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ON MEAN VALUES OF FOURIER TRANSFORMS
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Abstract. We show that there exists a sequence {nk ,k � 1} growing at least geometrically such
that for any finite non-negative measure ν such that ν̂ � 0 , any T > 0 ,∫ 2nk T

−2nk T
ν̂(x)dx �ε T 22(1+ε)nk

∫
R

∣∣∣ sinxT
xT

∣∣∣n2
k ν(dx).

1. Introduction

Let ν be a finite non-negative measure on R , ν̂(t) =
∫
R eitxν(dx) , then

1
T

∫ T

−T
ν̂(t)dt =

∫
R

sinTu
Tu

ν(du).

Assume ν̂ � 0, then∣∣∣∫
R

(sinTu/2
Tu/2

)2
ν(du)

∣∣∣ � 1
T

∫ T

−T
ν̂(x)dx � 3

∫
R

( sinTu/2
Tu/2

)2
ν(du). (1.1)

The first inequality is in turn true at any order: for any positive integer κ ,∣∣∣∫
R

( sinTu/2
Tu/2

)2κ
ν(du)

∣∣∣ � 1
T

∫ κT

−κT
|ν̂(x)|dx. (1.2)

The question whether the second inequality admits a similar extension arises nat-
urally. We show the existence of a general form of that inequality in which appear
constants growing fastly with κ .

THEOREM 1.1. There exists a sequence {nk,k � 1} growing at least geometri-
cally such that for any finite non-negative measure ν such that ν̂ � 0 , any T > 0 , we
have ∫ 2nk T

−2nk T
ν̂(x)dx �ε T 22(1+ε)nk

∫
R

∣∣∣sinxT
xT

∣∣∣n2
k ν(dx).
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We don’t know whether the constant 22(1+ε)nk can be significantly weakened. We
believe that this is an important question because of the natural interpretation of mean
value problem for Dirichlet polynomials and for the Riemann Zeta function as Fourier
inversion formula, see the survey [2], Section 3 and the recent work [3] related to
Dirichlet polynomials. The proof of Theorem 1.1 is rather delicate. In order to pre-
pare it, and also to provide the necessary hints concerning inequalities (1.1), (1.2), we
begin with introducing some auxiliary functions and displaying some related properties
as well.

Let K(t) = (1− |t|)+ , T > 0 and define KT (t) = K(t/T ) = (1− |t|/T)χ{|t|�T} .
Then

K̂(u) =
(sinu/2

u/2

)2
, K̂T (u) =

1
T

(sinTu/2
u/2

)2
.

It is easy to check that KT (t)+KT (t +T )+KT (t−T ) = 1, if |t| � T . It follows that

χ{|t−H|�T} � KT (t−H)+KT (t−H +T)+KT (t−H−T ). (1.3)

This can be used to prove (1.1). Since
∫
R KT (t − S)ν̂(t)dt =

∫
R eiSxK̂T (x)ν(dx) , we

deduce∫ H+T

H−T
ν̂(t)dt �

∫
R

[
KT (t−H)+KT (t−H +T )+KT (t−H−T )

]
ν̂(t)dt

�
∫

R
K̂T (u)

[
eiHu + ei(H−T)u + ei(H+T)u

]
ν(du)

=
1
T

∫
R

(sinTu/2
u/2

)2
eiHu[1+2cosTu]ν(du).

This immediately implies the second inequality in (1.1). Notice also by using Fubini’s
theorem, that for any reals S , γ , T , T > 0 and any integer κ > 0,∫

R

(sinT (u− γ)/2
T (u− γ)/2

)2κ
eiSuν(du) =

1
T

∫
R

e−iγ(y−S)K∗κ
(y−S

T

)
ν̂(y)dy. (1.4)

Letting κ = 1, γ = S = 0, gives

1
T

∫
R

( sinTu/2
u/2

)2
ν(du) =

∫
R

KT (y)ν̂(y)dy.

As 0 � KT (y) =
(
1−|y|/T)χ{|y|�T} � χ{|y|�T} , we deduce∣∣∣ 1

T

∫
R

( sinTu/2
u/2

)2
ν(du)

∣∣∣ �
∫

R
KT (y)|ν̂(y)|dy �

∫ T

−T
|ν̂(y)|dy,

which yields the first inequality in (1.1).
As to (1.2), some properties of basic convolutions products are needed. Consider

for A > 0 the elementary measures μA with density gμA(x) = χ{[−A,A]}(x) . Let 0 <
A � B . Plainly

gμA ∗ gμB(x) =
∫

R
gμA(x− y)gμB(y)dy =

∫ B

−B
χ{[x−A,x+A]}(y)dy

= λ
(
[−B,B]∩ [x−A,x+A]

)
=

[
B∧ (x+A)− (x−A)∨ (−B)

]
χ{[−A−B,A+B]}(x). (1.5)
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In particular, introducing the function g(x) = χ[− 1
2 , 1

2 ](x) , we have K(t) = g ∗ g(t) .
More generally, using the notation gμA∗μB∗...(x) = gμA ∗ gμB ∗ . . .(x) ,

LEMMA 1.2. Let 0 < A1 � A2 � . . . � AJ and μ = μA1 ∗ μA2 ∗ . . .∗ μAJ . Then μ
has density g satisfying

0 � g(x) � GJ · χ{[−(A1+A2+...+AJ),A1+A2+...+AJ ]}(x),

where

GJ = 2JA1 ·
(
(A1 +A2)∧A3

) · ((A1 +A2 +A3)∧A4
)
. . .

(
(A1 + . . .+AJ−1)∧AJ

)
.

Proof. We prove it by induction. By (1.5), for every real x

0 � gμA1
∗μA2

(x) � 2A1 · χ{[−A1−A2,A1+A2]}(x) = 2A1 ·gμA1+A2
(x).

The case J = 2 is proved. Now for J = 3, by what preceeeds

gμA1
∗μA2

∗μA3
(x) =

∫ A3

−A3

gμA1
∗μA2

(x− y)dy � 2A1

∫ A3

−A3

gμA1+A2
(x− y)dy

= 2A1 gμA1+A2
∗μA3

� 2A1 2(A3∧A1 +A2) · χ{[−A1−A2−A3,A1+A2+A3]}(x).

The general case follows by iterating the same argument.
In particular, for any positive J ,

0 � K∗J(x) � χ{[−J,J]}(x). (1.6)

Indeed, apply Lemma 1.2 with Aj ≡ 1/2. We get

0 � K∗J(x) = g∗2J(x) � G2J · χ{[−J,J]}(x),

and G2J = 22J ·2−2J = 1. Inequality (1.2) is yet a direct consequence of (1.4) and (1.6).
Now, we pass to the preparation of the proof of Theorem 1.1, and begin to explain

how we shall proceed. By using (1.3) with H = 0, T = 1/2, we get

g(x) � g∗2(2x)+g∗2(2x+1)+g∗2(2x−1). (1.7)

An important intermediate step towards the proof of Theorem 1.1 will consist to
generalizing that inequality. Our approach can be described as follows. As g∗2(2v) =∫
R g(2v− y)g(y)dy , (1.7) can be used to bound the integration term g(y) . And by next

reporting this into (1.7), it follows that g(x) can also be bounded by a sum of terms of
type g∗3 . Call E this operation. By iterating E , we similarly obtain variant forms of
(1.3), involving higher convolution powers of g . The study of the iterated action of E ,
as well as the order of the constants generated is made in the next section. The action
of E will be first described as the combination of two elementary transforms acting
alternatively.
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2. Stacks and shifts

We first introduce some operators and related auxiliary results, as well as the nec-
essary notation. Given f : R → R and a > 0, let Ta f (x) = f ( x

a ) be the dilation of f
by a−1 . Plainly TaTb = Tab . Notice also that

Ta(h ∗ f ) =
1
a

Tah ∗Ta f , h ∈ L1(R), f ∈ L∞(R). (2.1)

Indeed

Ta(h ∗ f )(u) =
∫

R
h
(u

a
− x

)
f (x)dx =

∫
R

Tah(u−ax)Ta f (ax)dx

=
1
a

∫
R

Tah(u− v)Ta f (v)dv =
1
a
Tah ∗Ta f (u).

More generally

Ta(h1 ∗ . . .∗ hn) =
1

an−1 Ta(h1)∗ . . .∗Ta(hn), h1, . . . ,hn ∈ L∞(R). (2.2)

Introduce also the g -dilations

gk = T2−kg, k = 1,2, . . . .

Now let I be a finite subset of R . It will be convenient to denote

Σ[ f (x) : I] = ∑
ρ∈I

f (x+ ρ). (2.3)

We have

Σ[ f (bx) : I] = Σ
[
T1

b
f (x) :

1
b
I

]
. (2.4)

And
Σ̂[ f : I](t) = f̂ (t)

(
∑
ρ∈I

e−itρ
)
. (2.5)

The linear operator f 
→ Σ[ f : I] on L1(R) commutes with the convolution operation:

f ∗Σ[h : I] = Σ[ f ∗ h : I]. (2.6)

Further Σ[ f :I] � 0 if f � 0. We use the standard arithmetical set notation: λ I = {λ ρ :
ρ ∈ I} and if I , J are two finite subsets, I + J = {ρ +η : ρ ∈ I,η ∈ J} , repetitions are
counted. This is relevant since

Σ
[
Σ[ f (x) : I] :J

]
= Σ[ f (x) : I + J]. (2.7)

Let j0 < j1 . . . < jk be a finite set of positive integers, which we denote J . Let
C = {c j, j ∈ J} be some other set of positive integers, not necessarily distinct. We
identify (J,C) with U := {( j,c j), j ∈ J} , and put

J∗ =

{
J if c j0 > 1

J\{ j0} if c j0 = 1.
(2.8)
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Define the transform J → J1 as follows

J1 = D(J) := J∗ ∪ ( j0 + J). (2.9)

Next define C →C1 by putting

C1 = T (C) := {c1
j , j ∈ J1}, (2.10)

where

c1
j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c j + c j− j0 if j ∈ J∗ ∩ ( j0 + J)
c j− j0 if j ∈ (J∗)c ∩ ( j0 + J)
c j if j ∈ J∗ ∩ ( j0 + J)c and j > j0
c j0−1 if j0 ∈ J∗.

(2.11)

Similarly we identify (J1,C1) with U1 := {( j,c1
j ), j ∈ J1} The successive trans-

forms (J,C)→ (J1,C1)→ (J2,C2)→ . . . turn up to describe the iterated of E , and may
be compared to the action of superposing shifted functions. We start with J = {1} ,
C = {2} corresponding to the basic set

U = {(1,2)}.

It is easy to check that the iterated transforms of U progressively generate the sequence
of sets

(1,1),(2,2)
(2,3),(3,2)
(2,2),(3,2),(4,3),(5,2)
(2,1),(3,2),(4,5),(5,4),(6,3),(7,2)

(3,2),(4,6),(5,6),(6,8), (7,6), (8,3), (9,2)
(3,1),(4,6),(5,6),(6,10),(7,12),(8,9),(9,10),(10,6),(11,3),(12,2)

. . .

At the m-th step, the set Jm is an interval of integers {am, . . . ,bm} with am → ∞
slowly, whereas bm → ∞ very rapidly. More precisely, let for k = 1,2, . . .

rk = max
m�1

cm
k .

Then r1 = 2,r2 = 3,r3 = 2,r4 = 6, . . . etc. And define

Rk = r1 + . . .+ rk, ζk = 1+ r1 +2r2 + . . .+ krk. (2.12)

Let Rk−1 < m � Rk . At step m , Jm is realized by first shifting Jm−1 on the right from
a length k , next taking union with J∗m−1 and in turn

Jm =
{
k,k+1, . . . ,ζk−1 +(m−Rk−1)k

}
,

if m < Rk , whereas JRk =
{
k+1, . . . ,ζk

}
.
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Write m = Rk−1 +h , 1 � h � rk . Then we have the relations

cm
j =

{
cRk−1

j−k +[rk + . . .+(rk −h+1)] 2k � j � ζk−1 +(m−Rk−1)k,
c
Rk−1
j k � j < 2k.

(2.13)

After the steps Rk−1 +1,Rk−1 +2, . . . ,Rk , the function h 
→ c
Rk−1+h
n will have increased

from

rk +(rk −1)+ . . .+2+1 =
rk(rk +1)

2

for all n ∈ {
2k, . . . ,ζk−1

}
. It follows that

min
n∈{2k,...,ζk−1}

rn � r2
k

2
. (2.14)

Therefore r2k � r2
k/2. This being true for all k , yields by iteration

r2 j � 1
2

(r2 j−1)2 � 1
2

1
22 (r2 j−2)22 � . . . � 1

21+2+...+2H−1 (r2 j−H )2H
=

( r2 j−H

2

)2H

.

We have r2 = 3. Thus

r2 j �
(3

2

)2 j−1

, j = 1,2, . . . . (2.15)

We shall deduce from this and (2.14) that rk grows at least geometrically. Let n and
let j be such that 2 j+1 � n < 2 j+2 . Apply (2.14) with k = 2 j . As n � 2k , we have
rn � r2

2 j/2 once 2 j+2 � ζ2 j−1 . But

ζ2 j−1 � ζ2 j−1 = 1+ r1 +2r2 + . . .+2 j−1r2 j−1 � 2 j−1
(3

2

)2 j−2

� 2 j+2.

Thereby, for j large

rn � 1
2
r2
2 j � 1

2

(3
2

)2 j−1

=
1
2

(3
2

) 2 j+2
8 � 1

2

(3
2

) n
8 =

1
2
e( 1

8 log 3
2 )n.

Consequently, there is a numerical constant ρ > 1, such that for all n � 1, we have

rn � ρn. (2.16)

Let jm := #{Jm} . Since jm = ζk−1 +(m−Rk−1−1)k if Rk−1 < m � Rk , we have

∑
Rk−1<m�Rk

jm = ∑
Rk−1<m�Rk

(ζk−1 +(m−Rk−1−1)k) = rkζk−1 + k
rk−1

∑
u=1

u.

We thus notice for later use that

∑
Rk−1<m�Rk

jm = rkζk−1 + k
rk(rk +1)

2
. (2.17)
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Let
∗

∏
j

f j denotes the convolution product of f j ’s. Finally we put

I =
{−1

2
,0,

1
2

}
.

The key estimate for proving Theorem 1.1 is provided in our next result, which
extends inequality (1.7) to arbitrary convolution powers of g .

PROPOSITION 2.1. Let k � 1 and Rk−1 < m � Rk . Then

g(x) � Cm Σ
[ ∗

∏
( j,c j)∈Um

g
∗c j
j (x) : Im

]
,

where Im,Cm are defined by the recurrence relations: I0 =
{−1

2 ,0, 1
2

}
, C0 = 2 and

Im = Im−1 + rk Im−1, Cm = 2k( jm−1−1)C2
m−1.

Proof. We use repeatively the relation (see (2.1))

T1
2
(h ∗ f ) = 2T1

2
h ∗T1

2
f ,

f ∈ L∞(R) , h ∈ L1(R) . By (1.7),

g(x) � 2
{

g∗21 (x)+g∗21

(
x+

1
2

)
+g∗21

(
x− 1

2

)}
= C0Σ

[
g∗21 (x) : I

]
= Σ

[ ∗
∏

( j,c j)∈U

g
∗c j
j (x) : I

]
. (2.18)

Now we apply E . We begin with the ”stack” of 1’s of height r1 = 2. At first

g∗21 (x) =
∫

R

g1(x− y)g1(y)dy =
∫

R

g1(x− y)g(2y)dy

� C0

∫
R

g1(x− y)Σ
[
g∗21 (2y) : I

]
dy.

But by (2.4), next (2.1)

Σ
[
g∗21 (2y) : I

]
= Σ

[
T1

2
(g∗21 )(y) :

1
2
I
]

= Σ
[
2(T1

2
g1)∗2(y) :

1
2
I
]

= 2Σ
[
g∗22 (y) :

1
2
I
]
.

Therefore

g∗21 (x) � 2C0

∫
R

g1(x− y)Σ
[
g∗22 (y) :

1
2
I
]
dy = 2C0Σ

[
g1 ∗ g∗22 (x) :

1
2
I
]
.

By reporting in (2.18), we obtain

g(x) � C0(2C0)Σ
[
Σ
[
g1 ∗ g∗22 (x) :

1
2
I
]

: I
]

= C1Σ
[
g1 ∗ g∗22 (x) : I1

]
= C1 Σ

[ ∗
∏

( j,c j)∈U1

g
∗c j
j (x) : I1

]
. (2.19)
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And C1 = 8.
We now apply E once again, and bound the generic product g1 ∗g∗22 (x) by apply-

ing (2.19) to g1 . Concretely∫
R

g∗22 (x− y)g1(y)dy =
∫

R

g∗22 (x− y)g(2y)dy

� C1

∫
R

g∗22 (x− y)Σ
[
g1 ∗ g∗22 (2y) : I1

]
dy

= 23−1C1

∫
R

g∗22 (x− y)Σ
[
g2 ∗ g∗23 (y) :

1
2
I1

]
dy

= 22C1Σ
[
g∗32 ∗ g∗23 (x) :

1
2
I1

]
.

By reporting in (2.19), we obtain

g(x) � C1(22C1)Σ
[
Σ
[
g∗32 ∗ g∗23 (x) :

1
2
I1

]
: I1

]
= C2Σ

[
g∗32 ∗ g∗23 (x) : I2

]
= C2 Σ

[ ∗
∏

( j,c j)∈U2

g
∗c j
j (x) : I2

]
. (2.20)

And C2 = 256. For the next E -iteration, as we have exhausted the stack of 1’s, we
now use the stack of 2’s of height r2 = 3. We bound the new the generic product
g∗32 ∗ g∗23 (x) by applying (2.20) to g2(x) as follows:∫

R
g∗22 ∗ g∗23 (x− y)g2(y)dy =

∫
R

g∗22 ∗ g∗23 (x− y)g(22y)dy

� C2

∫
R

g∗22 ∗ g∗23 (x− y)Σ
[
g∗32 ∗ g∗23 (4y) : I3

]
dy

= 22(3+2−1)C2

∫
R

g∗22 ∗ g∗23 (x− y)Σ
[
g∗34 ∗ g∗25 (y) :

1
4
I2

]
dy

= 28C2 Σ
[
g∗22 ∗ g∗23 ∗ g∗34 ∗ g∗25 (x) :

1
4
I2

]
.

By reporting in (2.20), we obtain

g(x) � 28C2
2 Σ

[
Σ
[
g∗22 ∗ g∗23 ∗ g∗34 ∗ g∗25 (x) :

1
4
I2

]
: I2

]
= C3Σ

[
g∗22 ∗ g∗23 ∗ g∗34 ∗ g∗25 (x) : I3

]
, (2.21)

with C3 = 16777216. And so on.
To simplify, let k � 1 and Rk−1 < m � Rk . At step m , we play with the stack

of k ’s of height rk and apply the bound previously obtained to the least dilation of
g in the generic product G = ∏∗

( j,c j)∈Um−1
g
∗c j
j (x) from the previous step. The dila-

tion factor being 2k , the bound of gk(x) thereby produces the new terms T2−k(G)(x) =
∏∗

( j,c j)∈Um−1
g
∗c j
j+k(x) . Hence by (2.2), after integration, a constant factor 2k( jm−1−1)Cm−1 .

Next we report the bound obtained for the generic products in the inequality from the
preceding step. This is exactly what describes transform D . This generates a new con-
stant factor Cm−1 . Together with the preceding constant factor, this gives the constant
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2k( jm−1−1)C2
m−1 = Cm . The rule concerning constants Cm being the same at each step

inside the block ]Rk−1,Rk] , we have the recurrence relation

Cm = 2k( jm−1−1)C2
m−1. (2.22)

And the transform cm−1
j 
→ cm

j is described by T . �

Let k � 1. Put
γk = ∑

j∈JRk

cRk
j , dk = ∑

j∈JRk

jcRk
j . (2.23)

We shall now deduce the following estimate.

PROPOSITION 2.2. Let ν be a finite measure such that ν̂ � 0 . Then for any
W > 0

1
2W

∫ W

−W
ν̂(t)dt � CRk 2−dk+1

∫
R

∏
( j,c j)∈URk

[ sin( 2Wx
2 j )

2Wx
2 j

]c j
∣∣∣ ∑

ρ∈2WIRk

e−iρx
∣∣∣ν(dx).

Proof. Recall that JRk =
{
k+1, . . . ,ζk

}
. Further, by (2.12)

γk � r2
k

2
(ζk−1 −2k) =

r2
k

2
ζk−1

(
1− 2k

ζk−1

)
�

(1− ε
2

)
r2
kζk−1, (2.24)

once k � kε . Similarly

dk � r2
k

2 ∑
j∈{2k,...,ζk−1}

j � r2
k

4
(ζ 2

k−1−4k2) �
(1− ε

4

)
r2
kζ 2

k−1 (2.25)

for k large enough.
By Proposition 2.1, with m = Rk

g(t) � CRk Σ
[ ∗

∏
( j,c j)∈URk

g
∗c j
j (t) : IRk

]
.

Let W > 0. Then by (2.4), next (2.2)

χ[−W,W ](t) = g
( t
2W

)
� CRk Σ

[ ∗
∏

( j,c j)∈URk

g
∗c j
j

( t
2W

)
: IRk

]
= CRk Σ

[
T2W

( ∗
∏

( j,c j)∈URk

g
∗c j
j

)
(t) : 2WIRk

]
=

CRk

(2W )γk−1 Σ
[ ∗

∏
( j,c j)∈URk

(T2W g j)∗c j (t) : 2W IRk

]
. (2.26)
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By (2.5)

Σ̂
[ ∗

∏
( j,c j)∈URk

(T2W g j)∗c j : 2W IRk

]
(x) = ∏

( j,c j)∈URk

T̂2W g j(x)c j

{
∑

ρ∈2WIRk

e−iρx
}

. (2.27)

But

T̂2Wg j(x) =
∫

R

eixug
(2 ju

2W

)
du =

2W
2 j

∫
R

e
i2W
2 j xvg(v)dv =

2W
2 j ĝ

(2Wx
2 j

)
.

Hence

Σ̂
[ ∗

∏
( j,c j)∈URk

(T2W g j)∗c j : 2WIRk

]
(x)

= (2W )γk2−dk ∏
( j,c j)∈URk

ĝ
(2Wx

2 j

)c j
{

∑
ρ∈2WIRk

e−iρx
}
. (2.28)

And by the Parseval relation

1
2W

∫ W

−W
ν̂(t)dt � CRk

(2W )γk

∫
R

Σ
[ ∗

∏
( j,c j)∈URk

(T2W g j)∗c j (t) : 2WIRk

]
ν̂(t)dt

=
CRk

(2W )γk
(2W )γk2−dk

∫
R

∏
( j,c j)∈URk

ĝ
(2Wx

2 j

)c j
{

∑
ρ∈2WIRk

e−iρx
}

ν(dx)

= CRk 2−dk+1
∫

R
∏

( j,c j)∈URk

( sin( 2Wx
2 j )

2Wx
2 j

)c j
{

∑
ρ∈2WIRk

e−iρx
}

ν(dx). � (2.29)

3. Proof of Theorem 1.1

By assumption ν � 0. Choose W = 2ζkT . Then

sin( 2Wx
2 j )

2Wx
2 j

=
sin(2ζk+1− jxT )

2ζk+1− jxT

But we have that ∣∣sin n

∑
k=1

xk

∣∣ �
n

∑
k=1

sinxk, (3.1)

if 0 < xk < π and n > 1, see [1] p. 236. From this easily follows that |sinnx|� n|sinx|
for any real x and any integer n . Indeed, write x = x′ + kπ with 0 < x′ < π . Then
|sinnx| = |sin(nx′ +nkϕ)|= |sinnx′| � n|sinnx′| = n|sinnx| .

Consequently ∣∣∣ sin2ζk+1− jxT

2ζk+1− jxT

∣∣∣ �
∣∣∣sinxT

xT

∣∣∣. (3.2)
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By reporting and since #{IRk} = 3Rk we get

1

2.2ζkT

∫ 2ζkT

−2ζk T
ν̂(dt) � CRk3

Rk2−dk

∫
R

∣∣∣ sinxT
xT

∣∣∣γk
ν(dx). (3.3)

And by using estimates (2.24), (2.25)

1

2.2ζkT

∫ 2ζk T

−2ζk T
ν̂(dt) � CRk3

Rk2−
1
5 r2kζ 2

k−1

∫
R

∣∣∣sinxT
xT

∣∣∣ 1
3 r2kζk−1

ν(dx). (3.4)

We now estimate CRk . By iterating inside the block of integers ]Rk−1,Rk] the recurrence
relation Cm = 2k( jm−1−1)C2

m−1 obtained in Proposition 2.1, we obtain

CRk = 2k{( jRk−1
−1)+...+( jRk

−1)}C2rk
Rk−1

.

According to (2.17), we have

k{( jRk−1 −1)+ . . .+( jRk −1)} = k ∑
Rk−1<m�Rk

( jm −1)

= krk(ζk−1 −1)+ k2 rk(rk +1)
2

.

As ζk = 1+ r1 +2r2 + . . .+ krk , it follows that

krk(ζk−1 −1)+ k2 rk(rk +1)
2

� krkζk−1 + k2r2
k � ζkζk−1 + ζ 2

k � 2ζ 2
k .

Thus
CRk � 22ζ 2

k C2rk
Rk−1

. (3.5)

By successively iterating this, and since CR1 = 2, we get

CRk � 22{ζ 2
k +ζ 2

k−12
rk +ζ 2

k−2(2
rk +2rk−1)+...+ζ 2

2 (2rk+...+2r3 ))}22rk+2rk−1+...+2r2

� 22.2rk kζ 2
k .

But rk � ρk by (2.16), so that

Rk � ζk = 1+ r1 +2r2 + . . .+ krk �ε 2εrk .

Hence also
CRk � 22(1+ε)rk . (3.6)

Finally,

1
T

∫ 2ζk T

−2ζkT
ν̂(dt) �ε 22(1+ε)rk 2ζk− 1

5 r2k ζ 2
k−1

∫
R

∣∣∣ sinxT
xT

∣∣∣ 1
3 r2k ζk−1

ν(dx)

�ε 22(1+ε)rk
∫

R

∣∣∣ sinxT
xT

∣∣∣r2k ν(dx). (3.7)

Thereby, since ζk � rk∫ 2rk T

−2rk T
ν̂(dt) �ε T 22(1+ε)rk

∫
R

∣∣∣sinxT
xT

∣∣∣r2k ν(dx). (3.8)
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