (2.2) the extended radial function of K with respect to x . If x is
the origin o , then ρK(x,u) = ρK(u) for u ∈ Sn−1 .
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From (2.3) and (1.6), the following can immediately be obtained:

W̃i(K− x) =
1
n

∫
Sn−1

ρK(x,u)n−idu. (2.4)

If K ∈ K n
o , the polar body K∗ of K is defined by (see [2, 8])

K∗ = {x ∈ R
n : x · y � 1,y ∈ K}.

Obviously, we have (K∗)∗ = K .
From (2.1), we also know that: if K ∈ K n

o , then the support and the radial func-
tions of K∗ are given respectively by (see [2, 8])

hK∗ =
1

ρK
and ρK∗ =

1
hK

. (2.5)

For K,L ∈S n
o and real λ ,μ � 0 (not both zero), the harmonic radial combination

λ ·K+̃μ ·L ∈ S n
o is defined by (see [2])

ρ(λ ·K+̃μ ·L, ·)−1 = λ ρ(K, ·)−1 + μρ(KL, ·)−1. (2.6)

From (1.1), (2.5) and (2.6), we easily see that

(K +L)∗ = K∗+̃L∗. (2.7)

The notion of the radial p th mean body was given by Gardner and Zhang (see [3]).
For K ∈ K n , the radial p th mean body RpK of K is defined for nonzero p > −1 by

ρRpK(u) =
(

1
V (K)

∫
K

ρK(x,u)pdx

) 1
p

, (2.8)

for each u ∈ Sn−1 ; for p = 0 define R0K by

ρR0K(u) = exp

(
1

V (K)

∫
K

logρK(x,u)dx

)
,

for each u ∈ Sn−1 . In particular, they proved that:
If K ∈ K n and p > −1 , then

DK ⊆ cn,pRpK, (2.9)

with equality if and only if K is a simplex. Here

cn,p = (nB(p+1,n))−
1
p , (2.10)

for nonzero p > −1, and

cn,0 = lim
p→0

(nB(p+1,n))−
1
p = exp(

n

∑
k=1

1
k
),

where B(p+1,n) is the Beta function.
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3. Proofs of the Theorems

The proof of Theorem 1.1 requires the following lemma (see [8]):

LEMMA 3.1. If K ∈ K n , 0 � i < n, then

Wi(K +L)
1

n−i � Wi(K)
1

n−i +Wi(L)
1

n−i , (3.1)

with equality for 0 � i < n− 1 if and only if K and L are homothetic; for i = n− 1 ,
(3.1) is an identity.

Proof of Theorem 1.1. Using definition (1.2) of a difference body, inequality (3.1)
and definition (1.4), we obtain

Wi(DK)
1

n−i = Wi(K +(−K))
1

n−i � Wi(K)
1

n−i +Wi(−K)
1

n−i = 2Wi(K)
1

n−i .

This yields (1.8). According to the condition of equality in (3.1), equality holds in
(1.8) for 0 � i < n− 1 if and only if K and −K are homothetic, i.e. K is a centrally
symmetric convex body. For i = n−1, (1.8) is an identity. �

The proof of Theorem 1.2 requires the following lemma:

LEMMA 3.2. If K,L ∈ S n
o , i is real and i �= n, then for i < n or n < i < n+1 ,

W̃i(K+̃L)−
1

n−i � W̃i(K)−
1

n−i +W̃i(L)−
1

n−i ; (3.2)

with equality if and only if K and L are dilates; for i > n+ 1 , the inequality sign in
(3.2) is reversed.

Proof. For i < n or n < i < n+ 1, since i− n < 0 or 0 < i− n < 1, then using
(1.6), (2.6) and the Minkowski integral inequality (see [4]), we know for K,L ∈ S n

o ,

W̃i(K+̃L)−
1

n−i =
[
1
n

∫
Sn−1

ρ(K+̃L,u)n−idS(u)
]− 1

n−i

=
(

1
n

)− 1
n−i

[∫
Sn−1

(ρ(K+̃L,u)−1)−(n−i)dS(u)
]− 1

n−i

=
(

1
n

)− 1
n−i

[∫
Sn−1

(ρ(K,u)−1 + ρ(L,u)−1)−(n−i)dS(u)
]− 1

n−i

�
(

1
n

)− 1
n−i

[∫
Sn−1

ρ(K,u)n−idS(u)+
∫
Sn−1

ρ(L,u)n−idS(u)
]− 1

n−i

= W̃i(K)−
1

n−i +W̃i(L)−
1

n−i .

According to the equality condition in the Minkowski integral inequality, we see
that equality holds in (3.2) if and only if K and L are dilates.

Similarly, the reversed inequality in (3.2) can be proved for the case i > n+1. �
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Proof of Theorem 1.2. For i < n or n < i < n+ 1, together with identity (2.7),
definition (1.6) and inequality (3.2), we have that for K ∈ K n

o ,

W̃i(D∗K)−
1

n−i = W̃i((K +(−K))∗)−
1

n−i

= W̃i(K∗+̃(−K)∗)−
1

n−i

� W̃i(K∗)−
1

n−i +W̃i((−K)∗)−
1

n−i

= 2W̃i(K∗)−
1

n−i .

From this, inequality (1.9) is obtained. Equality holds in (1.9) if and only if K∗ and
(−K)∗ are dilates, i.e. K∗ is a centered convex body, which means K is a centered
convex body.

For i > n+ 1, according to (2.7), (1.6) and the reverse of (3.2), we easily prove
that inequality (1.9) is reversed. �

For the proof of Theorem 1.3, the following two results are essential.

LEMMA 3.3. (see [5]) If K ∈ K n , i is real and 0 � i < n, then

W̃i(K) � ω
i
n
n V (K)

n−i
n , (3.3)

with equality for 0 < i < n if and only if K is a centered ball or for i = 0 .

LEMMA 3.4. (see [2]) If K is a centered convex body, then

V (K)V (K∗) � ω2
n , (3.4)

with equality if and only if K is an ellipsoid.

Note that inequality (3.4) is the well-known Blaschke-Santalö inequality.

Proof of Theorem 1.3. From inequalities (1.9), (3.3) and (3.4), we get

W̃i(D∗K)W̃i(K) � 1
2n−i W̃i(K∗)W̃i(K)

� 1
2n−i ω

2i
n

n [V (K)V (K∗)]
n−i
n

� 1
2n−i ω

2
n .

This gives inequality (1.10).
According to the conditions of equality in (1.9), (3.3) and (3.4), equality holds in

(1.10) if and only if i = 0 and K is a centered ellipsoid or 0 < i < n and K is a centered
ball. �

In order to prove Theorem 1.5, we establish a lemma as follows:
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LEMMA 3.5. If K ∈ K n , i is real and i < n, then there exists a point x0 ∈ K
such that

W̃i(Rn−iK) = W̃i(K− x0). (3.5)

Proof. From formulas (1.6), (2.4) and definition (2.8), we have

W̃i(Rn−iK) =
1
n

∫
Sn−1

ρRn−iK(u)n−idu

=
1

nV (K)

∫
Sn−1

∫
K

ρK(x,u)n−idxdu

=
1

V (K)

∫
K

[
1
n

∫
Sn−1

ρK(x,u)n−idu

]
dx

=
1

V (K)

∫
K
W̃i(K− x)dx. (3.6)

Integral mean value theorem implies that there exists a point x0 ∈ K such that

∫
K
W̃i(K− x)dx = W̃i(K− x0)

∫
K

dx = W̃i(K− x0)V (K).

This together with (3.6) gives

W̃i(Rn−iK) =
1

V (K)
W̃i(K− x0)V (K) = W̃i(K− x0). �

Proof of Theorem 1.5. Since i < n , by letting p = n− i in (2.9), it follows that
DK ⊆ cn,n−iRn−iK . Using definition (1.6), we have

W̃i(DK) � (cn,n−i)n−iW̃i(Rn−iK). (3.7)

Since i is an integer and i < n , (2.10) gives

(cn,n−i)n−i = (2n−i
n ).

From this, (3.5) and (3.7), it follows that there exits x0 ∈ K such that

W̃i(DK) � (2n−i
n )W̃i(K− x0).

According to the condition of equality in (2.9), equality holds in (1.11) if and only
if K is a simplex. �
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