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ON NON-SYMMETRIC ¢-CONVEX FUNCTIONS

MICHAE LEWICKI AND ANDRZEJ OLBRYS$

(Communicated by Zs. Pdles)

Abstract. Let I C R be an open interval. We consider a functions f:7 — R satisfying

Slx+ (1 =0y) <tf(x)+ A=) f(y), ()

forafixed 7 € (0,1) and x <y. We discuss the relations between the class of functions satisfying
inequality () and the class of #-convex functions.

1. Introduction

Let D C X be a convex subset of a real linear space X. A function f: D — R is
called convex iff the inequality

flx+(1=0)y) <tf(x)+ (1 =2)f(), (D

holds for all 7 € (0,1) and x,y € D.

A class of convex functions is well investigated and has numerous applications
(see A. W. Roberts and D. E. Varberg [5]). One of the most important directions in
researching of this class of functions was a resignation from the assumption that the
inequality (1) holds for each ¢ taken from interval (0,1). For example putting t = % in
(1) we get

f<x+y> gf(x)+f(y)7 ryeD. 2
2 2

A function which satisfies the above inequality is called Jensen convex (J-convex)
(see M. Kuczma [3] for more details). It is well known that there exist functions which
are J-convex but not convex.

Now, fix t € (0,1). A function f: D — R is called 7-convex if it satisfies

flex+(1=t)y) <tf(x)+(1=1)f(y), xy€D.
It is rather simple calculation (see Z. Dar6czy and Zs. Péles [1], N. Khun [2]) that
each r-convex function is J-convex.

Mathematics subject classification (2010): 39B62, 26A51, 26B25.
Keywords and phrases: inequalities, convexity, t-convexity, t-affinity.

© depay, Zagreb 95

Paper MIA-17-06


http://dx.doi.org/10.7153/mia-17-06

96 MICHAE LEWICKI AND ANDRZEJ OLBRYS

Notice, that as points x,y € D can be taken arbitrary in the inequality (1), we
trivially get that 7-convex function has to be (1 —r)-convex.

The notion of 7-convexity is artificial from the view of the geometrical interpreta-
tion. To show this let 7/ C R be an open interval and fix x,y € I. The ¢-convexity of
the function f means that the point (tx+ (1 —¢)y, f(tx+ (1 —1)y)) lies below the line
[ passing through points (x, f(x)) and (y, f(v)). It is unnatural to assume that also the
point ((1 —¢)x+ty, f((1 —t)x+1y) lies below the line /.

The above remark gives a justification to the consideration of the following gen-
eralization (as far as we consider functions defined on interval) of the notion of 7-
convexity

DEFINITION 1.1. Let 7 € (0,1) be fixed. A function f:I — R will be called
non-symmetric #-convex iff the inequality

flex4 (1 =1)y) <tf(x)+ (1 —=1)f(y)-

holds for all x,y € I such that x <y. Additionally, we say that f is strictly non-
symmetric ¢ -convex iff the above inequality is strict for all x,y € I such that x < y.

Moreover, we say that a function f : I — R is non-symmetric #-affine iff the
equation

Jlx+(L=1)y) =tf(x) + (L —=1)f(), 3)

holds for all x,y € I such that x <y.

It is natural to ask whether there exists non — symmetric ¢ -convex function which
is not ¢ -convex (Zs. Pdles [4] posed this question with = %).

In this paper we show first that non-symmetric ¢ -affine functions are ¢ -affine (Thm
2.1). This result suggests that using supporting technique (compare N. Khun [2]) one
could give positive answer to the problem of Zs. Pdles, and generally, to show that
non-symmetric z-convex functions are in fact 7-convex. However, in Example 3.1 we
give negative answer to this general hypothesis in the case of transcendental 7.

2. Non-symmetric 7-affine functions

THEOREM 2.1. Let t € (0,1) be fixed. If f: R — R is non-symmetric t-affine
then it is t -affine.
Proof. Define f:R — R by f:= f— f(0). Obviously f is non-symmetric
t-affine. Moreover f(0) = 0. It suffices to show that f is #-affine.
We began by proving that f is # and (1 —¢)-homogeneous. Indeed, putting y = 0
in (3) we get
fx)=1f(x), x<0. 4)

Now, fix u > 0 we take y(u) = —%u. We have y(u) < 0. By virtue of (3) we
get

0= f(0) = fley(u) + (1 = 1)u) =t f(y()) + (1 — 1) f(u).
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Thus
F) =~ 1= Fotw), uzo. )
Hence, for given v > 0, by (4) we get
- o ~ 1-—
) = ~ 7o) = -5 7 (o)

=~ () = o) = (- T 7000 ) =170

1—¢ t —t

Thus, in virtue of the above and (4) the function f is #-homogenous.
Similarly we can show that f is (1 —¢)-homogenous.
Now, we prove that f is additive. Fix x € R. First we prove that

faty) =@ +70), 6)
forevery y € (— oo, 1x| U [1Ex, +eo) .

Take y € (— oo, 7=x]|. There exist u,v € R such that y = tu and x = (1 —1)v.
Since y < ﬁx we have u < v. Using non-symmetric 7-affinity of f together with
and (1 —r)-homogeneity we get

flaty) = flut (L=tp)=tf(u)+(1-1)f(v)
= flu)+ f(L=1)v) = f(x) + f(¥).

In the case y € [%x, +oo) it is enough to change the role of x and y to get in the
previous situation. This completes the proof of (6).

Now we show that f is additive. We consider two cases.

Case 1. t € (0,1] . Since for every x < 0 we have :-x < tZx, by (6)

flaty)=F)+70), (7)
for x € (—o0,0] and y € R. Putting y = —x in above equality we have
0= flx+(—x)) = f(x) + f(—x).
Hence the function £ is odd.
Fix x>0 and y € R. We get
Faty) = —fl=x—y) = = (f(-=x) + f(-y))
= —f(=x) = f(=y) = F(x) + f(¥).
In virtue of (7) and the above equality the function f is additive.
Case 2. t € [1,1). The calculations are similar to this in the Case I and thus are
left to the reader.
Finally, by ¢-homogeneity and additivity of f we have
Flex+ (1 =1)y) = flex) + F((1=1)y) = 1f(x) + (1= 1) f().

This completes the proof. [
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3. Non-symmetric 7 -convex functions

Now, we give two examples. In Example 3.1 we show that the class of non-
symmetric ¢-convex functions is greater than the class of #-convex functions, the sec-
ond (see Example 3.2) shows that there exist non-symmetric 7 -convex functions which
are J-concave. Our constructions are based on derivations. We start with reminding
basic facts (for more information see M. Kuczma [3], Chapter 14).

DEFINITION 3.1. (see M. Kuczma [3]) Let F C K be fields. A function f: F —
K is called derivation iff it satisfies both the equations

fx+y)=fx)+f(v), ®)
flxy) =xf(y) +yf(x) )

forall x,y € F.

THEOREM 3.1. (see M. Kuczma [3], Thm 14.2.1) Let (K,+,) be afield of char-
acteristic zero, let (F,+,-) be a subfield of (K,+,-), let S be an algebraic base of K
over F, if it exists, and let S =0, otherwise. Let f: F — K be a derivation. Then, for
every function u : S — K, there exists a unique derivation g : K — K such that g|lp = f
and gls = u.

EXAMPLE 3.1. Let ¢ € (0,1) be a transcendental number (over Q). There exists
a strictly non-symmetric 7 -convex function f : R — R which is strictly non-symmetric
(1 —1t)-concave.

Proof. By assumption ¢ € R\ algclQ, so there exists an algebraic base S of R
over Q, such that 7 € S. Let u: S — R be an arbitrary function, such that u(r) > 0. If
we take in Theorem 3.1 F = Q, K = R then the trivial derivation fy: Q — R, fo =0
can be uniquely extended onto R to a derivation f: R — R such that f|s =u. Since
f is a derivation we have

f(ex) = 1f(x) +xf(t) = 1£(x) +xu(t)

or, in the equivalent form,

flex) —tf(x) =xu(t), xeR.
By (8), (9) and the above we obtain
flex+ (1 =0)y)—tf(x) = (1=1)f(y)
JO)+fx=y)) = f(v) —1(f(x) = f())
= flx—y))—tflx—y)
= (x=y)u().

Now, if x <y, then (x—y)u(r) < 0. Consequently
flex+ (1 =1)y) <tf(x)+ (1 =1)f(y).
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Thus f is strictly non-symmetric #-convex.
Similarly, if x >y, then (x—y)u(t) > 0, and

fx+(1=1)y) > 1/ () + (1 =1)f(v),
Thus f is strictly non-symmetric (1 —#)-concave. [
EXAMPLE 3.2. Let ¢ € (0,1) be a transcendental number (over Q). There exists
a non-symmetric 7 -convex function g : R — R which is not Jensen convex.
Proof. Lett € (0,1) be a transcendental number (over Q) and put
st =2max{t,1 —1}.

There exists a derivation a: R — R such that a(r) = s (compare M. Kuczma [3],
Lemma 14.2.2). Since the function a satisfies (9) we have

a(tx) =ta(x) + sx, xeR.
Define a function g: R — R by the formula
g(x) :=a(x)— |x|, xeR.

We will show that g is non-symmetric #-convex and Jensen concave function but
not Jensen convex. Indeed, fix x,y € R, x < y. By the definition of g we get

Dig(x,y): =1tg(x)+ (1 —1)g(y) —gltx+(1—1)y)
= t(a(x) = [x]) + (1 =1)(a(y) = [y]) = (a(tx+ (1 —1)y) — [tx+ (1 —2)y])
= a(y) +ta(x—y) —a(y) —a(t(x—y)) +[tx+ (1 —t)y| = t]x| = (1 =1)|y]
=ta(x—y) —a(t(x—y))+ |tx+ (L=t)y[ = t]x| = (1= 1) ]|
= —s(x—y)+[tx+ (1L —t)y[ —t[x] = (1 =1)y]
= s(y —x) + [tx+ (L= 1)y| = tlx| = (1 —1)|y].

Put
L:=tx+(1—t)y], R:=tlx|+(1—1)]|

Consider three cases:
1°If 0<x<ythen L—R=0 and hence D,g(x,y) =s(y —x) > 0.
2° If x <y <0 then L—R =0 and hence D,g(x,y) =s(y —x) > 0.
3° If x < 0 < y then we have either

a) x> %y then L — R = 2tx and hence

Dig(x,y)=s(y—x)+2tx>2t(y—x)+2tx=2ty >0

or
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b) x < =ly then L— R = —2(1 —t)y and hence

Dig(x,y) = s(y—x) =2(1 =t)y = 2(1 —t)(y —x) = 2(1 —1)y
=—-2(1—1)x>0.

Due to the arbitrariness of x,y € R (x < y) we infer that g is non-symmetric
t-convex. On the other hand, by convexity of function “x — |x|”, we have

(7)) =(7)

for x,y € R. This means that g is Jensen concave and not Jensen convex. [l

2 2 2 2 ’

ery’ S 4w taly) |+l _ gl) +50)
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