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ON NON–SYMMETRIC t –CONVEX FUNCTIONS

MICHAŁ LEWICKI AND ANDRZEJ OLBRYŚ

(Communicated by Zs. Páles)

Abstract. Let I ⊆ R be an open interval. We consider a functions f : I → R satisfying

f (tx+(1− t)y) � t f (x)+(1− t) f (y), (∗)
for a fixed t ∈ (0,1) and x � y . We discuss the relations between the class of functions satisfying
inequality (∗) and the class of t -convex functions.

1. Introduction

Let D ⊆ X be a convex subset of a real linear space X . A function f : D → R is
called convex iff the inequality

f (tx+(1− t)y) � t f (x)+ (1− t) f (y), (1)

holds for all t ∈ (0,1) and x,y ∈ D .
A class of convex functions is well investigated and has numerous applications

(see A. W. Roberts and D. E. Varberg [5]). One of the most important directions in
researching of this class of functions was a resignation from the assumption that the
inequality (1) holds for each t taken from interval (0,1) . For example putting t = 1

2 in
(1) we get

f
(x+ y

2

)
� f (x)+ f (y)

2
, x,y ∈ D. (2)

A function which satisfies the above inequality is called Jensen convex (J -convex)
(see M. Kuczma [3] for more details). It is well known that there exist functions which
are J -convex but not convex.

Now, fix t ∈ (0,1) . A function f : D → R is called t -convex if it satisfies

f (tx+(1− t)y) � t f (x)+ (1− t) f (y), x,y ∈ D.

It is rather simple calculation (see Z. Daróczy and Zs. Páles [1], N. Khun [2]) that
each t -convex function is J -convex.
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Notice, that as points x,y ∈ D can be taken arbitrary in the inequality (1), we
trivially get that t -convex function has to be (1− t)-convex.

The notion of t -convexity is artificial from the view of the geometrical interpreta-
tion. To show this let I ⊆ R be an open interval and fix x,y ∈ I . The t -convexity of
the function f means that the point (tx+(1− t)y, f (tx+(1− t)y)) lies below the line
l passing through points (x, f (x)) and (y, f (y)) . It is unnatural to assume that also the
point ((1− t)x+ ty, f ((1− t)x+ ty) lies below the line l .

The above remark gives a justification to the consideration of the following gen-
eralization (as far as we consider functions defined on interval) of the notion of t -
convexity

DEFINITION 1.1. Let t ∈ (0,1) be fixed. A function f : I → R will be called
non-symmetric t -convex iff the inequality

f (tx+(1− t)y) � t f (x)+ (1− t) f (y).

holds for all x,y ∈ I such that x � y . Additionally, we say that f is strictly non-
symmetric t -convex iff the above inequality is strict for all x,y ∈ I such that x < y .

Moreover, we say that a function f : I → R is non-symmetric t -affine iff the
equation

f (tx+(1− t)y) = t f (x)+ (1− t) f (y), (3)

holds for all x,y ∈ I such that x � y .
It is natural to ask whether there exists non – symmetric t -convex function which

is not t -convex (Zs. Páles [4] posed this question with t = 1
3 ).

In this paper we show first that non-symmetric t -affine functions are t -affine (Thm
2.1). This result suggests that using supporting technique (compare N. Khun [2]) one
could give positive answer to the problem of Zs. Páles, and generally, to show that
non-symmetric t -convex functions are in fact t -convex. However, in Example 3.1 we
give negative answer to this general hypothesis in the case of transcendental t .

2. Non-symmetric t -affine functions

THEOREM 2.1. Let t ∈ (0,1) be fixed. If f : R −→ R is non-symmetric t -affine
then it is t -affine.

Proof. Define f̃ : R −→ R by f̃ := f − f (0) . Obviously f̃ is non-symmetric
t -affine. Moreover f̃ (0) = 0. It suffices to show that f̃ is t -affine.

We began by proving that f̃ is t and (1− t)-homogeneous. Indeed, putting y = 0
in (3) we get

f̃ (tx) = t f̃ (x), x � 0. (4)

Now, fix u � 0 we take y(u) = − 1−t
t u . We have y(u) � 0. By virtue of (3) we

get

0 = f̃ (0) = f̃ (ty(u)+ (1− t)u)= t f̃ (y(u))+ (1− t) f̃ (u).
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Thus

f̃ (u) = − t
1− t

f̃ (y(u)), u � 0. (5)

Hence, for given v � 0, by (4) we get

f̃ (tv) = − t
1− t

f̃ (y(tv)) = − t
1− t

f̃

(
−1− t

t
(tv)

)

= − t
1− t

f̃

(
t(−1− t

t
v)

)
= − t

1− t
f̃ (ty(v)) = t

(
− t

1− t
f̃ (y(v))

)
= t f̃ (v).

Thus, in virtue of the above and (4) the function f̃ is t -homogenous.
Similarly we can show that f̃ is (1− t)-homogenous.
Now, we prove that f̃ is additive. Fix x ∈ R . First we prove that

f̃ (x+ y) = f̃ (x)+ f̃ (y), (6)

for every y ∈ (−∞, t
1−t x

]∪ [ 1−t
t x,+∞

)
.

Take y ∈ (−∞, t
1−t x

]
. There exist u,v ∈ R such that y = tu and x = (1− t)v .

Since y � t
1−t x we have u � v . Using non-symmetric t -affinity of f̃ together with t

and (1− t)-homogeneity we get

f̃ (x+ y) = f̃ (tu+(1− t)v) = t f̃ (u)+ (1− t) f̃(v)
= f̃ (tu)+ f̃ ((1− t)v) = f̃ (x)+ f̃ (y).

In the case y ∈ [
1−t
t x,+∞

)
it is enough to change the role of x and y to get in the

previous situation. This completes the proof of (6).
Now we show that f̃ is additive. We consider two cases.
Case 1. t ∈ (

0, 1
2

]
. Since for every x � 0 we have 1−t

t x � t
1−t x , by (6)

f̃ (x+ y) = f̃ (x)+ f̃ (y), (7)

for x ∈ (−∞,0] and y ∈ R . Putting y = −x in above equality we have

0 = f̃ (x+(−x)) = f̃ (x)+ f̃ (−x).

Hence the function f̃ is odd.
Fix x � 0 and y ∈ R . We get

f̃ (x+ y) = − f̃ (−x− y) = −( f̃ (−x)+ f̃ (−y))
= − f̃ (−x)− f̃ (−y) = f̃ (x)+ f̃ (y).

In virtue of (7) and the above equality the function f̃ is additive.
Case 2. t ∈ [

1
2 ,1

)
. The calculations are similar to this in the Case 1 and thus are

left to the reader.
Finally, by t -homogeneity and additivity of f̃ we have

f̃ (tx+(1− t)y) = f̃ (tx)+ f̃ ((1− t)y) = t f̃ (x)+ (1− t) f̃ (y).

This completes the proof. �
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3. Non-symmetric t -convex functions

Now, we give two examples. In Example 3.1 we show that the class of non-
symmetric t -convex functions is greater than the class of t -convex functions, the sec-
ond (see Example 3.2) shows that there exist non-symmetric t -convex functions which
are J -concave. Our constructions are based on derivations. We start with reminding
basic facts (for more information see M. Kuczma [3], Chapter 14).

DEFINITION 3.1. (see M. Kuczma [3]) Let F ⊂ K be fields. A function f : F →
K is called derivation iff it satisfies both the equations

f (x+ y) = f (x)+ f (y), (8)

f (xy) = x f (y)+ y f (x) (9)

for all x,y ∈ F .

THEOREM 3.1. (see M. Kuczma [3], Thm 14.2.1) Let (K,+, ·) be a field of char-
acteristic zero, let (F,+, ·) be a subfield of (K,+, ·) , let S be an algebraic base of K
over F , if it exists, and let S = /0 , otherwise. Let f : F → K be a derivation. Then, for
every function u : S → K , there exists a unique derivation g : K → K such that g|F = f
and g|S = u.

EXAMPLE 3.1. Let t ∈ (0,1) be a transcendental number (over Q) . There exists
a strictly non-symmetric t -convex function f : R → R which is strictly non-symmetric
(1− t)-concave.

Proof. By assumption t ∈ R \ algclQ , so there exists an algebraic base S of R

over Q , such that t ∈ S . Let u : S → R be an arbitrary function, such that u(t) > 0. If
we take in Theorem 3.1 F = Q, K = R then the trivial derivation f0 : Q → R, f0 ≡ 0
can be uniquely extended onto R to a derivation f : R → R such that f |S = u . Since
f is a derivation we have

f (tx) = t f (x)+ x f (t) = t f (x)+ xu(t)

or, in the equivalent form,

f (tx)− t f (x) = xu(t), x ∈ R.

By (8), (9) and the above we obtain

f (tx+(1− t)y)− t f (x)− (1− t) f (y)
= f (y)+ f (t(x− y))− f (y)− t( f (x)− f (y))
= f (t(x− y))− t f (x− y)
= (x− y)u(t).

Now, if x < y , then (x− y)u(t) < 0. Consequently

f (tx+(1− t)y) < t f (x)+ (1− t) f (y).
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Thus f is strictly non-symmetric t -convex.
Similarly, if x > y , then (x− y)u(t) > 0, and

f (tx+(1− t)y) > t f (x)+ (1− t) f (y),

Thus f is strictly non-symmetric (1− t)-concave. �

EXAMPLE 3.2. Let t ∈ (0,1) be a transcendental number (over Q ). There exists
a non-symmetric t -convex function g : R → R which is not Jensen convex.

Proof. Let t ∈ (0,1) be a transcendental number (over Q ) and put

s : = 2max{t,1− t}.

There exists a derivation a : R → R such that a(t) = s (compare M. Kuczma [3],
Lemma 14.2.2). Since the function a satisfies (9) we have

a(tx) = ta(x)+ sx, x ∈ R.

Define a function g : R → R by the formula

g(x) := a(x)−|x|, x ∈ R.

We will show that g is non-symmetric t -convex and Jensen concave function but
not Jensen convex. Indeed, fix x,y ∈ R, x < y . By the definition of g we get

Dtg(x,y) : = tg(x)+ (1− t)g(y)−g(tx+(1− t)y)
= t(a(x)−|x|)+ (1− t)(a(y)−|y|)− (a(tx+(1− t)y)−|tx+(1− t)y|)
= a(y)+ ta(x− y)−a(y)−a(t(x− y))+ |tx+(1− t)y|− t|x|− (1− t)|y|
= ta(x− y)−a(t(x− y))+ |tx+(1− t)y|− t|x|− (1− t)|y|
= −s(x− y)+ |tx+(1− t)y|− t|x|− (1− t)|y|
= s(y− x)+ |tx+(1− t)y|− t|x|− (1− t)|y|.

Put

L := |tx+(1− t)y|, R := t|x|+(1− t)|y|.

Consider three cases:
1◦ If 0 � x < y then L−R = 0 and hence Dtg(x,y) = s(y− x) > 0.
2◦ If x < y < 0 then L−R = 0 and hence Dtg(x,y) = s(y− x) > 0.
3◦ If x < 0 � y then we have either

a) x � t−1
t y then L−R = 2tx and hence

Dtg(x,y) = s(y− x)+2tx � 2t(y− x)+2tx = 2ty � 0

or
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b) x < t−1
t y then L−R = −2(1− t)y and hence

Dtg(x,y) = s(y− x)−2(1− t)y � 2(1− t)(y− x)−2(1− t)y
= −2(1− t)x > 0.

Due to the arbitrariness of x,y ∈ R (x < y) we infer that g is non-symmetric
t -convex. On the other hand, by convexity of function “x −→ |x|”, we have

g

(
x+ y

2

)
= a

(
x+ y

2

)
−

∣∣∣∣x+ y
2

∣∣∣∣ � a(x)+a(y)
2

− |x|+ |y|
2

=
g(x)+g(y)

2
,

for x,y ∈ R . This means that g is Jensen concave and not Jensen convex. �
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