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Abstract. In this paper, we study the properties of positive solutions of an integral equation in
Rn

u(x) =
∫

Rn

uγ (y)dy
|x− y|n−α |y|−σ , x ∈ Rn.

Such a nonlinear singular equation is related to the study of the best constant of the Hardy-So-
bolev type inequality. According to the Newton potential theory, this integral equation is helpful
to understand the Henon type partial differential equation when α = 2 . We use the weighted
Hardy-Littlewood-Sobolev inequality to obtain the optimal integrability interval of positive in-

tegrable solutions. Namely, if u ∈ L
2n

n−α−σ (Rn) , then u ∈ Lt (Rn) for all t > n
n−α−σ . Based on

this result, we prove that those integrable solutions must be bounded.

1. Introduction

In this paper, we study the integrable positive solutions of the following integral
equation involving the weighted Riesz potential

u(x) =
∫

Rn

uγ(y)dy
|x− y|n−α |y|−σ , x ∈ Rn, (1.1)

where

n � 3, σ � 0, α + σ > 0, n−α + σ > 0, γ =
n+ α + σ
n−α −σ

. (1.2)

This type integral equation is associated with the best constant of the Hardy-
Sobolev inequality and the more general Caffarelli-Kohn-Nirenberg inequality (cf. [3],
[13]). The positive integrable solutions of (1.1) are closely related to the extremal
functions of those inequalities. When α = 2, the equation is the singular Henon type
equation [6] as a model to study spherically symmetric clusters of stars. From a math-
ematical point of view, its quantitative properties are important and interesting in the
critical point theory and the nonlinear elliptic equations (cf. [2], [4], [5], [9], [14] and
the references therein). The local singularity near the origin was studied in [1].
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Recently, [16] studied the properties of the integrable solutions of the following
integral system ⎧⎪⎪⎨

⎪⎪⎩
u(x) =

∫
Rn

vp(y)uq(y)
|x− y|n−α |y|−σ dy

v(x) =
∫

Rn

vq(y)up(y)
|x− y|n−α |y|−σ dy.

(1.3)

When u = v and p+q = γ , this system is reduced to (1.1). Thus, we can also see the
following results from [16].

PROPOSITION 1.1. Let u ∈ Ls(Rn) be a positive solution of (1.1) , where s =
2n

n−α−σ . Then u is radially symmetric and monotone decreasing about the origin 0 .

PROPOSITION 1.2. Under the same assumption of Proposition 1.1, we have u ∈
Lt(Rn) for all 1

t ∈ (−σ
n , n−α−σ

n ) .

PROPOSITION 1.3. Under the same assumption of Proposition 1.1, if α +sσ � 0 ,
then u is bounded.

In addition, Remark 3.1 in [16] shows that the right end point n−α−σ
n of the inte-

grability interval in Proposition 1.2 is optimal. Remark 3.3 in [16] shows that the left
end point −σ

n is not optimal when α + sσ � 0.
In this paper, we remove the restricted condition α + sσ � 0, and give a simple

proof of the boundedness for the integrable solutions. This simple proof is based on
the better integrability interval of those solutions. Namely, u ∈ Lt(Rn) for all 1

t ∈
(0, n−α−σ

n ) . Such an interval was shown by Remark 3.3 in [16] and Proposition 1.2
when α +sσ � 0. When α +sσ < 0, we will extend the left end point from −σ

n (which
has been given in Proposition 1.2) to 0 in this paper. Thus, we complete thoroughly the
integrability interval in all cases.

THEOREM 1.1. Under the same assumption of Proposition 1.1, we have u ∈
Lt(Rn) for all 1

t ∈ (0, n−α−σ
n ) .

THEOREM 1.2. Under the same assumption of Proposition 1.1, u is bounded.

REMARK. Theorem 1.1 answers the question in Remark 3.2 of [16]. In fact, let
w = u+ v and p+q = γ . Then it follows from (1.3) that

w(x) � C
∫

Rn

wγ (y)dy
|x− y|n−α |y|−σ .

If we set K(x) = w(x)[
∫
Rn

wγ (y)dy
|x−y|n−α |y|−σ ]−1 , then 0 < K(x) � C and

w(x) = K(x)
∫

Rn

wγ (y)dy
|x− y|n−α |y|−σ .
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Noting the boundedness of K(x) , we can also obtain the boundedness of w by the same
proof of Theorem 1.1.

To prove Theorem 1.1, we need to use the weighted Hardy-Littlewood-Sobolev
(WHLS) inequality (cf. [15])

∫
Rn

∫
Rn

f (x)g(y)
|x|α |x− y|λ |y|β dxdy � Cα ,β ,s,λ ,n‖ f‖r‖g‖s,

where 1 < s,r < ∞ , 0 < λ < n , λ � λ = λ + α + β � n , 1
r + 1

s + λ
n = 2, α

n <

1− 1
r < λ+α

n , β
n < 1− 1

s < λ+β
n . In this paper, we will use another equivalent form

of the WHLS inequality which can be found in [7] (i.e. (2.8) in [7]): let Tg(x) =∫
Rn

g(y)
|x|α |x−y|λ |y|β dy , then

‖Tg(x)‖p � C‖g(x)‖s (1.4)

where 1+ 1
p = 1

s + λ+α+β
n , 1 < s, p < ∞ , α +β � 0, 0 < λ < n and 1

p − λ
n < α

n < 1
p .

To find the best constant of the WHLS inequality, Lieb [11] obtained the following
Euler-Lagrange system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(x) =
1

|x|α
∫

Rn

vq(y)
|y|β |x− y|λ dy

v(x) =
1

|x|β
∫

Rn

up(y)
|y|α |x− y|λ dy.

(1.5)

Such a system has the analogous properties as (1.1). The radial symmetry and the
integrability intervals of the integrable solutions of (1.5) were obtained by Jin and Li
(cf. [7] and [8]). However, the integrable solutions of (1.5) are not bounded, because
those solutions have singularity near the origin 0 (cf. [10]).

2. Proofs of Theorems

Proof of Theorem 1.1. Combining Remark 3.3 in [16] and Proposition 1.2, we
know that u ∈ Lt (Rn) for all 1

t ∈ (0, n−α−σ
n ) when α +(γ + 1)σ � 0. Therefore, we

only consider the case of
α +(γ +1)σ < 0. (2.1)

Step 1. Write

a0 =
−σ
n

, a j+1 = a jγ − α + σ
n

, j = 1,2, · · · . (2.2)

By induction we can prove that {a j} is a decreasing sequence.
In fact, n−α + σ > 0 implies

−σ
n

<
n−α −σ

2n
,
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which means a0 < α+σ
n(γ−1) or

a0(γ −1)− α + σ
n

< 0. (2.3)

This leads to
a1 < a0.

Suppose
a j < a j−1 for j = 1,2, · · · ,k.

By this and (2.3),

ak(γ −1) <
α + σ

n
.

Therefore,

ak+1 = akγ − α + σ
n

< ak.

Step 2. From (2.1) we have a1 > 0 and

1
r1

:=
ε −σ

n
γ − α + σ

n
> 0 (2.4)

with ε > 0 sufficiently small.
Applying the weighted Hardy-Littlewood-Sobolev inequality (1.4), from (1.1) we

can deduce that

‖u‖Lr1(Rn) � C‖uγ‖
L

nr1
n+(α+σ)r1 (Rn)

= C‖u‖γ
Ls1(Rn), (2.5)

where
s1 =

nr1γ
n+(α + σ)r1

.

Noting (2.4), we get
1
s1

=
( 1

r1
+

α + σ
n

)1
γ

=
ε −σ

n
.

Taking ε > 0 suitably small, we see

1
s1

∈
(−σ

n
,
n−α −σ

n

)
.

According to Proposition 1.2, we can see ‖u‖Ls1 (Rn) < ∞ . Hence, (2.5) leads to u ∈
Lr1(Rn) .

Let 1 < p < q . If u ∈ Lp(Rn)∩Lq(Rn) , then u ∈ Lθ (Rn) for all θ ∈ (p,q) (cf. Ch
2 in [12]).

Thus, combining u ∈ Lr1(Rn) with Proposition 1.2, we have

u ∈ Lt(Rn), ∀1
t
∈

( 1
r1

,
n−α −σ

n

)
.
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Since a1 is the limit of the left end point of the open interval above, letting ε → 0, we
see easily that

u ∈ Lt (Rn), ∀1
t
∈

(
a1,

n−α −σ
n

)
.

By virtue of 0 < a1 < a0 , we extend the left end point of the integrability interval from
a0 to a1 .

Step 3. By the same argument of Step 2, from u ∈ L1/(a1+ε)(Rn) , we can use the
WHLS inequality to improve the integrability interval from (a1,

n−α−σ
n ) to (a2,

n−α−σ
n )

as long as a2 > 0. Similarly, by k steps we can also obtain that the integrability interval
is (ak,

n−α−σ
n ) as long as ak > 0.

Suppose a j > 0 for all j . Combining with Step 1, we see that the sequence {a j}
is convergent. If we denote a j − α+σ

n(γ−1) by b j , then {b j} is also convergent. On the
other hand, (2.2) leads to

b j+1 = γb j = γ2b j−1 = · · · = γ j+1b0.

In view of γ > 1, {b j} is not a convergent sequence. This contradiction shows that
there must be l such that al � 0.

Step 4. When al = 0, then Theorem 2.1 is proved. When

al < 0 and al−1 > 0,

then

al−1 <
α + σ

nγ
.

In addition, n > α + σ and γ = n+α+σ
n−α−σ lead to (α + σ)(γ + 1) < nγ , which implies

α+σ
nγ < n−α−σ

n . Therefore,

α + σ
nγ

∈
(
al−1,

n−α −σ
n

)
.

On the other hand, Step 3 shows that by l−1 steps, we can verify (al−1,
n−α−σ

n ) is an
integrability interval since al−1 > 0. Hence,

u ∈ L
nγ

α+σ (Rn). (2.6)

Similar to the argument of Step 2, if we replace u∈ Ls1(Rn) by (2.6) and use the WHLS
inequality, we also deduce that the integrability interval is (0, n−α−σ

n ) . �

Next, we extend the integrability interval from (0, n−α−σ
n ) to [0, n−α−σ

n ) .
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Proof of Theorem 1.2. According to Proposition 1.1, we know that u(x) is radially
symmetric and decreasing about the origin 0. Set

U(r) = U(|x|) = u(x).

Thus, by Theorem 2.1, for any 1
t ∈ (0, n−α−σ

n ) , we have

Ut(R)
(R

2

)n
log2 �

∫ R

R/2
Ut(r)rn−1dr � C.

If we take 1
t = ε

n with ε sufficiently small, then for small |x| ,
u(x) � C|x|−ε . (2.7)

In view of (1.1), for small |x| ,

u(x) =
∫

Bδ (0)

|y|σ uγ(y)dy
|x− y|n−α +

∫
Rn\Bδ (0)

|y|σ uγ(y)dy
|x− y|n−α := I1 + I2.

By virtue of (2.7), it follows

I1 � C
∫ δ

0
rα+σ−γε dr

r
.

Noting ε is sufficiently small, we can see α + σ − γε > 0. Thus I1 < ∞ .
When |x| is sufficiently small,

I2 � C
∫

Rn\Bδ (0)

uγ(y)dy
|y|n−α−σ .

By Proposition 2.2, if we take

1
k

=
γ(n−α −σ)− ε

n
,

then u ∈ Lkγ (Rn) . Applying the Hölder inequality, we obtain

I2 � C‖u‖γ
kγ

(∫ ∞

δ
rn−(n−α−σ)k′ dr

r

)1/k′
.

Here
1
k′

= 1− 1
k

<
n−α −σ

n
.

Therefore, I2 < ∞ . The boundedness of u is proved. �
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