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REVERSE ORDER LAW FOR WEIGHTED MOORE–PENROSE

INVERSES OF MULTIPLE MATRIX PRODUCTS

ZHIPING XIONG AND YINGYING QIN

Abstract. In this paper by using some matrix rank theories, we derive equivalent conditions
for reverse order law of weighted Moore-Penrose inverses of multiple matrix products. In
addition, we also give a variety of necessary and sufficient conditions for the reverse prod-
uct (An)
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Mn ,Mn+1

(An−1)
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†
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to be a {1} -, {1,2} -, {1,3M1} -, {1,4Mn+1} -,
{1,2,3M1} - or {1,2,4Mn+1} -inverse of matrix product A1A2 · · ·An .
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