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REVERSE ORDER LAW FOR WEIGHTED MOORE–PENROSE

INVERSES OF MULTIPLE MATRIX PRODUCTS

ZHIPING XIONG AND YINGYING QIN

(Communicated by G. P. H. Styan)

Abstract. In this paper by using some matrix rank theories, we derive equivalent conditions
for reverse order law of weighted Moore-Penrose inverses of multiple matrix products. In
addition, we also give a variety of necessary and sufficient conditions for the reverse prod-
uct (An)†

Mn ,Mn+1
(An−1)†

Mn−1 ,Mn
· · · (A1)†

M1 ,M2
to be a {1} -, {1,2} -, {1,3M1} -, {1,4Mn+1} -,

{1,2,3M1} - or {1,2,4Mn+1} -inverse of matrix product A1A2 · · ·An .

1. Introduction

Throughout this paper, Cm×n denotes the set of m× n matrices with complex
entries and Cm denotes the set of m-dimensional vectors. Ik denotes the identity matrix
of order k and Om×n denotes the m× n matrix of all zero entries (if no confusion
occurs, we will omit the subscript). The symbols A∗ , r(A) , R(A) and N (A) denote
the conjugate transpose, the rank, the range space and the null space of the matrix
A ∈ Cm×n , respectively.

The weighted Moore-Penrose inverse A†
M,N of A ∈ Cm×n with respect to the posi-

tive definite Hermitian matrices M ∈ Cm×m and N ∈ Cn×n is defined as the solution of
the following four matrix equations see [1, 8, 12]:

(1) AXA = A, (2) XAX = X , (3M) (MAX)∗ = MAX , (4N) (NXA)∗ = NXA.

For a subset {i, j, · · · ,k} of the set {1,2,3M,4N} , the set of n×m matrices satis-
fying the equations (i) , ( j) , · · · , (k) from among equations (1)− (4N) is denoted by
A{i, j, · · · ,k} . A matrix in A{i, j, · · · ,k} is called an {i, j, · · · ,k} -inverse of A and is
denoted by A(i, j,···,k) . It is well known that the {1,2,3M,4N} -inverses of A is unique,
which is also called the the weighted Moore-Penrose inverse of A and is denoted by
A†

M,N . In particular, when M = Im and N = In , the weighted Moore-Penrose inverse
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reduces to the Moore-Penrose inverse of A and is denoted by A†
Im,In

= A† , see [1, 9]. In

fact, the weighted Moore-Penrose inverse A†
M,N can be obtained by the expression

A†
M,N = N−1/2(M1/2AN−1/2)†M1/2,

where M1/2 and N1/2 are the positive definite square roots of M and N , respectively.
We refer the reader to [1, 9, 12] for basic results on the weighted generalized inverses.

Let A1 , A2 , · · · , An be n matrices such that the product A1A2 · · ·An exists. If
each of the n matrices is nonsingular, then the product A1A2 · · ·An is nonsingular
too and the inverse of A1A2 · · ·An satisfies the reverse order law (A1A2 · · ·An)−1 =
A−1

n A−1
n−1 · · ·A−1

1 . This law, however, cannot trivially be extended to the weighted
Moore-Penrose inverses of A1A2 · · ·An when the product is a singular matrix. In other
words, the reverse order law

(A1A2 · · ·An)†
M1,Mn+1

= (An)†
Mn,Mn+1

(An−1)
†
Mn−1,Mn

· · ·(A1)
†
M1,M2

(1.1)

does not automatically hold, where Ai ∈ Cli×li+1 , i = 1,2, · · · ,n and Mi ∈ Cli×li , i =
1,2, · · · ,n+1 are n+1 positive definite Hermitian matrices.

One of the fundamental research problems in the theory of generalized inverses of
matrices is to give necessary and sufficient conditions for various reverse order laws for
generalized inverses of matrix products. In 1966, Greville [4] first gave a necessary and
sufficient condition for the reverse order law (AB)† = B†A† . Since then, the problem
of the reverse order law for generalized inverses was widely studied, see [2, 3, 4, 6, 10,
11, 13, 14, 15, 16, 17, 19].

In this paper, we will discuss the reverse order law (1.1) and present necessary
and sufficient conditions for (1.1) to hold. In addition, we will also study the rela-
tionship between the reverse product (An)†

Mn,Mn+1
(An−1)†

Mn−1,Mn
· · · (A1)†

M1,M2
and the

weighted generalized inverse of A1A2 · · ·An , providing a variety of necessary and suffi-
cient conditions for the reverse product (An)†

Mn,Mn+1
(An−1)

†
Mn−1,Mn

· · ·(A1)
†
M1,M2

to be a
{1} -, {1,2} -, {1,3M1} -, {1,4Mn+1} -, {1,2,3M1} - or {1,2,4Mn+1} -inverse of ma-
trix product A1A2 · · ·An .

We first mention the following lemmas, which will be used in this paper.

LEMMA 1.1. [1, 11, 19] For any matrices A and B, such that the product AB is
well defined, the Moore-Penrose inverses of matrix products satisfy the following simple
properties:

(1). A∗(AA∗)† = (A∗A)†A∗ = A∗(A∗AA∗)†A∗ = A†;
(2). B†B(AB)†AA† = B†B(AB)† = (AB)†AA† = (AB)†.

LEMMA 1.2. [9, 11, 18] Let A ∈ Cm×n , G ∈ Cn×m ; M ∈ Cm×m and N ∈ Cn×n

be two positive definite Hermitian matrices. Then
(1). G ∈ A{1,2}⇔ AGA = A and r(G) = r(A);
(2). G ∈ A{1,3M}⇔ A∗MAG = A∗M;
(3). G ∈ A{1,4N}⇔ GAN−1A∗ = N−1A∗;
(4). G ∈ A{1,2,3M}⇔ A∗MAG = A∗M and r(G) = r(A);
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(5). G ∈ A{1,2,4N}⇔ GAN−1A∗ = N−1A∗ and r(G) = r(A);
(6). G = A†

M,N ⇔ A∗MAGM−1 = NGAN−1A∗ = A∗ and r(G) = r(A).

LEMMA 1.3. [1, 9, 12] Let A ∈ Cm×n ; L , M be two complementary subspaces
of Cn and PL,M denotes a projector on L along M . Then for any matrix A, we have
the following:

(1). PL,MA∗ = A∗ ⇔ R(A∗) ⊆ L;
(2). APL,M = A ⇔ N (A) ⊇ M.

LEMMA 1.4. [1, 9, 12] Let A∈ Cm×n and M ∈ Cm×m , N ∈ Cn×n be two positive
definite Hermitian matrices. Then

(1). R(AA†
M,N) = R(A), N (AA†

M,N) = M−1N (A∗);
(2). R(A†

M,NA) = N−1R(A∗), N (A†
M,NA) = N (A);

(3). A†
M,N = N−1/2(M1/2AN−1/2)†M1/2 = A(1,2)

N−1R(A∗), M−1N (A∗).

In addition, the following two lemmas are widely used in the context to simplify
various operations on ranks and ranges of matrices.

LEMMA 1.5. [7] Suppose A, B, C and D satisfy the following conditions:

R(B) ⊆ R(A) and R(C∗) ⊆ R(A∗)

or

R(C) ⊆ R(D) and R(B∗) ⊆ R(D∗).

Then

r

(
A B
C D

)
= r(A)+ r(D−CA†B) (1.2)

or

r

(
A B
C D

)
= r(D)+ r(A−BD†C). (1.3)

LEMMA 1.6. [5] Suppose B, C and D satisfy

R(D) ⊆ R(C) and R(D∗) ⊆ R(B∗).

Then the Moore-Penrose inverse of the block matrix

J =
(

O B
C D

)
,

may be expressed as

J† =
(

O B
C D

)†

=
(−C†DB† C†

B† O

)
. (1.4)
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As the main tools in our discussion, we now state the weighted Moore-Penrose
inverse of a special n×n block matrix.

THEOREM 1.1. Let Ai ∈ Cli×li+1 , i = 1,2, · · · ,n and Mi ∈ Cli×li , i = 1,2, · · · ,n+
1 be n+ 1 positive definite Hermitian matrices. If Ãi = M1/2

i AiM
−1/2
i+1 ∈ Cli×li+1 , i =

1,2, · · · ,n and B̃i ∈ Cli+1×li+1 , i = 1,2, · · · ,n−1 satisfy

B̃i = Ãi+1Xi+1Ãi, i = 1,2, · · · ,n−1, f or some Xi+1 ∈ Cli+2×li . (1.5)

Then the Moore-Penrose inverse of the n×n block matrix

Tn =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Ã1

Ã2 B̃1

� �

� �

Ãn−1 B̃n−2

Ãn B̃n−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (1.6)

may be expressed as

(Tn)† =

⎛⎜⎜⎜⎜⎜⎝
E(1,n) E(2,n) · · · E(n−1,n) E(n,n)

E(1,n−1) E(2,n−1) · · · E(n−1,n−1)
...

... �

E(1,2) E(2,2)
E(1,1)

⎞⎟⎟⎟⎟⎟⎠ , (1.7)

with

E(i, i) = (Ãi)†, i = 1,2, · · · ,n (1.8)

and

E(i, j) = (−1) j−i(Ã j)†B̃ j−1(Ã j−1)†B̃ j−2 · · ·(Ãi+1)†B̃i(Ãi)†, 1 � i < j � n. (1.9)

Proof. We shall use induction on n . For n = 2

T2 =

(
O Ã1

Ã2 B̃1

)
. (1.10)

According to (1.5), we have

R(B̃1) ⊆ R(Ã2) and R(B̃1
∗
) ⊆ R(Ã1

∗
).

Then, by the formula (1.4) in Lemma 1.6, we get

T †
2 =

(
−(Ã2)†B̃1(Ã1)† (Ã2)†

(Ã1)† O

)
=
(

E(1,2) E(2,2)
E(1,1) O

)
. (1.11)
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Suppose the hypothesis is also true for n−1, that is, under the conditions in (1.5) and
the equality (1.7), the Moore-Penrose of Tn−1 in (1.6) is given by

(Tn−1)† =

⎛⎜⎜⎜⎜⎜⎝
E(1,n−1) E(2,n−1) · · · E(n−2,n−1) E(n−1,n−1)
E(1,n−2) E(2,n−2) · · · E(n−2,n−2)

...
... �

E(1,2) E(2,2)
E(1,1)

⎞⎟⎟⎟⎟⎟⎠ . (1.12)

Next consider the Moore-Penrose inverse of Tn in (1.6). First partition Tn in (1.6)
into the form

Tn =
(

O Tn−1

Ãn H

)
,

where H =
(
B̃n−1, O, · · · , O

)
. It is easy to see from the conditions (1.5) that

R(H) ⊆ R(B̃n−1) ⊆ R(Ãn)

and

R(H∗) = R

⎛⎜⎜⎜⎝
B̃n−1

∗

O
...
O

⎞⎟⎟⎟⎠= R

⎛⎜⎜⎜⎝
Ãn−1

∗
XnÃn

∗

O
...
O

⎞⎟⎟⎟⎠⊆ R

⎛⎜⎜⎜⎝
Ãn−1

∗

O
...
O

⎞⎟⎟⎟⎠⊆ R(T ∗
n−1).

Hence, by Lemma 1.6, the Moore-Penrose inverse of Tn can be written as

(Tn)† =
(−(Ãn)†H(Tn−1)† (Ãn)†

(Tn−1)† O

)
. (1.13)

According to the hypothesis of the induction for T †
n−1 in (1.12) and the structure

of H , E(i, i) and E(i, j) in T †
n−1 , we have

− (Ãn)†H(Tn−1)† =
(
−(Ãn)†B̃n−1E(1,n−1), · · · , −(Ãn)†B̃n−1E(n−1,n−1)

)
=
(
E(1,n), E(2,n), · · · , E(n−1,n)

)
. (1.14)

Substituting T †
n−1 from (1.12) and −(Ãn)†H(Tn−1)† from (1.14) into (1.13) directly

produces (1.7). This fact shows that the conclusion of this theorem is true. �

According to Theorem 1.1 and Lemma 1.1 (1), we can immediately get the fol-
lowing two corollaries:

COROLLARY 1.1. Let Ai ∈Cli×li+1 , i = 1,2, · · · ,n and Mi ∈Cli×li , i = 1,2, · · · ,n+
1 be n+1 positive definite Hermitian matrices. Let Ãi = M1/2

i AiM
−1/2
i+1 , i = 1,2, · · · ,n



126 ZHIPING XIONG AND YINGYING QIN

and build an n×n block matrix by using these n matrices as follow

T̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Ã1Ã1
∗

Ã2
∗
Ã2Ã2

∗
Ã2

∗
Ã1

∗

� �

� �

Ãn−1
∗
Ãn−1Ãn−1

∗
Ãn−1

∗
Ãn−2

∗

Ãn
∗
Ãn Ãn

∗
Ãn−1

∗

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

(
O Ã1Ã1

∗
E1

E2Ãn
∗
Ãn S

)
, (1.15)

where E1 =
(
O, · · · , O, Il1

)
and E2 =

(
O, · · · , O, Iln+1

)∗
. Then the ln+1× l1 submatrix

in the upper left corner of the Moore-Penrose inverse of T̃ can be expressed as

PT̃ †Q = (−1)n−1(Ãn
∗
Ãn)†Ãn

∗
Ãn−1

∗
(Ãn−1

∗
Ãn−1Ãn−1

∗
)†Ãn−1

∗
Ãn−2

∗ · · ·
· · · Ã3

∗
Ã2

∗
(Ã2

∗
Ã2Ã2

∗
)†Ã2

∗
Ã1

∗
(Ã1Ã1

∗
)†

= (−1)n−1(Ãn)†(Ãn−1)† · · ·(Ã1)†, (1.16)

where P =
(
Iln+1 , O, · · · , O

)
and Q =

(
Il1 , O, · · · , O

)∗
. Furthermore, let

M =

⎛⎜⎜⎜⎜⎜⎜⎝

M1

M2
. . .

. . .
Mn

⎞⎟⎟⎟⎟⎟⎟⎠ and N =

⎛⎜⎜⎜⎜⎜⎜⎝

Mn+1

Mn
. . .

. . .
M2

⎞⎟⎟⎟⎟⎟⎟⎠ , (1.17)

be two n×n block positive definite Hermitian matrices. Then combining the structures
of M , N in (1.17) and the results in (1.16) with the formulas (3) in Lemma 1.4 , we
have

PN−1/2T̃ †M1/2Q = (−1)n−1M−1/2
n+1 (Ãn)†(Ãn−1)† · · · (Ã1)†M1/2

1

= (−1)n−1(An)†
Mn,Mn+1

(An−1)†
Mn−1,Mn

· · ·(A1)†
M1,M2

. (1.18)

COROLLARY 1.2. Let T̃ , P, Q, M , N be given as Corollary 1.1 and A = A1A2 · · ·An .
Then

r(T̃ ) = r(A1)+ r(A2)+ · · ·+ r(An). (1.19)

R(M1/2QA1) ⊆ R(T̃ ), R(N−1/2P∗A∗
n) ⊆ R(T̃ ∗). (1.20)

R(M1/2QA) ⊆ R(T̃ ), R(N−1/2P∗A∗) ⊆ R(T̃ ∗). (1.21)
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2. The relationship between (An)†
Mn,Mn+1

(An−1)†
Mn−1,Mn

...(A1)†
M1,M2

and the
weighted generalized inverses of A1A2...An

In this section, applying some matrix rank theories, we will show the relation-
ship between the reverse order product (An)†

Mn,Mn+1
(An−1)

†
Mn−1,Mn

· · ·(A1)
†
M1,M2

and the
common types of weighted generalized inverses of the product A1A2 · · ·An . For the
sake of the simplicity in the later discussion, we will adopt the following notations for
the matrix products:

A = A1A2 · · ·An, Ã = M1/2
1 AM−1/2

n+1 (2.1)

and

X = (An)†
Mn,Mn+1

(An−1)
†
Mn−1,Mn

· · · (A1)
†
M1,M2

, (2.2)

where Ai ∈Cli×li+1 , i = 1,2, · · · ,n and Mi ∈Cli×li , i = 1,2, · · · ,n+1 are n+1 positive
definite Hermitian matrices.

According to the equality (1.18) in Corollary 1.1, the matrix X in (2.2) can be
expressed as

X = (−1)n−1PN−1/2T̃ †M1/2Q, (2.3)

where N , M , T̃ , P and Q are defined as in Corollary 1.1. Based on the expression for
X in (2.3), we obtain the following result.

THEOREM 2.1. Let Ai ∈ Cli×li+1 , i = 1,2, · · · ,n and Mi ∈ Cli×li , i = 1,2, · · · ,n+
1 be n+1 positive definite Hermitian matrices. Let A, Ã and X be given as (2.1) and

(2.2), Ãi = M1/2
i AiM

−1/2
i+1 , i = 1,2, · · · ,n . Then X ∈ A{1} , if and only if

r

(
(−1)nÃ Ã1Ã1

∗
E1

E2Ãn
∗
Ãn S

)
= r(A1)+ r(A2)+ · · ·+ r(An)− r(A), (2.4)

where E1 , E2 and S are as in Corollary 1.1.

Proof. According to the definition of {1} -inverse and (2.3), we know that X ∈
A{1} if and only if

r(A−AXA) = r(A− (−1)n−1APN−1/2T̃ †M1/2QA)

= r((−1)n−1A−APN−1/2T̃ †M1/2QA)
= 0. (2.5)

On the other hand, from Corollary 1.2, we have

R(M1/2QA) ⊆ R(T̃ ) and R(N−1/2P∗A∗) ⊆ R(T̃ ∗). (2.6)
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Then by Lemma 1.5, we obtain

r((−1)n−1A−APN−1/2T̃ †M1/2QA)

= r

(
(−1)n−1A APN−1/2

M1/2QA T̃

)
− r(T̃ )

= r

((
I O

(−1)nM1/2Q I

)(
(−1)n−1A APN−1/2

M1/2QA T̃

)(
I (−1)nPN−1/2

O I

))
− r(T̃ )

= r

(
(−1)n−1A O

O T̃ +(−1)nM1/2QAPN−1/2

)
− r(T̃ )

= r(T̃ +(−1)nM1/2QAPN−1/2)+ r(A)− r(T̃). (2.7)

By the structure of T̃ , M , Q , P and N as given in Corollary 1.1, we further have

r(T̃ +(−1)nM1/2QAPN−1/2)

= r

((
O Ã1Ã1

∗
E1

E2Ãn
∗
Ãn S

)
+
(

(−1)nÃ O
O O

))

= r

(
(−1)nÃ Ã1Ã1

∗
E1

E2Ãn
∗
Ãn S

)
. (2.8)

Substituting (2.8), (1.19) into (2.7) and combining the result with (2.5), we arrive at
(2.4). �

By a similar approach with Theorem 2.1, we can also prove the following two
theorems.

THEOREM 2.2. Let Ai ∈ Cli×li+1 , i = 1,2, · · · ,n and Mi ∈ Cli×li , i = 1,2, · · · ,n+
1 be n+1 positive definite Hermitian matrices. Let A, Ã and X be given as (2.1) and
(2.2), Ãi = M1/2

i AiM
−1/2
i+1 , i = 1,2, · · · ,n . Then X ∈ A{1,2} , if and only if A1 , A2 , · · · ,

An and A satisfy (2.4) and the following rank equality:

r(S) = r(A)+ r(A2)+ r(A3)+ · · ·+ r(An−1), (2.9)

where S is given as in Corollary 1.1.

Proof. According to Lemma 1.2 (1), X ∈ A{1,2} holds if and only if

r(A−AXA) = 0 and r(X) = r(A). (2.10)

In Theorem 2.1 we proved that r(A−AXA) = 0 is equivalent to (2.4). Next, we will
claim that r(X) = r(A) is equivalent to (2.9). In fact, from (2.2) we have

(An)†
Mn,Mn+1

AnXA1(A1)
†
M1,M2

= (An)†
Mn,Mn+1

An(An)†
Mn,Mn+1

(An−1)
†
Mn−1,Mn

· · · (A1)
†
M1,M2

A1(A1)
†
M1,M2

= (An)†
Mn,Mn+1

(An−1)
†
Mn−1,Mn

· · · (A1)
†
M1,M2

= X . (2.11)
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Combining (2.11) with (2.3), we have

r(X) = r((An)†
Mn,Mn+1

AnXA1(A1)
†
M1,M2

) � r(AnXA1) � r(X) (2.12)

and

r(X) = r(AnXA1) = r(AnPN−1/2T̃ †M1/2QA1). (2.13)

On the other hand, by Corollary 1.2, we get

R(M−1/2QA1) ⊆ R(T̃ ) and R(N−1/2PA∗
n) ⊆ R(T̃ ∗).

Then applying Lemma 1.5, we have

r(AnPN−1/2T̃ †M1/2QA1)

= r

(
T̃ M1/2QA1

AnPN−1/2 O

)
− r(T̃ )

= r

⎛⎜⎝ O Ã1Ã1
∗
E1 M1/2

1 A1

E2Ãn
∗
Ãn S O

AnM
−1/2
n+1 O O

⎞⎟⎠− r(T̃ )

= r

⎛⎜⎝
⎛⎝ I O O

O I −E2Ãn
∗
M1/2

n

O O I

⎞⎠
⎛⎜⎝ O Ã1Ã1

∗
E1 M1/2

1 A1

E2Ãn
∗
Ãn S O

AnM
−1/2
n+1 O O

⎞⎟⎠
⎛⎝I O O
O I O

O −M−1/2
2 Ã1

∗
E1 I

⎞⎠
⎞⎟⎠

−r(T̃ )

= r

⎛⎜⎝ O O M1/2
1 A1

O S O

AnM
−1/2
n+1 O O

⎞⎟⎠− r(T̃ )

= r(S)+ r(A1)+ r(An)− r(T̃). (2.14)

Finally, combining the results in (1.19), (2.10), (2.13) with (2.14), we have (2.9). �

THEOREM 2.3. Let Ai ∈ Cli×li+1 , i = 1,2, · · · ,n and Mi ∈ Cli×li , i = 1,2, · · · ,n+
1 be n+1 positive definite Hermitian matrices. Let A, Ã and X be given as (2.1) and
(2.2), Ãi = M1/2

i AiM
−1/2
i+1 , i = 1,2, · · · ,n . Then X ∈ A{1,3M1} , if and only if

r

(
(−1)n(Ã)∗Ã (Ã)∗Ã1Ã1

∗
E1

E2Ãn
∗
Ãn S

)
= r(A2)+ r(A3)+ · · ·+ r(An), (2.15)

where E1 , E2 and S are given as in Corollary 1.1.

Proof. From Lemma 1.2 (2), X ∈ A{1,3M1} holds if and only if

r(A∗M1−A∗M1AX) = 0.
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Note that

A∗M1A1(A1)†
M1,M2

= A∗
nA

∗
n−1 · · ·A∗

1(A
∗
1)

†
M1,M2

A∗
1M1 = A∗M1

and

A∗M1AXA1(A1)†
M1,M2

= A∗M1A(An)†
Mn,Mn+1

(An−1)†
Mn−1,Mn

· · · (A1)†
M1,M2

A1(A1)†
M1,M2

= A∗M1AX

and

r(A∗M1−A∗M1AX) = r((A∗M1A1−A∗M1AXA1)(A1)†
M1,M2

))
� r(A∗M1A1−A∗M1AXA1)
� r(A∗M1−A∗M1AX)

Thus, by the expression for X as in (2.3), we have

r(A∗M1 −A∗M1AX)
= r(A∗M1A1−A∗M1AXA1)

= r(A∗M1A1− (−1)n−1A∗M1APN−1/2T̃ †M1/2QA1)

= r((−1)n−1A∗M1A1−A∗M1APN−1/2T̃ †M1/2QA1). (2.16)

On the other hand, from Corollary 1.2, we obtain R(M1/2QA1) ⊆ R(T̃ ) and
R(N−1/2P∗A∗M1A) ⊆ R(N−1/2PA∗

n) ⊆ R(T̃ ). Then applying Lemma 1.5, we have

r((−1)n−1A∗M1A1−A∗M1APN−1/2T̃ †M1/2QA1)

= r

(
T̃ M1/2QA1

A∗M1APN−1/2 (−1)n−1A∗M1A1

)
− r(T̃ )

= r

⎛⎜⎝ O Ã1Ã1
∗
E1 M1/2

1 A1

E2Ãn
∗
Ãn S O

A∗M1AM−1/2
n+1 O (−1)n−1A∗M1A1

⎞⎟⎠− r(T̃ )

= r

⎛⎜⎝ O O M1/2
1 A1

E2Ãn
∗
Ãn S O

A∗M1AM−1/2
n+1 (−1)nA∗M1A1M

−1/2
2 Ã1

∗
E1 O

⎞⎟⎠− r(T̃ )

= r

(
E2Ãn

∗
Ãn S

A∗M1AM−1/2
n+1 (−1)nA∗M1/2

1 Ã1Ã1
∗
E1

)
+ r(A1)− r(T̃ ). (2.17)
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Further,

r

(
E2Ãn

∗
Ãn S

A∗M1AM−1/2
n+1 (−1)nA∗M1/2

1 Ã1Ã1
∗
E1

)

= r

(
(−1)nA∗M1AM−1/2

n+1 A∗M1/2
1 Ã1Ã1

∗
E1

E2Ãn
∗
Ãn S

)

= r

((
M−1/2

n+1 O
O I

)
×
(

(−1)nA∗M1AM−1/2
n+1 A∗M1/2

1 Ã1Ã1
∗
E1

E2Ãn
∗
Ãn S

))

= r

(
(−1)n(Ã)∗Ã (Ã)∗Ã1Ã1

∗
E1

E2Ãn
∗
Ãn S

)
. (2.18)

Therefore from (1.19), (2.16), (2.17) and (2.18), we know that X ∈ A{1,3M1} holds if
and only if

r

(
(−1)n(Ã)∗Ã (Ã)∗Ã1Ã1

∗
E1

E2Ãn
∗
Ãn S

)
= r(A2)+ r(A3)+ · · ·+ r(An). �

Notice that GAN−1A∗ = N−1A∗ is equivalent to the equation AN−1A∗G∗ = AN−1 .
This implies that, by Lemma 1.2 (2) and (3), G ∈ A{1,4N} if and only if G∗ ∈
A∗{1,3N−1} . So from the results obtained in Theorem 2.3, we have

THEOREM 2.4. Let Ai ∈ Cli×li+1 , i = 1,2, · · · ,n and Mi ∈ Cli×li , i = 1,2, · · · ,n+
1 be n+1 positive definite Hermitian matrices. Let A, Ã and X be given as (2.1) and
(2.2), Ãi = M1/2

i AiM
−1/2
i+1 , i = 1,2, · · · ,n . Then X ∈ A{1,4Mn+1} , if and only if

r

(
(−1)nÃ(Ã)∗ Ã1Ã1

∗
E1

E2Ãn
∗
Ãn(Ã)∗ S

)
= r(A1)+ r(A2)+ · · ·+ r(An−1), (2.19)

where E1 , E2 and S are given as Corollary 1.1.

Furthermore, according to Lemma 1.2 (4) and (5) as well as the results in Theo-
rem 2.2, Theorem 2.3 and Theorem 2.4, we can immediately draw the following two
conclusions:

COROLLARY 2.1. Let Ai ∈ Cli×li+1 , i = 1,2, · · · ,n and Mi ∈ Cli×li , i = 1,2, · · · ,
n+1 be n+1 positive definite Hermitian matrices. Let A, Ã and X be given as (2.1)
and (2.2), Ãi = M1/2

i AiM
−1/2
i+1 , i = 1,2, · · · ,n . Then X ∈ A{1,2,3M1} , if and only if

A1 , A2 , · · · , An and A satisfy the rank equalities (2.9) and (2.15).

COROLLARY 2.2. Let Ai ∈ Cli×li+1 , i = 1,2, · · · ,n and Mi ∈ Cli×li , i = 1,2, · · · ,
n+1 be n+1 positive definite Hermitian matrices. Let A, Ã and X be given as (2.1)
and (2.2) , Ãi = M1/2

i AiM
−1/2
i+1 , i = 1,2, · · · ,n . Then X ∈ A{1,2,4Mn+1} , if and only if

A1 , A2 , · · · , An and A satisfy the rank equalities (2.9) and (2.19).
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3. The necessary and sufficient conditions for the reverse order law (1.1) to hold

From Lemma 1.2 (6), we know that, the reverse order law (1.1):

(A1A2 · · ·An)†
M1,Mn+1

= (An)†
Mn,Mn+1

(An−1)†
Mn−1,Mn

· · ·(A1)†
M1,M2

holds if and only if A and X in (2.1)and (2.2) satisfy the following three rank equalities:

r(X) = r(A), r(A∗M1−A∗M1AX) = 0 and r(M−1
n+1A

∗ −XAM†
n+1A

∗) = 0.

Thus, from Theorem 2.2, Theorem 2.3 and Theorem 2.4, we immediately obtain the
following key result in this section.

THEOREM 3.1. Let Ai ∈ Cli×li+1 , i = 1,2, · · · ,n and Mi ∈ Cli×li , i = 1,2, · · · ,n+
1 be n+1 positive definite Hermitian matrices. Let A, Ã and X be given as (2.1) and
(2.2), Ãi = M1/2

i AiM
−1/2
i+1 , i = 1,2, · · · ,n . Then the reverse order law (1.1) holds if and

only if A1 , A2 , · · · , An and A satisfy the rank equalities (2.9), (2.15) and (2.19).

In addition to the result in Theorem 3.1, we deduce another necessary and suffi-
cient condition for the reverse order law in (1.1) to hold.

THEOREM 3.2. Let Ai ∈ Cli×li+1 , i = 1,2, · · · ,n and Mi ∈ Cli×li , i = 1,2, · · · ,n+
1 be n+1 positive definite Hermitian matrices. Let A, Ã and X be given as (2.1) and
(2.2), Ãi = M1/2

i AiM
−1/2
i+1 , i = 1,2, · · · ,n . Then the reverse order law (1.1) holds if and

only if A1 , A2 , · · · , An and A satisfy the following rank equality

r

(
(−1)n(Ã)∗Ã(Ã)∗ (Ã)∗Ã1Ã1

∗
E1

E2Ãn
∗
Ãn(Ã)∗ S

)
= r(A)+ r(A2)+ r(A3)+ · · ·+ r(An−1), (3.1)

where E1 , E2 and S are given as in Corollary 1.1.

Proof. It is obvious that A†
M1,Mn+1

= X holds if and only if

r(A†
M1,Mn+1

−X) = 0.

By Lemma 1.3 and Lemma 1.4 and the structure of A in (2.1), we have

(An)†
Mn,Mn+1

AnA
†
M1,Mn+1

A1(A1)
†
M1,M2

= PN−1R(A∗),N(A)A
†
M1,Mn+1

PR(A),M−1N(A∗)

= PN−1R(A∗),N(A)A
(1,2)
N−1R(A∗),M−1N(A∗)PR(A),M−1N(A∗)

= A(1,2)
N−1R(A∗),M−1N(A∗)

= A†
M1,Mn+1

. (3.2)

On the other hand, from the structure of X as given in (2.2) and the equality (2.11), we
have

(An)†
Mn,Mn+1

AnXA1(A1)
†
M1,M2

= X . (3.3)
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Combining (3.2) and (3.3), we have

r(A†
M1,Mn+1

−X)

= r((An)†
Mn,Mn+1

(AnA
†
M1,Mn+1

A1−AnXA1)(A1)†
M1,M2

)

� r(AnA
†
M1,Mn+1

A1 −AnXA1)

= r(An(A†
M1,Mn+1

−X)A1)

� r(A†
M1,Mn+1

−X). (3.4)

Thus from (2.3) and (3.4), we have

r(A†
M1,Mn+1

−X)

= r(AnA
†
M1,Mn+1

A1−AnXA1)

= r(AnA
†
M1,Mn+1

A1 +(−1)nAnPN−1/2T̃ †M1/2QA1). (3.5)

So from (3.5), we know that the rank equality r(A†
M1,Mn+1

−X) = 0 holds if and only if

r(AnA
†
M1,Mn+1

A1 +(−1)nAnPN−1/2T̃ †M1/2QA1) = 0. (3.6)

Using the matrices in (3.6), we construct a 3×3 block matrix:

G =

⎛⎜⎝ T̃ O M1/2QA1

O (−1)nÃ∗ÃÃ∗ Ã∗M1/2
1 A1

AnPN−1/2 AnM
−1/2
n+1 Ã∗ O

⎞⎟⎠ . (3.7)

According to (1.20) and (1.21) in Corollary 1.2, we obtain

R

(
M1/2QA1

Ã∗M1/2
1 A1

)
⊆ R

(
T̃ O
O (−1)nÃ∗ÃÃ∗

)
and

R

(
N−1/2P∗A∗

n

ÃM−1/2
n+1 A∗

n

)
⊆ R

(
T̃ ∗ O
O ÃÃ∗Ã

)
.

Hence by Lemma 1.1 (1) and Lemma 1.5, we have

r(G) = r

(
T̃ ∗ O
O (−1)nÃÃ∗Ã

)
+r

((
AnPN−1/2, AnM

−1/2
n+1 Ã∗

)(T̃ † O
O (−1)n(Ã∗ÃÃ∗)†

)(
M1/2QA1

Ã∗M1/2
1 A1

))
= r(T̃ )+ r(A)

+r((−1)nAnPN−1/2T̃ †M1/2QA1 +AnM
−1/2
n+1 Ã∗(Ã∗ÃÃ∗)†Ã∗M1/2

1 A1)

= r(T̃ )+ r(A)+ r(AnPN−1/2T̃ †M1/2QA1 +(−1)nAnA
†
M1,Mn+1

A1). (3.8)
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On the other hand

r(G) = r

⎛⎜⎜⎜⎝
O Ã1Ã1

∗
E1 O M1/2

1 A1

E2Ãn
∗
Ãn S O O

O O (−1)nÃ∗ÃÃ∗ Ã∗M1/2
1 A1

AnM
−1/2
n+1 O AnM

−1/2
n+1 Ã∗ O

⎞⎟⎟⎟⎠

= r

⎛⎜⎜⎜⎝
O O O M1/2

1 A1

E2Ãn
∗
Ãn S O O

O −Ã∗Ã1Ã1
∗
E1 (−1)nÃ∗ÃÃ∗ Ã∗M1/2

1 A1

AnM
−1/2
n+1 O AnM

−1/2
n+1 Ã∗ O

⎞⎟⎟⎟⎠

= r

⎛⎜⎜⎜⎝
O O O M1/2

1 A1

O S −E2Ãn
∗
ÃnÃ∗ O

O −Ã∗Ã1Ã1
∗
E1 (−1)nÃ∗ÃÃ∗ Ã∗M1/2

1 A1

AnM
−1/2
n+1 O AnM

−1/2
n+1 Ã∗ O

⎞⎟⎟⎟⎠
= r

(
(−1)nÃ∗ÃÃ∗ Ã∗Ã1Ã1

∗
E1

E2Ãn
∗
ÃnÃ∗ S

)
+ r(A1)+ r(An) (3.9)

Therefore, combining (3.8), (3.9) with (1.19), we have

r(AnA
†
M1,Mn+1

A1 +(−1)nAnPN−1/2T̃ †M1/2QA1)

= r

(
(−1)n(Ã)∗Ã(Ã)∗ (Ã)∗Ã1Ã1

∗
E1

E2Ãn
∗
Ãn(Ã)∗ S

)
− r(A)− r(A2)− r(A3)−·· ·− r(An−1).

Let the right-hand of above equality be zero and combining the result with (3.6), we
complete the proof of Theorem 3.2. �
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