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ON INEQUALITIES FOR QUERMASSINTEGRALS AND
DUAL QUERMASSINTEGRALS OF DIFFERENCE BODIES

WEIDONG WANG

(Communicated by Y. Burago)

Abstract. In this paper, inequalities for quermassintegrals and dual quermassintegrals of differ-
ence bodies are given. In particular, an extension of the Rogers-Shephard inequality is obtained.

1. Introduction

Let 22" denote the set of convex bodies (compact, convex subsets with non-empty
interiors) in Euclidean space R" and let .Z" denote the set of convex bodies containing
the origin in their interiors in R”. Denote by .7} the set of star bodies (about the origin)
in R” and by $"~! the unit sphere in R"*. By V(K) we denote the n-dimensional
volume of body K and for the standard unit ball B in R" we set ®, =V (B).

If K € ™", then its support function hg = h(K,-) : R" — (—oo,00) is defined by
(see [2, 8))

h(K,x) =max{x-y:y € K}, xeR",

where x -y denotes the standard inner product of x and y.
For each K,L € 2" and A,u > 0 (not both zero), the Minkowski linear combi-
nation AK + uL € ™" is defined by (see [2, 8])

h(AK+uL,-) = Ah(K,-)+ uh(L,-). (L.1)
If K € 2", the difference body DK of K is defined by (see [8])
DK =K+ (—K), (1.2)
For the difference body DK, the affine invariant V(DK)/V(K) is estimated by
(see [8])

V(DK)

2" g
V(K)

<G (1.3)

Mathematics subject classification (2010): 52A40, 52A20.
Keywords and phrases: quermassintegrals, dual quermassintegrals, difference body, Rogers-Shephard
inequality, extension.

Research is supported in part by the Natural Science Foundation of China (Grant No. 10671117) and Science Foun-
dation of China Three Gorges University.

© M, Zagreb 41

Paper MIA-17-02


http://dx.doi.org/10.7153/mia-17-02

42 WEIDONG WANG

Equality in the first inequality in (1.3) holds if and only if K is a centrally symmetric
convex body, and in the second inequality in (1.3) if and only if K is a simplex. The
right-hand side inequality of (1.3) is known as Rogers-Shephard inequality (see [0, 8]).
For further study on difference bodies one may see [1, 3, 6, 7] or book [8].

For K € %", the quermassintegrals W;(K) (i=0,1,---,n) of K are given by (see
(2, 8])

1
Wi(K) = - / (K, uw)dSi(K.u), (1.4)
=
where S;(K,-)(i=0,1,---,n— 1) are positive Borel measures called mixed surface area

measures on S"~!. S, |(K,-) is the Lebesgue measure on " !.
From (1.4), we easily see that

Wo(K) = V(K). (1.5)

For K € .#" and any real i, the dual quermassintegrals W;(K) of K are defined

o

by (see [2, 8])
Wi(K) = — p(K,u)" 'du. (1.6)

n Jsn—1
Obviously,

Wo(K) = % [ p(K.afdu=V(K). (1.7)

In this paper, we continue to study difference bodies by quermassintegrals and
dual quermassintegrals. First, we extend the left-hand side inequality of (1.3) to quer-
massintegrals of difference bodies as follows:

THEOREM 1.1. If K€ %", i=0,1,---,n—1, then

Wi(DK)

WK > (1.8)

with equality if and only if K is a centrally symmetric convex body.

By letting i = 0 in (1.8) and combining it with (1.5), the left-hand side inequality
of (1.3) is obtained.

Further, for the polar of difference body, we establish the following inequality of
dual quermassintegrals.

THEOREM 1.2. If K € #", iisreal and i #n, thenfori<norn<i<n+1,

W(D'K) _ 1

WK <7 )

with equality if and only if K is a centered convex body; for i > n+ 1, the inequality
sign in (1.9) is reversed.

From Theorem 1.2 we also get
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THEOREM 1.3. If K € %)

o’

iisreal and 0 <i<n, then

2

Wi(D'K)Wi(K) < 5. (1.10)

X 2}171 )

with equality if and only if i =0 and K is a centered ellipsoid or 0 < i <n and K is a
centered ball.

In particular, let i = 0 in Theorem 1.3 and together with (1.7), we have:

COROLLARY 1.4. If K € £, then

[

V(D'K)V(K) < @,

X 2_}17
with equality if and only if K is a centered ellipsoid.

Our second aim is to give an extension of the Rogers-Shephard inequality for the
dual quermassintegrals of difference bodies.

THEOREM 1.5. If K € ", i is integer and i < n, then there exits a point xy € K
such that _
Wi(DK) < (*, )Wi(K —xo), (1.11)
with equality if and only if K is a simplex.
Obviously, taking i = 0 in Theorem 1.5 and noting that V(K —xp) = V(K), we
get from inequality (1.11) the Rogers-Shephard inequality.

2. Preliminaries

If K is compact star-shaped (about the origin) in R”, its radial function pg =
p(K,-) is defined by (see [2, 8])

p(K,u) =max{A >0:Au €K}, (2.1)

for all u € S"~'. If pg is positive and continuous, K is called a star body (about the
origin). Two star bodies K and L are said to be dilates (of one another) if pg (u)/pr(u)
is independent of u € §"~!.

If K is compact star-shaped with respect to x € R”, its radial function pg(x,-)
with respect to x is defined, for all u € S"~! such that the line through x parallel to u
intersects K, by (see [3])

px(x,u) =max{A >0:x+Auc K}. (2.2)
From (2.1) and (2.2), it easily follows
P (x.1) = P (1), (23)

for u € "1, We call (2.2) the extended radial function of K with respect to x. If x is
the origin o, then pg(x,u) = pg (u) for u € "~ 1.
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From (2.3) and (1.6), the following can immediately be obtained:

- 1 .
Wi(K —x) = . Pk (x,u)"'du. (2.4)

If K € 7, the polar body K* of K is defined by (see [2, 8])
“={xeR":x-y<l,yeK}.

Obviously, we have (K*)* =K.
From (2.1), we also know that: if K € %", then the support and the radial func-
tions of K* are given respectively by (see [2, 8])

1 1
hgs = — and = — 2.5
K= PR =g (2.5)

For K,L € . andreal A, > 0 (not both zero), the harmonic radial combination
A-KFu-Le. 7" is defined by (see [2])

p(A-KFu-L )"t =ap(K, )" +up(KL,)~". (2.6)
From (1.1), (2.5) and (2.6), we easily see that
(K+L)" =K*FL". (2.7)

The notion of the radial pth mean body was given by Gardner and Zhang (see [3]).
For K € JZ", the radial pth mean body R,K of K is defined for nonzero p > —1 by

proc() = ( g fLwteanrar) 28)

for each u € §"~!; for p = 0 define RyK by

PRk (1) = exp (ﬁ /Klong(x,u)dx) ,

for each u € §"~!. In particular, they proved that:
If Ke #" and p > —1, then

DK C ¢, pR,K, (2.9)
with equality if and only if K is a simplex. Here
1
cnp=mB(p+1,n)) 7, (2.10)

for nonzero p > —1, and

==

I

[¢]

e
S
=8
M=

ol B
—

¢no = lim(nB(p+1,n))
0=

where B(p + 1,n) is the Beta function.
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3. Proofs of the Theorems

The proof of Theorem 1.1 requires the following lemma (see [8]):
LEMMA 3.1. If K€ %", 0 <i<n, then

1 L

Wi(K + L) > Wi(K) 77 +Wi(L), (3.1)

with equality for 0 <i<n—1 if and only if K and L are homothetic; for i =n—1,
(3.1) is an identity.

Proof of Theorem 1.1. Using definition (1.2) of a difference body, inequality (3.1)
and definition (1.4), we obtain

L 1 L

W;(DK) =1 = Wi(K + (=K))m7 > W;(K)m= +W;(—K)m = 2W;(K) .

This yields (1.8). According to the condition of equality in (3.1), equality holds in
(1.8) for 0 <i<n—1 if and only if K and —K are homothetic, i.e. K is a centrally
symmetric convex body. For i =n — 1, (1.8) is an identity. [

The proof of Theorem 1.2 requires the following lemma:

LEMMA 3.2. If K,L€ .}, i isreal and i # n, thenfor i <norn<i<n+1,

WiKTL)™ ™ > Wi(K) ™ + Wi(L) ™7 (3.2)

with equality if and only if K and L are dilates; for i > n—+ 1, the inequality sign in
(3.2) is reversed.

Proof. Fori<norn<i<n-+1,since i—n <0 or 0 <i—n <1, then using
(1.6), (2.6) and the Minkowski integral inequality (see [4]), we know for K, L € .

1
- - 1 - . T n—i
WkFL) = |1 [ P L st

=i

n—i

- 1

T n—i

(
_ (%) /Sl (p(K,u)™" +p(L,u)1)(”">dS(u)]
(

) (K" ds(u) + /S B p(L,u)"de(u)]

L/ s
. S B
= ‘/VL(K) n—i —|— ‘/Vl(L) n—i
According to the equality condition in the Minkowski integral inequality, we see

that equality holds in (3.2) if and only if K and L are dilates.
Similarly, the reversed inequality in (3.2) can be proved for the case i >n+1. [
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Proof of Theorem 1.2. For i <n or n <i < n+ 1, together with identity (2.7),
definition (1.6) and inequality (3.2), we have that for K € JZ"

[

From this, inequality (1.9) is obtained. Equality holds in (1.9) if and only if K* and
(=K)* are dilates, i.e. K" is a centered convex body, which means K is a centered
convex body.

For i > n+1, according to (2.7), (1.6) and the reverse of (3.2), we easily prove
that inequality (1.9) is reversed. [J

For the proof of Theorem 1.3, the following two results are essential.

LEMMA 3.3. (see [5]) If K € ™, i isreal and O < i< n, then

with equality for 0 < i < n if and only if K is a centered ball or for i = 0.
LEMMA 3.4. (see [2]) If K is a centered convex body, then
V(K)V(K) < o, (3.4)
with equality if and only if K is an ellipsoid.
Note that inequality (3.4) is the well-known Blaschke-Santalo inequality.

Proof of Theorem 1.3. From inequalities (1.9), (3.3) and (3.4), we get

o | R
WD K)Wi(K) < 5 Wi(K*)Wi(K)
| n—i

ol VKV (K]

1
w2

= oon—iont

<

This gives inequality (1.10).

According to the conditions of equality in (1.9), (3.3) and (3.4), equality holds in
(1.10)if and only if i =0 and K is a centered ellipsoid or 0 < i < n and K is a centered
ball. O

In order to prove Theorem 1.5, we establish a lemma as follows:
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LEMMA 3.5. If K € ™", i is real and i < n, then there exists a point xy € K
such that

Wi(R,—iK) = Wi(K — xp). (3.5)
Proof. From formulas (1.6), (2.4) and definition (2.8), we have

. 1 i
WilRy-iK) =+ [ P )

1 nl
nV( /S" 1/pru dxdu

L / [1 pi(x, u)"_idu] dx

sn—1

/ Wi(K —x)d (3.6)
Integral mean value theorem implies that there exists a point xo € K such that
/KWK —)dx = Wi(K — xo) /de — Wi(K —x0)V (K).
This together with (3.6) gives

Wi(R,—iK) = ﬁ Wi(K —x0)V (K) = Wi(K — xo). O

Proof of Theorem 1.5. Since i < n, by letting p =n —1i in (2.9), it follows that
DK C ¢pn—iR,—;K . Using definition (1.6), we have

Wi(DK) < (cpn—i)"'Wi(Ry—iK). (3.7)
Since i is an integer and i < n, (2.10) gives
(enn-)"""= (7).
From this, (3.5) and (3.7), it follows that there exits xo € K such that
Wi(DK) < (% Y Wi(K — x0)-

According to the condition of equality in (2.9), equality holds in (1.11) if and only
if K is asimplex. [

Acknowledgement

The author is most grateful to the referees for the extraordinary attention they gave
to this paper.



48 WEIDONG WANG

REFERENCES

[1] G. D. CHAKERIAN, Inequalities for the difference body of a convex body, Proc. Amer. Math. Soc. 18
(1967), 879-884.

[2] R.J. GARDNER, Geometric Tomography, Cambridge Univ. Press, Cambridge, UK, 2nd edition, 2006.

[3] R.J. GARDNER AND G. Y. ZHANG, Affine inequalities and radial mean bodies, Amer. J. Math. 120
(1998), 505-528.

[4] G. H. HARDY, J. E. LITTLEWOOD AND G. POLYA, Inequalities, Cambridge University Press, Cam-
bridge, 1959.

[5] E. LUTWAK, Dual mixed volumes, Pacific J. Math. 58 (1975), 531-538.

[6] C. A. ROGERS AND G. C. SHEPHARD, The difference body of a convex body, Arch. Math. 8 (1957),
220-233.

[7]1 R. SCHNEIDER, Eine verallgemeinerung des differenzenkéorpers, Monatsh. Math. 74 (1970), 258-272.

[8] R. SCHNEIDER, Convex Bodies: The Brunn-Minkowski theory, Cambridge Univ. Press, Cambridge,
1993.

(Received November 3, 2009) Wang Weidong
Department of Mathematics

China Three Gorges University

Yichang, 443002

China

e-mail: wdwxh722@163.com

Mathematical Inequalities & Applications
www.ele-math.com

mia@ele-math.com



