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ON NECESSARY AND SUFFICIENT CONDITIONS

FOR VARIABLE EXPONENT HARDY INEQUALITY
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Abstract. In this paper we derive close necessary and sufficient conditions on the regularity of
the exponent functions p,β such that the variable exponent Hardy inequality holds∥∥∥∥∥∥xβ(x)−1

x∫
0

f (t)dt

∥∥∥∥∥∥
Lp(.)(0,l)

� C
∥∥∥xβ(x) f

∥∥∥
Lp(.)(0,l)

1. Introduction

There are several works devoted to the study of sufficient conditions for the vari-
able exponent Hardy inequality∥∥∥|x|β (.)−1 H f

∥∥∥
Lp(.)(0,l)

� C
∥∥∥|x|β (.) f

∥∥∥
Lp(.)(0,l)

, f � 0 (1)

(see, [3], [4], [6], [7], [1], [10], [11], [12], [13], [14], [15], [16]). According to the
mentioned works [3], [7], [10] the sufficient conditions for β , p are β (0) < 1− 1

p(0) ,

p− > 1 and the regularity condition

p,β ∈ Λ.

Here Λ is a class of measurable functions g : (0, l)→ (−∞,∞) satisfying the condition

limsup
x→0

|g(x)−g(0)| ln 1
|x| < ∞; (2)

H f (x) =
x∫
0
f (t)dt is Hardy’s operator, p− := inf{p(x) : x ∈ (0, l)} .

In this paper, we study mainly the regularity conditions. In this way, we derive
a new proof of sufficiency, which distinguishes with its simplicity. In different from
sufficiency, the necessity part was not studied yet enough. The main objective of our
work is to fill this gap. We show that a condition weaker then (2) is necessary for the
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inequality (1) to hold. Also we derive close necessary and sufficient conditions for the
inequality (1) to hold when the exponents p,β are monotone functions.

Note, if the powers are not monotone, the condition (2) is sharp in some sense
since there exists an example of exponents β , p with β (0) < 1− 1

p(0) and a sequence

{ fk} , which violates for large k the inequality (1) and the condition (2) simultaneously.
See, [3], [7] on referred example and the necessity of conditions p− > 1 and β (0) <
1− 1

p(0) .
For problems of boundedness classical integral operators in variable exponent

Lebesgue spaces and regularity results for nonlinear elliptic and parabolic equations
with nonstandard growth condition see, [2] and references therein.

2. Main Results

As to the basic properties of spaces Lp(.) , we refer to [8] (see, also [5], [2], [17]).
By C,C1,C2, ... we denote the positive constants which may change their value at

every appearance and such that the value not essential for main purpose of the paper.
We use the notation u ∼ v that means there exist a constant C such that

C−1u(x) � v(x) � Cu(x).

Throughout this paper it is assumed that p(x) is a measurable function in (0, l)
taking its values from the interval [1,∞) with p+ := sup{p(x) : x ∈ (0, l)} < ∞ .

The space of functions Lp(.) (0, l) is introduced as the class of measurable func-
tions f (x) in (0, l) , which have a finite Ip;(0,l)( f ) :=

∫ l
0 | f (x)|p(x) dx -modular (we use

also notation Ip( f )). A norm in Lp(.) (0, l) is given in the form

‖ f‖Lp(.)(0,l) = inf

{
λ > 0 : Ip

(
f
λ

)
� 1

}
.

In our proofs we shall use following Lemma several times.

LEMMA 1. Let s : (0,δ ) → R be a measurable function satisfying the condition
(2). Then the condition (2) for the function s implies the estimate

C−1xs(0) � xs(x) � Cxs(0).

To prove this Lemma, note that the inequality is equivalently to

−C � [s(x)− s(0)] ln
1
x

� C,

which is the condition (2).

THEOREM 2. Let β , p : (0, l) → R be measurable functions such that −∞ <
β− � β (x) � β + < ∞, 1 < p− � p(x) � p+ < ∞ for x∈ (0, l). Then for the inequality
(1) to hold it is sufficient that p, β ∈ Λ and β (0) < 1− 1

p(0) .
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In the following two theorems we show that if functions p, β are monotone then
a logarithmic condition weaker then (2) is necessary for the functions p, β for the
inequality (1) to hold.

THEOREM 3. Let β ∈ R a function p : (0, l) −→ [1,∞) be increasing on (0,ε)
and such that p(0) = lim

x→0
p(x) exists, β < 1− 1

p(0) , p− > 1 . Then for the inequality

(1) to hold it is necessary that:

|p(2x)− p(x)| ln 1
x

� C; 0 < x < l (3)

THEOREM 4. Let p ∈ R , β : (0, l) → [−∞,∞) be a function decreasing on (0.ε)
such that β (0) = lim

x→0
β (x) exists and the conditions β (0) < 1− 1

p , p− > 1 be satisfied.

Then for the inequality (1) to hold it is necessary that

|β (x)−β (2x)| ln 1
x

� C; 0 < x < l. (4)

3. Proof of main Results

Proof of Theorem 2. Let f (t) � 0 be such that
∥∥∥|x|β (.) f

∥∥∥
Lp(.)(0,l)

� 1. Then

Ip(.)

(
xβ (.) f

)
� 1. (5)

We have to show that
Ip(.);(0,l)

(
xβ (.)−1H f

)
� C. (6)

By Minkowski inequality, for Lp(.) norms, we get∥∥∥xβ−1H f
∥∥∥

Lp(.)(0,l)
�
∥∥∥xβ−1H f

∥∥∥
Lp(.)(0,δ )

+
∥∥∥xβ−1H f

∥∥∥
Lp(.)(δ ,l)

:= i1 + i2 (7)

where δ is such that the condition is satisfied in (0,δ ) :

β (0) <
1(

p−(0,δ )

)′ . (8)

To achieve simplicity of notation, we denote by p− the p−(0,δ ) in this paragraph.
We have

Ip(.);(0,δ )

(
xβ (.)−1H f

)
=
∫ δ

0
x(β (.)−1)p(.)

(∫ x

0
f (t)dt

)p(x)

dx.
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According to (5), (8), condition β ∈ Λ, Lemma 1 and Holder’s inequality for x∈ (0,δ )
we have the estimates∫ x

0
f (t)dt =

∫ x

0
f (t)χ{tβ f�1}dt +

∫ x

0
f (t)χ{tβ f�1}dt

�
∫ x

0

(
tβ (.) f (t)

) p(t)
p− t−β (.)dt +

∫ x

0
t−β (.)dt

�
(∫ x

0

(
tβ (.) f (t)

)p(t)
dt

) 1
p−
(∫ x

0
t−β (.)(p−)′dt

) 1
(p−)′

+C
∫ x

0
t−β (0)dt

�
(

C1

∫ x

0
t−β (0)(p−)′dt

) 1
(p−)′

+
Cδ 1−β (0)

1−β (0)

�
(

C1δ 1−β (0)(p−)′

1−β (0)(p−)′

) 1
(p−)′

+
Cδ 1−β (0)

1−β (0)
= C2 (9)

It follows from the estimate (9) and the inequality (5) that

i1 =
∫ δ

0
x(β (.)−1)p(.)

(∫ x

0
f (t)dt

)p(x)

dx

�
∫ δ

0
x(β (.)−1)p(.)

(
1
C2

∫ x

0
f (t)dt

)p(x)

C2
p(x)dx

� Cp+−p−
1

∫ δ

0
x(β (.)−1)p(.)

(∫ x

0
f (t)dt

)p−

dx (10)

Now we need on classical Hardy’s inequality with weights (see, e.g. in [9]):

∫ b

a
v(x)(H f (x))R dx � C

∫ b

a
ω(x) f (x)Rdx, f � 0 (11)

where −∞ � a < b � ∞, R > 1; v(x),ω(x) : (a,b)→ (0,∞) are measurable functions.
For the inequality (11) to hold it is necessary and sufficient that (see, f.e. in [9])

sup
a<x<b

(∫ b

x
v(t)dt

)(∫ x

a
ω− 1

R−1 (t)dt

)R−1

< ∞. (12)

Let us verify the validity of the condition (12) with

v(t) = x(β (.)−1)p(.), ω(t) = tβ (t)p−, R = p−, a = 0, b = δ .

Then it follows from Lemma 1 that

x(β (.)−1)p(.) ∼ x(β (0)−1)p(0) and tβ (t) ∼ tβ (0).
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Therefore, and using (5), we infer the finiteness of supremum

sup
0<x<δ

(∫ δ

x
x(β (.)−1)p(.)dt

)(∫ x

0
t
− β(t)p−

p−−1 dt

)p−−1

= sup
0<x<δ

(∫ δ

x
x(β (0)−1)p(0)dt

)(∫ x

0
t
− β(0)p−

p−−1 dt

)p−−1

= C(p−, p(0),β (0)) < ∞. (13)

Hence the condition (12) is satisfied.
Now, applying the inequality (11) from (13) and (10) we infer

∫ δ

0
x(β (.)−1)p(.)

(∫ x

0
f (t)dt

)p(x)

dx � C
∫ δ

0

(
tβ (t) f (t)

)p−
dt

�
∫ δ

0

((
tβ (t) f (t)

)p(t)
+1

)
dt = C (δ +1) .

Hence Ip(.);(0,δ )

(
xβ (.)−1H f

)
� C (δ +1) and this imply

i1 � C1 = C1(δ , p−, p(0),β (0)). (14)

To estimate i2 note that

∫ l

0
f dx � ‖xβ f‖p(x)‖x−β‖p′(x) � ‖x−β‖p′(x).

Then from the assumption it follows that ‖x−β‖p′(x) � C on (0, l) , so f is uni-
formly bounded in L1(0, l) . Now one can argue as following

i2 =
∥∥∥xβ−1H f

∥∥∥
Lp(.)(δ ,l)

�
(∫ l

0
f (t)dt

)∥∥∥xβ−1
∥∥∥

Lp(.)(δ ,l)
(15)

This estimate and (14) together with (7) complete the proof of Theorem 2. �

Proof of Theorem 3. Put δk = ε4−k ; k ∈ N , and fk(x) = x
− 1

p(x)−β χ(δk,2δk)(x) ;
x ∈ (0, l) . Then for sufficiently large k ,

Ip(.)

(
xβ (x) fk(x)

)
=

2δk∫
δk

(
tβ t

− 1
p(t)−β

)p(t)

dt

=
2δk∫
δk

t−1dt = ln2
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Also

Ip(.)

(
xβ (x)−1H ( fk(x))

)
�

4δk∫
3δk

⎛
⎝x(β−1)

2δk∫
δk

t
− 1

p(t)−β
dt

⎞
⎠

p(x)

dx

� C

4δk∫
3δk

(
x(β−1)δ

(
1− 1

p(2δk)−β
)

k

)p(x)

dx

� Cδ
1− p(3δk)

p(2δk)
k = Ce

1
p+ [p(3δk)−p(2δk)] ln

1
2δk

Applying the inequality (1), we have

|p(3δk)− p(2δk)| ln 1
2δk

� C, k ∈ N

which by using of monotony of p implies (3).
This completes the proof of Theorem 3 �

Proof of Theorem 4. Put δk = ε4−k ; k ∈ N and fk(x) = x−
1
p−β (x)χ(δk,2δk)(x) .

Then

Ip(.)

(
xβ (x) fk(x)

)
=

2δk∫
δk

(
tβ (t)t−

1
p−β (t)

)p(t)
dt

=

2δk∫
δk

t−1dt = ln2

Also

Ip(.)

(
xβ (x)−1H ( fk(x))

)
�

4δk∫
3δk

⎛
⎝xβ (x)−1

2δk∫
δk

t−
1
p−β (t)dt

⎞
⎠

p(x)

dx

� Cδ [β (3δk)−β (2δk)]p
k � Ce

p[β (3δk)−β (2δk)] ln
1

δk

Applying the inequality (1), we have

|β (2δk)−β (3δk)| ln 1
δk

� C, k ∈ N

which by using of monotony of β implies (4).
This complete the proof of Theorem 4. �
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