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BOUNDS OF THE PERIMETER OF AN ELLIPSE USING

ARITHMETIC, GEOMETRIC AND HARMONIC MEANS

MIAO-KUN WANG, YU-MING CHU ∗ , YUE-PING JIANG AND SONG-LIANG QIU

(Communicated by I. Perić)

Abstract. In this paper, we present several bounds for the perimeter of an ellipse in terms of
arithmetic, geometric, and harmonic means, which improve some known results.

1. Introduction

Let a and b be the semiaxes of an ellipse with eccentricity e =
√

a2−b2/a , and
L(a,b) be the perimeter of the ellipse. Then

L(a,b) = 4a

π/2∫
0

√
1− e2 sin2 tdt = 4aE (e), (1.1)

where E (r)(0 � r � 1) is the complete elliptic integrals of the second kind. Elliptic
integrals are so named because of their connection with L(a,b) . In turn, these are
related to the Gaussian hypergeometric function 2F1 , defined by

2F1(a,b;c;x) = F(a,b;c;x) =
∞

∑
n=0

(a)n(b)n

(c)n

xn

n!
, −1 < x < 1

with the Pochhammer symbol (a)n = a(a+ 1)(a+ 2)(a+ 3) · · ·(a+ n− 1) for n � 1
and (a)0 = 1, a �= 0. It is well known that the complete elliptic integrals of the first and
second kinds can be expressed as

K = K (r) =
π
2

F(1/2,1/2;1;r2)

and
E = E (r) =

π
2

F(−1/2,1/2;1;r2),
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respectively. In particular, the Gaussian hypergeometric functions and complete elliptic
integrals have many important applications in physics and geometric function theory.
For these, and for their properties see [1, 4, 5, 15–17, 20].

During the past few centuries, many easily computable approximations to L(a,b)
have been suggested by a large number of mathematicians [6–9, 12, 19]. The Almkvist-
Berndt survey article [2] has an extensive discussion of these approximations. These
approximations and their historical and recent connections to the approximations of π
can be found in the Borweins’ book [10]. An excellent source for all the above ideas is
the Anderson-Vamanamurthy-Vuorinen book Conformal Invariants, Inequalities, and
Quasiconformal Mappings [5].

In 1883, it was proposed by Muir that L(a,b) could be simply approximated by
2π [(a3/2 + b3/2)/2]2/3 . In 1997, based on numerical experiments, Vuorinen [19] con-
jectured that

L(a,b) > 2π

(
a3/2 +b3/2

2

)2/3

(1.2)

for all a > b > 0. This conjecture was proved in [6].
In [18], Toader introduced the Toader mean T (a,b) of two positive numbers a

and b as follows:

T (a,b) =
2
π

∫ π/2

0

√
a2cos2 t +b2sin2 tdt.

Note that
L(a,b) = 2πT (a,b). (1.3)

Let A(a,b)= (a+b)/2, G(a,b)=
√

ab , H(a,b)= 2ab/(a+b) , S(a,b)=
√

(a2+b2)/2,
and Mp(a,b) = [(ap +bp)/2]1/p (p �= 0) and M0(a,b) =

√
ab be the arithmetic, geo-

metric, harmonic, quadratic, and p -th power mean of two different positive numbers a
and b , respectively. Then it is well known that

min{a,b} < H(a,b) = M−1(a,b) < G(a,b) = M0(a,b) < A(a,b) = M1(a,b)
< T (a,b) < S(a,b) = M2(a,b) < max{a,b}

for all a,b > 0 with a �= b .
It is the aim of this paper to find the better bounds for the perimeter of an ellipse

in terms of arithmetic, geometric, and harmonic means.

2. Lemmas

In order to establish our main results we need several formulas and lemmas, which
we present in this section.

Throughout this paper, we denote by r′ =
√

1− r2 for 0 < r < 1. For 0 < r < 1,
the following formulas were presented in [5, Appendix E, pp. 474–475]:

dK

dr
=

E − r′2K
rr′2

,
dE

dr
=

E −K

r
,
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d(E − r′2K )
dr

= rK , E

(
2
√

r
1+ r

)
=

2E − r′2K
1+ r

.

LEMMA 2.1. [5, Theorem 1.25] For −∞ < a< b< ∞ , let f ,g : [a,b]→R be con-
tinuous on [a,b] , and be differentiable on (a,b) , let g′(x) �= 0 on (a,b) . If f ′(x)/g′(x)
is increasing (decreasing) on (a,b) , then so are

f (x)− f (a)
g(x)−g(a)

and
f (x)− f (b)
g(x)−g(b)

.

If f ′(x)/g′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

The following Lemma 2.2 can be found in [5, Theorem 3.21(1) and Exercise
3.43(10)].

LEMMA 2.2. (1) (E − r′2K )/r2 is strictly increasing from (0,1) onto (π/4,1);
(2) [(E−r′2K )−r′2(K −E )]/r4 is strictly increasing from (0,1) onto (3π/16,1) .

LEMMA 2.3. If k ∈ N
∗ , then the inequality

3
√

π(k2 +15k+16)
16(k+3)(2k+1)

>
1√

k+1/4

holds for all k � 5 .

Proof. Elementary computations lead to[
3
√

π(k2 +15k+16)
16(k+3)(2k+1)

]2

−
(

1√
k+1/4

)2

=
9π(4k+1)(k2 +15k+16)2−1024(k+3)2(2k+1)2

256(k+3)2(2k+1)2(4k+1)
. (2.1)

Let

f (x) =9π(4x+1)(x2 +15x+16)2−1024(x+3)2(2x+1)2

=36πx5 +(1089π−4096)x4 +(9522π−28672)x3 +(19593π−62464)x2

+(13536π−43008)x+2304π−9216. (2.2)

Then simple computations yield

f (5) = 16(158949π−495616) > 0, (2.3)

f ′(x) =180πx4 +(4356π−16384)x3 +(28566π−86016)x2

+(39186π−124928)x+13536π−43008

>500x4−3000x3 +3500x2−2000x−500

=500[x2(x2 −6x+6)+ x2−4x−1]

>500(x2 +4) > 0 (2.4)

for x ∈ [5,∞) . From inequalities (2.3) and (2.4) we clearly see that f (x) > 0 for x ∈
[5,∞) . Then Lemma 2.3 follows from (2.1) and (2.2). �
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3. Main Results

THEOREM 3.1. For p,q ∈ (0,1) , then the double inequality

p

(
3
2
A(a,b)− 1

2
G(a,b)

)
+(1− p)

(
5
4
A(a,b)− 1

4
H(a,b)

)
< T (a,b)

< q

(
3
2
A(a,b)− 1

2
G(a,b)

)
+(1−q)

(
5
4
A(a,b)− 1

4
H(a,b)

)
(3.1)

holds for all a,b > 0 with a �= b if and only if p � 16/π −5 and q � 1/4 .

Proof. Without loss of generality, we assume that a > b . Let t = b/a∈ (0,1) and
r = (1− t)/(1+ t) , then

3A(a,b)/2−G(a,b)/2−T(a,b)
3A(a,b)/2−G(a,b)/2− [5A(a,b)/4−H(a,b)/4]

=
3(1+ t)/4−√

t/2−2E (
√

1− t2)/π
(1+ t)/8−√

t/2+ t/[2(1+ t)]

=
6−2r′ −8[2E (r)− r′2K (r)]/π

1−2r′+ r′2
. (3.2)

Let

J(r) =
6−2r′ −8[2E (r)− r′2K (r)]/π

1−2r′+ r′2
, (3.3)

J1(r)= 6−2r′−8[2E (r)−r′2K (r)]/π and J2(r)= 1−2r′+r′2 . Then J(r)= J1(r)/J2(r) ,
J1(0) = J2(0) = 0 and

J1
′(r)

J2
′(r)

=
1−4r′[E (r)− r′2K (r)]/(πr2)

1− r′
. (3.4)

Let J3(r)= 1−4r′[E (r)−r′2K (r)]/(πr2) and J4(r)= 1−r′ . Then J1
′(r)/J2

′(r)=
J3(r)/J4(r) , J3(0) = J4(0) = 0 and

J3
′(r)

J4
′(r)

=
4
π

[E (r)− r′2K (r)]− r′2[K (r)−E (r)]
r4 . (3.5)

It follows from (3.5) and Lemma 2(2) that J3
′(r)/J4

′(r) is strictly increasing from
(0,1) onto (3/4,4/π) . Then equations (3.4) and (3.5), and Lemma 2.1 lead to the
conclusion that J(r) is strictly increasing in (0,1) . Moreover, making use of l’Hôptial’s
rule we get

lim
r→0+

J(r) =
3
4
, (3.6)

lim
r→1−

J(r) = 6− 16
π

. (3.7)
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Therefore, inequality (3.1) follows from (3.2), (3.3), (3.6) and (3.7) together with
the monotonicity of J(r) .

Next, we prove that p = 16/π − 5 and q = 1/4 are the best possible parameters
such that inequality (3.1) holds for all a,b > 0 with a �= b .

For α ∈ (0,1) and t ∈ (0,1) . Let r = (1− t)/(1+ t) . Then

α
(

3
2
A(1, t)− 1

2
G(1,t)

)
+(1−α)

(
5
4
A(1,t)− 1

4
H(1,t)

)
−T (1,t)

=
(

3
2
A(1, t)− 1

2
G(1,t)−T(1,t)

)
− (1−α)

(
1
4
A(1,t)− 1

2
G(1,t)+

1
4
H(1,t)

)

=
(

1
4
A(1, t)− 1

2
G(1,t)+

1
4
H(1,t)

)
[J(r)+ α −1]

=
(1− r′)2

4(1+ r)
[J(r)+ α −1], (3.8)

where J(r) is defined as in (3.3).
We divide the proof into two cases.

Case 1. α > 16/π −5. Then from (3.7) we know that

lim
r→1−

[J(r)+ α −1] = α +5− 16
π

> 0. (3.9)

Inequality (3.9) implies that for any α > 16/π −5 there exists 0 < δ1 = δ1(r) <
1, such that J(r) + α − 1 > 0 for r ∈ (δ1,1) . Then from (3.8) we conclude that
α [3A(1, t)/2−G(1, t)/2]+ (1−α) [5A(1,t)/4−H(1,t)/4] > T (1,t) for t ∈ (0,(1−
δ1)/(1+ δ1)) .

Case 2. α < 1/4. Then from (3.6) we clearly see that

lim
r→0+

[J(r)+ α −1] = α − 1
4

< 0. (3.10)

Inequality (3.10) implies that for any α < 1/4 there exists 0 < δ2 = δ2(r) < 1,
such that J(r)+ α −1 < 0 for r ∈ (0,δ2) . Then equation (3.8) leads to the conclusion
that α [3A(1, t)/2−G(1,t)/2]+(1−α) [5A(1,t)/4−H(1,t)/4]< T (1,t) for t ∈ ((1−
δ2)/(1+ δ2),1) . �

The following Theorem 3.2 can be derived directly from (1.3) and Theorem 3.1
with p = 16/π −5 and q = 1/4.

THEOREM 3.2. The double inequality

8A(a,b)− (16−5π)G(a,b)− (3π−8)H(a,b) < L(a,b)

<
π [21A(a,b)−2G(a,b)−3H(a,b)]

8
(3.11)

holds for all a > b > 0 .
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THEOREM 3.3. Let x ∈ (0,1] ,

g(x) = F(−1/2,1/2;1;x) =
∞

∑
n=0

Anx
n (3.12)

and

H(x) =

[
21A(1,

√
1− x)−2G(1,

√
1− x)−3H(1,

√
1− x)

]
16

=
∞

∑
n=0

Bnx
n. (3.13)

Then

Ak � Bk for all k = 0,1,2, · · · ,n, · · · . (3.14)

In particular, the function F(x) = [H(x)− g(x)]/x6 is convex and strictly increasing
from (0,1] onto (α1,β1] , where α1 = 2−20 = 0.00000095 · · · and β1 = 21/32−2/π =
0.01963022 · · ·.

Proof. Making use of series expansions, equations (3.12) and (3.13) give

g(x) =
∞

∑
n=0

(−1/2)n(1/2)n

(n!)2 xn = 1− 1
2

∞

∑
n=0

(1/2)n(1/2)n+1

[(n+1)!]2
xn+1 =

∞

∑
n=0

Anx
n (3.15)

and

H(x) =
21
32

(1+
√

1− x)− 1
8
(1− x)1/4− 3

8

(
1− 1

1+
√

1− x

)

=
21
32

(
1+

∞

∑
n=0

(−1/2)n

n!
xn

)
− 1

8

∞

∑
n=0

(−1/4)n

n!
xn − 3

8

(
1− 1−√

1− x
x

)

=
21
32

(
1+

∞

∑
n=0

(−1/2)n

n!
xn

)
− 3

8

⎛
⎜⎜⎝1−

1−
∞
∑

n=0

(−1/2)n
n! xn

x

⎞
⎟⎟⎠− 1

8

∞

∑
n=0

(−1/4)n

n!
xn

=1+
∞

∑
n=0

[2(3/4)n(n+2)−9(1/2)n(n+4)]
64(n+2)!

xn+1 =
∞

∑
n=0

Bnx
n. (3.16)

Equations (3.15) and (3.16) lead to

F(x) =
∞

∑
n=0

Bnx
n−

∞

∑
n=0

Anx
n =

∞

∑
n=0

Cn

64(n+1)!(n+2)!
xn+1, (3.17)

where Cn = 2(n+2)!(3/4)n +32(n+2)(1/2)n(1/2)n+1−9(n+4)(n+1)!(1/2)n .
From equation (3.17) we know that to prove inequality (3.14) it is sufficient to

prove that Ck � 0 for all k = 0,1,2, · · · ,n, · · · . Note that C0 = C1 = C2 = C3 =C4 = 0,
C5 = 14175/64 and C6 = 1091475/32. Next, we use mathematical induction to prove
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that Ck > 0 for k � 5 (k ∈N∗) . If we assume that Ck > 0 for k = 5,6,7, · · · ,n (n � 5)
hold, then

Cn+1 =2(n+3)!(3/4)n+1+32(n+3)(1/2)n+1(1/2)n+2

−9(n+5)(n+2)!(1/2)n+1

=2(n+3/4)(n+3)(n+2)!(3/4)n+32(n+2)(1/2)n(1/2)n+1

× (n+1/2)(n+3/2)(n+3)
n+2

−9(n+5)(n+2)!(1/2)n+1

=(n+3/4)(n+3)
{

2(n+2)!(3/4)n+32(n+2)(1/2)n(1/2)n+1

×
[
1− 3(n+1)

(4n+3)(n+2)

]}
−9(n+5)(n+2)!(1/2)n+1

>(n+3/4)(n+3) [9(n+4)(n+1)!(1/2)n]−24(n+1)(n+3)
× (1/2)n(1/2)n+1−9(n+5)(n+2)!(1/2)n+1

=9(n+1)!(n2/4+15n/4+4)(1/2)n−24(n+1)(n+3)(1/2)n(1/2)n+1

=
12(n+1)!(n+3)(2n+1)(1/2)n√

π

[
3
√

π(n2 +15n+16)
16(n+3)(2n+1)

− Γ(n+1/2)
Γ(n+1)

]
.

(3.18)

The well known Wallis’ inequality [13] reveals

Γ(n+1/2)
Γ(n+1)

<
1√

n+1/4
(3.19)

for all n � 1.
Therefore, Cn+1 > 0 follows from (3.18) and (3.19) together with Lemma 2.3.
Finally, the convexity and monotonicity of F(x) are clear. By l’Hôptial’s rule,

F(0+) = B6−A6 = 2−20 = 1/1048576, while the value of F(1) is clear. �

The following Theorem 3.4 can be derived directly from (1.1) and Theorem 3.3
with x = e2 = (a2−b2)/a2 .

THEOREM 3.4. The double inequality

π [21A(a,b)−2G(a,b)−3H(a,b)]
8

−2β1πa

(
1− b2

a2

)6

< L(a,b)

<
π [21A(a,b)−2G(a,b)−3H(a,b)]

8
−2α1πa

(
1− b2

a2

)6

(3.20)

holds for all a > b > 0 , where α1 and β1 are defined as in Theorem 3.3.
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4. Comparison with some well-known results

As we mentioned in the introduction, the perimeter of an ellipse has been studied
intensively by many mathematicians, and some well-known bounds for it were pre-
sented. For example, Barnard, Pearce and Richards [6, 7] established that

2πM3/2(a,b) < L(a,b) < 2πS(a,b) (4.1)

for all a > b > 0. In 2004, Alzer and Qiu [3] found an upper power mean bound for
L(a,b) as follows:

L(a,b) < 2πMlog2/log(π/2)(a,b) (4.2)

for all a > b > 0.
Recently, Chu and Wang [14] proved that

L(a,b) < 2πL1/4(a,b) (4.3)

for all a > b > 0, where Lp(a,b) = (ap+1 +bp+1)/(ap +bp) is p -th Lehmer mean.
In this section, we will compare our bounds with those in (4.1)–(4.3).

LEMMA 4.1. Inequality

8A(a,b)− (16−5π)G(a,b)− (3π−8)H(a,b) > 2πM3/2(a,b)

holds for all a,b > 0 with a �= b.

Proof. Clearly A(a,b) , G(a,b) , H(a,b) and M3/2(a,b) are symmetric and ho-
mogeneous of degree 1. Without loss of generality, we assume that a > b = 1. Let
t =

√
a > 1. Then

[8A(a,b)− (16−5π)G(a,b)− (3π−8)H(a,b)]3− [2πM3/2(a,b)
]3

=
[
4(1+ t2)− (16−5π)t− 2(3π −8)t2

1+ t2

]3

−2π3(1+ t3)2

=
(t−1)4

(1+ t2)3 g(t), (4.4)

where

g(t) =(64−2π3)t8 +(−512+240π−8π3)t7 +(1792−1248π +300π2−26π3)t6

+(−3584+2832π−720π2 +57π3)t5 +(4480−3648π +1032π2−102π3)t4

+(−3584+2832π−720π2 +57π3)t3 +(1792−1248π +300π2−26π3)t2

+(−512+240π−8π3)t +64−2π3. (4.5)

Note that
64−2π3 = 1.987 · · · ,

−512+240π−8π3 = −6.067 · · · ,
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1792−1248π +300π2−26π3 = 26.010 · · · ,
−3584+2832π−720π2 +57π3 = −25.767 · · ·,
4480−3648π +1032π2−102π3 = 42.261 · · ·.

It follows from (4.5) that

g(t) >
7
5
t8−7t7 +21t6−28t5 +42t4−28t3 +21t2−7t +

7
5

=
7
5

(
t8−5t7 +15t6−20t5 +30t4−20t3 +15t2−5t +1

)

=
7
5

[
t6
(

t− 5
2

)2

+
35
4

t4
(

t− 8
7

)2

+
130
7

t2
(

t− 7
13

)2

+
(

5
2
t−1

)2

+
175
52

t2
]

> 0. (4.6)

Therefore, Lemma 4.1 follows from (4.4) and (4.6). �

REMARK 4.2. From Lemma 4.1 we know that the lower bound in (3.11) is better
than that in (4.1).

LEMMA 4.3. Inequalities

21A(a,b)−2G(a,b)−3H(a,b)
16

< L1/4(a,b)

and
21A(a,b)−2G(a,b)−3H(a,b)

16
< S(a,b)

hold for all a,b > 0 with a �= b.

Proof. Clearly A(a,b) , G(a,b) , H(a,b) , S(a,b) and L1/4(a,b) are symmetric
and homogeneous of degree 1. Without loss of generality, we assume that a > b = 1.
Let t = 4

√
a > 1. Then

21A(a,b)−2G(a,b)−3H(a,b)
16

−L1/4(a,b)

=
21(1+ t4)/2−2t2−6t4/(1+ t4)

16
− 1+ t5

1+ t

= − (t−1)4(11t4 +12t3 +18t2 +12t +11)
32(1+ t4)

< 0 (4.7)

and

[16S(a,b)]2− [21A(a,b)−2G(a,b)−3H(a,b)]2

=128(1+ t4)−
[
21(1+ t4)2 −4t2(1+ t4)−12t4

2(1+ t4)

]2

=
(t2−1)2

4(1+ t4)2

[
71t12 +310t10 +297t8 +692t6 +297t4 +310t2 +71

]
> 0. (4.8)
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Therefore, Lemma 4.3 follows from inequalities (4.7) and (4.8). �

REMARK 4.4. From Lemma 4.3 we conclude that both the upper bounds in (3.11)
and (3.20) are better than those in (4.1) and (4.3).

REMARK 4.5. If a and b are the semiaxes of an ellipse with eccentricity e =√
a2−b2/a . Without loss of generality we can take one of the semiaxes, say a , to be

1. Then computational and numerical experiments show that the upper bound in (3.11)
is better than that in (4.2) for 0 < e � 0.995. However, the upper bound in (4.2) is
better than that in (3.11) when e → 1. In fact, if we let

I1(e) =
π
[
21A(1,

√
1− e2)−2G(1,

√
1− e2)−3H(1,

√
1− e2)

]
8

,

and
I2(e) = 2πMlog2/log(π/2)(1,

√
1− e2),

then

lim
e→1

I1(e) =
21π
16

> 4 = lim
e→1

I2(e).
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