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ESTIMATES FOR LOWER BOUNDS OF

EIGENVALUES OF THE KLEIN–GORDON OPERATOR

HE-JUN SUN AND LING-ZHONG ZENG

(Communicated by J. Pečarić)

Abstract. In this paper, we establish some inequalities for eigenvalues of the Klein-Gordon op-
erator on a bounded domain in an n -dimensional Euclidean space. These inequalities give some
sharper estimates for lower bounds of the sums of its first k eigenvalues, which improve the
recent results of Yildirim Yolcu (Proc. Amer. Math. Soc. 138 (2010), 4059–4066).

1. Introduction

Let Ω be a bounded domain in an n -dimensional Euclidean space R
n . Consider

the quadratic form

Q(ϕ) =
∫

Ω
ϕ
√−Δϕ ,

where ϕ ∈C∞
c (Ω) . The Klein-Gordon operator H0,Ω =

√−Δ is defined as the Fried-
richs extension (cf. [1]) of the quadratic form Q on L2(Ω) . As a special case of the
Klein-Gordon Hamiltonian, it can be used to model relativistic particles in quantum
mechanics. Moreover, it is the generator of the Cauchy stochastic process with a killing
condition on ∂Ω (see [3, 4]). It is also called the fractional Laplacian with power 1

2 .
Denote by β j the j -th eigenvalue of H0,Ω . Then its eigenvalues satisfy

0 < β1 < β2 � β3 � · · · � β j � · · · → ∞,

where each eigenvalue is repeated according to its multiplicity. The purpose of this
paper is to give some estimates for the lower bound of ∑k

j=1 β j .
To begin with, we give a brief review about some related results in this direction.

Denote by λ j the j -th eigenvalues of the Dirichlet Laplacian on Ω . The asymptotic
behavior of its k -th eigenvalue λk relates to geometric properties of Ω when k → ∞ .
In fact, the following Weyl’s asymptotic formula (see [19]) holds

λk ∼ (2π)2

(ωnV (Ω))
2
n

k
2
n , as k → ∞, (1.1)
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where ωn denotes the volume of the unit ball in R
n and V (Ω) denotes the volume of

Ω . In 1961, Pólya [15] proved that

λk � (2π)2

(ωnV (Ω))
2
n

k
2
n (1.2)

holds on tiling domains in R
2 . His proof also works on tiling domains in R

n . More-
over, he conjectured that (1.2) holds for any bounded domain in R

n . Berezin [5] and
Lieb [13] made some contributions to the partial solution of this conjecture. In 1983,
Li and Yau [12] proved the following so-called Li-Yau inequality

1
k

k

∑
j=1

λ j � n
n+2

(2π)2(
ωnV (Ω)

) 2
n

k
2
n . (1.3)

Observe that (1.3) is very sharp in the sense of average. In 2000, Laptev and Weidl [11]
pointed out that (1.3) can be derived by the Legendre transform of a result derived by
Berezin [5]. Hence, (1.3) is also called the Berezin-Li-Yau inequality. In 2003, adding
an additional positive term to the right-hand side of (1.3), Melas [14] improved (1.3) to

1
k

k

∑
j=1

λ j � n
n+2

(2π)2

(ωnV (Ω))
2
n

k
2
n +

1
24(n+2)

V (Ω)
I(Ω)

, (1.4)

where I(Ω) = min
a∈Rn

∫
Ω |x− a|2dx is the moment of inertia of Ω . In 2009, when n = 2

and assuming some geometric properties of the boundary of Ω , Kovařı́k, Vugalter and
Weidl [9] improved (1.4) by adding a positive correction term to its right-hand side
(cf. [18]). Recently, Ilyin [10] derived the following asymptotic lower bound for the
Dirichlet Laplacian:

1
k

k

∑
j=1

λ j � n
n+2

(2π)2

(ωnV (Ω))
2
n

k
2
n +

n
48

V (Ω)
I(Ω)

(
1− εn(k)

)
, (1.5)

where 0 � εn(k) = O(k−
2
n ) is a infinitesimal of k−

2
n . Moreover, he obtained some

explicit inequalities for some particular cases of n .
For the Klein-Gordon operator, Blumenthal and Getoor [6] established the follow-

ing analogous formula of the Weyl asymption formula:

βk ∼ 2π(
ωnV (Ω)

) 1
n

k
1
n . (1.6)

In 2009, Harrell II and Yildirim Yolcu [8] gave a new proof of (1.6). At the same time,
they obtained

1
k

k

∑
j=1

β j � n
n+1

2π
(ωnV (Ω))

1
n

k
1
n . (1.7)
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In 2010, adding a positive term to the right side of (1.7), Yildirim Yolcu [20] further
strengthened (1.7) to

1
k

k

∑
j=1

β j � n
n+1

2π(
ωnV (Ω)

) 1
n

k
1
n +

nC
4(n2−1)

(
ωnV (Ω)

) 1
n

2π
V (Ω)
I(Ω)

k−
1
n , (1.8)

where

C = min

{
1
6
,
4(n−1)(2π)2−nI(Ω)

(2n+1)
(
ωnV (Ω)

) 2
n

k
2
n

}
.

For more results in this direction, we refer the reader to [7, 20] and the references
therein.

In this paper, we obtain the following results for the Klein-Gordon operator:

THEOREM 1.1. Let Ω be a bounded domain in R
n . Then the eigenvalues of the

Klein-Gordon operator H0,Ω satisfy

1
k

k

∑
j=1

β j � n
n+1

2π(
ωnV (Ω)

) 1
n

k
1
n

+
n
96

(
ωnV (Ω)

) 1
n

2π
V (Ω)
I(Ω)

k−
1
n

(
1− εn(k)

)
,

(1.9)

where 0 � εn(k) = O(k−
2
n ) is an infinitesimal of k−

2
n .

REMARK 1.1. (1.9) is sharp in view of the asymptotic formula (1.6). Moreover,
observe that the first term of (1.9) is the same as that of (1.8) and the second term of
(1.9) is n2−1

4 larger than (1.8) when n � 3 (see Remark 2.1). Hence, we get a sharper
estimate for the lower bound of 1

k ∑k
j=1 β j when n � 3.

Furthermore, for the special case of n = 3, we can give the following explicit
lower bounds of 1

k ∑k
j=1 β j .

THEOREM 1.2. Let Ω be a bounded domain in R
3 . Then the eigenvalues of the

Klein-Gordon operator H0,Ω satisfy

1
k

k

∑
j=1

β j �3
4

2π
(ω3V (Ω))

1
3

k
1
3 +

1
32

(
ω3V (Ω)

) 1
3

2π
V (Ω)
I(Ω)

k−
1
3

− 7
5120

ω3V (Ω)
(2π)3

(
V (Ω)
I(Ω)

)2

k−1.

(1.10)

The first two terms of (1.10) coincide with those of (1.9). The negative contri-
bution from the the third term in (1.10) can be compensated by a (1−α)-part of the
positive second term where 0 < α < 1 and α is sufficiently close to 1. Namely we
have the following corollary:
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COROLLARY 1.1. Under the same assumptions as Theorem 1.2, we have

1
k

k

∑
j=1

β j �3
4

2π
(ω3V (Ω))

1
3

k
1
3 +

α
32

(
ω3V (Ω)

) 1
3

2π
V (Ω)
I(Ω)

k−
1
3 , (1.11)

where α = 0.987 .

2. Proofs of the main results

Let u j be an orthonormal eigenfuction corresponding to the j -th eigenvalue β j of
the Klein-Gordon operator H0,Ω . Then we define a function f j(x) by

f j(x) =

{
u j(x), x ∈ Ω,

0, R
n\Ω.

Denote by f̂ j(ξ ) the Fourier transform of f j(x) , which is given by

f̂ j(ξ ) = (2π)−
n
2

∫
Rn

f j(x)e−ix·ξ dx = (2π)−
n
2

∫
Ω

u j(x)e−ix·ξ dx, (2.1)

where ξ ∈ R
n . Plancherel’s theorem implies∫

Ω
f̂ j(ξ ) f̂l(ξ )dξ = δ jl . (2.2)

Set h(ξ ) = ∑k
j=1 | f̂ j(ξ )|2. Using (2.2) and Bessel inequality, one can get

0 � h(ξ ) � (2π)−n
∫

Ω
|e−ix·ξ |2dx = (2π)−nV (Ω). (2.3)

Moreover, according to Parseval’s identity, we have∫
Rn

h(ξ )dξ =
k

∑
j=1

∫
Rn

| f̂ j(ξ )|2dξ =
k

∑
j=1

∫
Rn

| f j(x)|2dx

=
k

∑
j=1

∫
Ω

u2
j(x)dx = k.

(2.4)

Since
∇ f̂ j(ξ ) = −(2π)−

n
2

∫
Ω

ixu j(x)e−ix·ξ dx,

we have
k

∑
j=1

|∇ f̂ j(ξ )|2 � (2π)−n
∫

Ω
|ixe−ix·ξ |2dx = (2π)−nI(Ω). (2.5)

By translating the domain Ω , we may assume that

I(Ω) =
∫

Ω
|x|2dx.



EIGENVALUES OF THE KLEIN-GORDON OPERATOR 141

Using (2.3) and (2.5), we get

|∇h(ξ )| � 2
( k

∑
j=1

| f̂ j(ξ )|2) 1
2
( k

∑
j=1

|∇ f̂ j(ξ )|2) 1
2 � 2(2π)−n

√
V (Ω)I(Ω), (2.6)

for every ξ ∈ R
n . Since

β j = 〈u j,H0,Ωu j〉 =
∫

Rn
|ξ ||û j(ξ )|2dξ ,

we have
k

∑
j=1

β j =
∫

Rn
|ξ |h(ξ )dξ . (2.7)

Therefore, according to (2.3), (2.4), (2.6) and (2.7), our purpose is to find a better
solution MA,B(k) of the following minimization problem:∫

Rn
|ξ |h(ξ )dξ � MA,B(k), (2.8)

under the conditions:

0 � h(ξ ) � A,

∫
Rn

h(ξ )dξ = k and |∇h(ξ )| � B,

where A = (2π)−nV (Ω) and B = 2(2π)−n
√

V (Ω)I(Ω) . Denote by h∗(ξ ) = ψ(|ξ |)
the symmetric decreasing rearrangement of h . By approximating h , we may assume
that the decreasing function ψ : [0,+∞) → [0,(2π)−nV (Ω)] is absolutely continuous.
It follows from (2.4) that

k =
∫

Rn
h(ξ )dξ =

∫
Rn

h∗(ξ )dξ = nωn

∫ +∞

0
rn−1ψ(r)dr. (2.9)

It yields ∫ +∞

0
rn−1ψ(r)dr =

k
nωn

. (2.10)

Using the well-known properties of the symmetric decreasing rearrangement (see [2,
16]), one can get

k

∑
j=1

β j =
∫

Rn
|ξ |h(ξ )dξ �

∫
Rn

|ξ |h∗(ξ )dξ = nωn

∫ +∞

0
rnψ(r)dr. (2.11)

Moreover, it is well known (cf. [17]) that

0 � h∗(ξ ) � A,

∫ +∞

0
h∗(ξ )dξ = k and |∇h∗(ξ )| � ess sup|∇h(ξ )|,

where ess sup f is the essential supremum of the function f . Hence, according to
(2.11), problem (2.8) is equivalent to find a sharper lower bound MA,B(k) of
nωn

∫ +∞
0 rnψ(r)dr under the conditions:

0 � ψ(r) � A,

∫ +∞

0
rn−1ψ(r)dr =

k
nωn

and 0 � −ψ ′(r) � B.
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For this goal, we use the following lemma derived by Ilyin [10] to find a sharper lower
bound of

∫ +∞
0 rnψ(r)dr .

LEMMA 2.1. Let

Ψs(r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
A, for 0 � r � s;

A−B(r− s), for s � r � s+
A
B

;

0, for r � s+
A
B

.

Assume that m =
∫ +∞
0 rbΨs(r)dr and d � b. Then for any decreasing and absolutely

continuous function F satisfying the conditions

0 � F � A,

∫ +∞

0
rbF(r)dr = m, 0 � −F ′ � B,

the following inequality holds:∫ +∞

0
rdF(r)dr �

∫ +∞

0
rdΨs(r)dr. (2.12)

Now we give the proof of Theorem 1.1.

Proof of Theorem 1.1. According to (2.11), we need to estimate
∫ +∞
0 rnψ(r)dr in

order to give an estimate for the lower bound of ∑k
j=1 β j . Taking F = ψ , b = n− 1,

d = n in Lemma 2.1, we have∫ +∞

0
rn−1ψ(r)dr =

∫ +∞

0
rn−1Ψs(r)dr. (2.13)

and ∫ +∞

0
rnψ(r)dr �

∫ +∞

0
rnΨs(r)dr. (2.14)

Then it follows from (2.11) and (2.14) that

k

∑
j=1

β j �MA,B(k) = nωn

∫ +∞

0
rnΨs(r)dr (2.15)

with A = (2π)−nV (Ω) , B = 2(2π)−n
√

V (Ω)I(Ω) and m = k(nωn)−1 .
Now we estimate the lower bound of

∫ +∞
0 rnΨs(r)dr . By a straightforward calcu-

lation, one can get∫ +∞

0
rlΨs(r)dr =

Al+2

(l +1)(l +2)Bl+1

[
(t +1)l+2− tl+2

]
, (2.16)

where t = A−1Bs . Using (2.10), (2.13) and (2.16), we obtain

k
nωn

=
∫ +∞

0
rn−1ψ(r)dr =

∫ +∞

0
rn−1Ψs(r)dr

=
An+1

n(n+1)Bn

[
(t +1)n+1− tn+1

]
.
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It yields
(t +1)n+1− tn+1 = k∗, (2.17)

where

k∗ =
(n+1)Bn

ωnAn+1 k.

Since k∗ � 1 for k � 1 (see (3.11) in [10]), the equation (2.17) has a unique positive
solution t = t(k∗) . Set

η = t +
1
2
. (2.18)

Then (2.17) becomes (
η +

1
2

)n+1−
(

η − 1
2

)n+1
= k∗. (2.19)

The asymptotic expansion for the unique positive root of (2.19) is

η(k∗) = ζ − n−1
24

ζ−1 +
(n−1)(n−3)(2n+1)

5760
ζ−3 + · · · , (2.20)

where ζ =
( k∗

n+1

) 1
n . Making use of (2.15) and (2.16), we know that the lower bound of

∑k
j=1 β j is

nωn

∫ +∞

0
rnΨs(r)dr =

nωnAn+2

(n+1)(n+2)Bn+1

[(
t(k∗)+1

)n+2− t(k∗)n+2
]
. (2.21)

Using (2.18) and (2.20), we have(
t(k∗)+1

)n+2− t(k∗)n+2

=
[
1
2

+ ζ − n−1
24

ζ−1 +
(n−1)(n−3)(2n+1)

5760
ζ−3 + · · ·

]n+2

−
[
− 1

2
+ ζ − n−1

24
ζ−1 +

(n−1)(n−3)(2n+1)
5760

ζ−3 + · · ·
]n+2

=
(

n+2
1

)
ζ n+1 +2

[
1
23

(
n+2

3

)
− n−1

48

(
n+2

2

)(
2
1

)]
ζ n−1

+2

[
1
25

(
n+2

5

)
− n−1

192

(
n+2

4

)(
4
1

)
+

(n−1)2

1152

(
n+2

3

)(
3
1

)
+

(n−1)(n−3)(2n+1)
11520

(
n+2

2

)(
2
1

)]
ζ n−3 + · · ·

=(n+2)
[

ζ n+1 +
n+1
24

ζ n−1− (n+1)(n−1)(2n+1)
1920

ζ n−3 + · · ·
]
,

(2.22)

where the binomial coefficient is
(p
q

)
= p!

q!(p−q)! . Inserting (2.22) into (2.21), we obtain

nωn

∫ +∞

0
rnΨs(r)dr =

nωnAn+2

(n+1)Bn+1

[( k∗

n+1

)1+ 1
n
+

n+1
24

( k∗

n+1

)1− 1
n

− (n+1)(n−1)(2n+1)
1920

( k∗

n+1

)1− 3
n + · · ·

]
.

(2.23)
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Substituting k∗ = (n+1)Bn

ωnAn+1 k , A = (2π)−nV (Ω) and B = 2(2π)−n
√

V (Ω)I(Ω) into (2.23),
we deduce

nωn

∫ +∞

0
rnΨs(r)dr

=
n

n+1

(
Aωn

)− 1
n k1+ 1

n +
n
24

(
Aωn

) 1
n

(
A
B

)2

k1− 1
n

− n(n−1)(2n+1)
1920

(
Aωn

) 3
n

(
A
B

)4

k1− 3
n +O(k1− 5

n )

=
n

n+1
2π(

ωnV (Ω)
) 1

n

k1+ 1
n +

n
96

(
ωnV (Ω)

) 1
n

2π
V (Ω)
I(Ω)

k1− 1
n

− n(n−1)(2n+1)
30720

(
ωnV (Ω)

) 3
n

(2π)3

(
V (Ω)
I(Ω)

)2

k1− 3
n +O(k1− 5

n ).

(2.24)

Combining (2.15) and (2.24), we know that (1.9) is true. This completes the proof of
Theorem 1.1. �

REMARK 2.1. In fact, (1.8) of Yildirim Yolcu depends on (2.3) of Lemma 2.2 in
[20]. Using the same notations as our paper, we observe that it is (see (2.18) of [20])
actually

nωn

∫ +∞

0
rnψ(r)dr � n

n+1

(
Aωn

)− 1
n k1+ 1

n +
n

6(n2−1)
(
Aωn

) 1
n

(
A
B

)2

k1− 1
n . (2.25)

In the proof of Theorem 1.1, we give the first three terms of the asymptotic expansion
of the solution MA,B(k) . They are the descending powers of k : k1+ 1

n , k1− 1
n , k1− 3

n , · · · .
Namely we have

nωn

∫ +∞

0
rnψ(r)dr � MA,B(k) = M0(k)+O(k1− 5

n ),

where O(k1− 5
n ) is an infinitesimal of k1− 5

n and

M0(k) =
n

n+1

(
Aωn

)− 1
n k1+ 1

n +
n
24

(
Aωn

) 1
n

(
A
B

)2

k1− 1
n

− n(n−1)(2n+1)
1920

(
Aωn

) 3
n

(
A
B

)4

k1− 3
n .

(2.26)

It is not difficult to find that the first term of (2.26) is the same as that of (2.25) and the
second term of (2.26) is n2−1

4 larger than (2.25) when n � 3.

Proof of Theorem 1.2. When n = 3, it follows from (2.15) that

k

∑
j=1

β j �3ω3

∫ ∞

0
r3Ψs(r)dr. (2.27)
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When n = 3, the equation (2.17) becomes

(t +1)4− t4 = k∗. (2.28)

The positive root t(k∗) of (2.28) is

t(k∗) =
1
2

(
θ (k∗)−ϑ(k∗)

)− 1
2
, (2.29)

where

θ (k∗) =
(
k∗ +

√
k2∗ +

1
27

) 1
3

and ϑ(k∗) =
(
− k∗+

√
k2∗ +

1
27

) 1
3
.

According to (2.21), we have

3ω3

∫ +∞

0
r3Ψs(r)dr =

3A5ω3

20B4

[(
t(k∗)+1

)5− t(k∗)5
]

(2.30)

when n = 3. Hence we need to estimate
(
t(k∗)+1

)5− t(k∗)5 . Set κ(k∗) = 1
2

(
θ (k∗)−

ϑ(k∗)
)
. Using (2.29), we can deduce

(
t(k∗)+1

)5 − t(k∗)5 =
(

κ(k∗)+
1
2

)2 −
(

κ(k∗)− 1
2

)2

=5κ(k∗)4 +
5
2

κ(k∗)2 +
1
16

=
5
16

(
k∗ +

√
k2∗ +

1
27

) 4
3 +

5
16

(
− k∗+

√
k2∗ +

1
27

) 4
3

+
5
24

(
k∗ +

√
k2∗ +

1
27

) 2
3 +

5
24

(
− k∗+

√
k2∗ +

1
27

) 2
3 − 7

48

�5 ·2 1
3

8
k

4
3∗ +

5 ·2 2
3

24
k

2
3∗ − 7

48
.

(2.31)
Substituting(2.31) into (2.30), we have

3ω3

∫ +∞

0
r3Ψs(r)dr �3 ·2 1

3 A5ω3

32B4 k
4
3∗ +

2
2
3 A5ω3

32B4 k
2
3∗ − 7A5ω3

320B4 . (2.32)

Inserting k∗ = 4B3

ω3A4 k , A = (2π)−3V (Ω) and B = 2(2π)−3
√

V (Ω)I(Ω) into (2.32), we
derive

3ω3

∫ +∞

0
r3Ψs(r)dr �3

4
2π

(ω3V (Ω))
1
3

k
4
3 +

1
32

(ω3V (Ω))
1
3

2π
V (Ω)
I(Ω)

k
2
3

− 7
5120

ω3V (Ω)
(2π)3

(
V (Ω)
I(Ω)

)2

.

(2.33)
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Combining (2.27) with (2.33), we can get (1.10). This concludes the proof of Theorem
1.2. �

Proof of Corollary 1.1. Noticing that

k∗ � (n+1)(4π)n

ω2
n

(
n

n+2
)

n
2 ,

it is not difficult to observe that

k∗ =
4kB3

ω3A4 � τ :=
432

√
15π

25
≈ 210.25

when n= 3. Hence, when σ � 7
48τ−

2
3 , the inequality σk

2
3∗ � 7

48 holds for k∗ ∈ [τ,+∞) .
Since

1− 12
5

·2 1
3 σ � 1− 7

20
·2 1

3 τ−
2
3 ≈ 0.9875,

we can conclude that

(
t(k∗)+1

)5 − t(k∗)5 �5 ·2 1
3

8
k

4
3∗ +

5 ·2 2
3

24
αk

2
3∗ , (2.34)

where α = 0.987. Inserting (2.34) into (2.30), we obtain

3ω3

∫ +∞

0
r3Ψs(r)dr � 3 ·2 1

3 A5ω3

32B4 k
4
3∗ + α

2
2
3 A5ω3

32B4 k
2
3∗ . (2.35)

Then it follows from (2.27) and (2.35) that

k

∑
j=1

β j �3
4

2π
(ω3V (Ω))

1
3

k
4
3 +

α
32

(ω3V (Ω))
1
3

2π
V (Ω)
I(Ω)

k
2
3 . (2.36)

Thus, (1.11) holds. This completes the proof of Corollary 1.1. �
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