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SOME REVERSES OF THE CAUCHY––SCHWARZ

INEQUALITY FOR COMPLEX FUNCTIONS OF

SELF–ADJOINT OPERATORS IN HILBERT SPACES
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(Communicated by I. Perić)

Abstract. We give some ratio and difference reverses of the Cauchy–Schwarz inequality for
complex functions of self-adjoint operators in Hilbert spaces, under suitable assumptions for the
involved operators. Several examples for particular functions of interest are provided as well.

1. Introduction

Let B(H ) denote the algebra of all bounded linear operators on a complex Hilbert
space (H ,〈·, ·〉) . An operator A ∈ B(H ) is said to be positive if 〈Ax,x〉� 0 holds for
all x ∈ H and then we write A � 0. For self-adjoint operators A,B ∈ B(H ) , we say
that A � B if B−A � 0. Let A∈B(H ) be self-adjoint. The continuous functional cal-
culus f �→ f (A) establishes a isometrically ∗ -isomorphism Φ between the C∗ -algebra
C (sp(A)) of all continuous complex-valued functions defined on the spectrum sp(A)
of A and the C∗ -algebra C∗ (A) generated by A and the identity operator I (see [21]).
If f and g are real valued functions on sp(A) , then the following property holds:

f (A) � g(A) ⇐⇒ f (t) � g(t) (t ∈ sp(A)).

For recent results on various inequalities for functions of self-adjoint operators,
see [3, 5, 6] and the references therein.

Let A ∈ B(H ) be self-adjoint with the spectrum included in the interval [m,M]
for some real numbers m < M and {Eλ}λ be its spectral family. For any continuous
function f : [m,M] → C , it is well-known that the following spectral representation in
terms of a Riemann–Stieltjes integral holds:

f (A) =
∫ M

m−0
f (λ )dEλ ,

which in terms of vectors can be written as

〈 f (A)x,y〉 =
∫ M

m−0
f (λ )d 〈Eλ x,y〉 (1)
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for any x,y ∈ H . The function gx,y (λ ) := 〈Eλ x,y〉 is of bounded variation on [m,M]
and gx,y (m−0) = 0 and gx,y (M) = 〈x,y〉 for any x,y ∈ H . It is also well-known that
gx (λ ) := 〈Eλ x,x〉 is monotonic nondecreasing and right continuous on [m,M] .

The classical Cauchy–Schwarz inequality asserts that, if x and y are elements of
a semi-inner product space, then |〈x,y〉| � ‖x‖‖y‖ . There are mainly two types of
the reverse of the Cauchy–Schwarz inequality. In the additive approach (initiated by
Ozeki [22], we look for an inequality of the form κ + |〈x,y〉| � ‖x‖‖y‖ for some suit-
able positive constant κ . In the multiplicative approach (initiated by Polya and Szegö
[23]), we seek for an appropriate positive constant κ such that |〈x,y〉| � κ‖x‖‖y‖ .
There are many generalizations and applications of the Cauchy–Schwarz inequality
and its reverse for integrals, weighted sums and isotone functionals (see the mono-
graph [2]). Moreover, some reverses of the Cauchy–Schwarz inequalities, Cauchy–
Schwarz functionals and norm inequalities of Hilbert space operators were presented in
[1, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19].

By the Cauchy–Schwarz inequality it holds that | 〈 f (A)x,x〉 | � ‖ f (A)x‖ , where
x ∈ H with ‖x‖ = 1 and f : [m,M] → R is a continuous real-valued function defined
on [m,M] containing the spectrum of the self-adjoint operator A . In order to provide
upper bounds for the nonnegative quantity ‖ f (A)x‖2 −〈 f (A)x,x〉2 , the first author
obtained in [8] the following result:

THEOREM. Let A ∈ B(H ) be a self-adjoint operator with sp(A) ⊆ [m,M] for
some scalars m < M. If f : [m,M]→R is continuous on [m,M] and δ := mint∈[m,M] f (t) ,
Δ := maxt∈[m,M] f (t) , then

0 � ‖ f (A)x‖2−〈 f (A)x,x〉2

� 1
4
· (Δ− δ )2−

⎧⎪⎨⎪⎩
[〈Δx− f (A)x, f (A)x− δx〉] ,∣∣∣〈 f (A)x,x〉− Δ+δ

2

∣∣∣2
� 1

4
· (Δ− δ )2

for any x ∈ H with ‖x‖ = 1. Moreover, if δ is positive, then

0 � ‖ f (A)x‖2−〈 f (A)x,x〉2 �

⎧⎪⎪⎨⎪⎪⎩
1
4 · (Δ−δ )2

Δδ 〈 f (A)x,x〉2 ,(√
Δ−√

δ
)2 〈 f (A)x,x〉

(2)

for any x ∈ H with ‖x‖ = 1.

REMARK 1. We notice that the first inequality in the right hand side of (2) is
equivalent to the following:

‖ f (A)x‖ � Δ + δ
2
√

Δδ
〈 f (A)x,x〉 , (3)



SOME REVERSES OF THE CAUCHY–SCHWARZ INEQUALITY 1367

while the second inequality is equivalent to

0 � ‖ f (A)x‖2

〈 f (A)x,x〉 − 〈 f (A)x,x〉 �
(√

Δ−
√

δ
)2

(4)

for any x ∈ H with ‖x‖ = 1. We notice that inequality (4) is the operator version of
the Klamkin–McLenaghan inequality for sequences of real numbers ([16]).

Motivated by the above results we investigate in the current paper the problem
of finding the ratio and difference reverses of |〈 f (A)x,x〉| � ‖ f (A)x‖ , where x is a
unit vector of a complex Hilbert space (H ,〈·, ·〉) for different classes of continuous
complex valued functions f : [m,M] → C and self-adjoint operators A ∈ B(H ) with
sp(A) ⊆ [m,M] . Some applications are also presented.

2. Main results

We start our work with the following result.

THEOREM 1. If f : [m,M] → C is continuous on [m,M] and a ∈ C , r > 0 with
|a| > r and such that

| f (t)−a|� r (5)

for any t ∈ [m,M] , then, for any self-adjoint operator A ∈ B(H ) with sp(A)⊆ [m,M] ,

‖ f (A)x‖ � |a|√|a|2− r2
|〈 f (A)x,x〉| (6)

for any x ∈ H with ‖x‖ = 1.

Proof. It follows from (5) that

| f (t)|2−2Re [ f (t) a]+ |a|2 � r2 (7)

for any t ∈ [m,M] . Let {Et}t be the spectral family for the operator A . Suppose that
x ∈ H be a unit vector. The function gx (t) := 〈Etx,x〉 is monotonic nondecreasing.
Integrating inequality (7) with the integrator gx on the interval [m− ε,M] with ε > 0
and then taking the limit as ε → 0+ , we get∫ M

m−0
| f (t)|2d〈Etx,x〉−2Re

[
a
∫ M

m−0
f (t)d〈Etx,x〉

]
+ |a|2

∫ M

m−0
d〈Etx,x〉

� r2
∫ M

m−0
d〈Etx,x〉. (8)

From (1), we have∫ M

m−0
| f (t)|2 d 〈Etx,x〉 = ‖ f (A)x‖2 ,

∫ M

m−0
f (t)d 〈Etx,x〉 = 〈 f (A)x,x〉
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and
∫M
m−0 d 〈Etx,x〉 = 1. It follows from (8) that

‖ f (A)x‖2 +
(√

|a|2 − r2

)2

� 2Re(〈 f (A)x,x〉 a) . (9)

In addition,

Re(〈 f (A)x,x〉 a) � |〈 f (A)x,x〉 a| = |〈 f (A)x,x〉| |a| . (10)

Utilizing the elementary inequality α2 + β 2 � 2αβ for any α,β ∈ R , we obtain

2‖ f (A)x‖
√
|a|2− r2 � ‖ f (A)x‖2 +

(√
|a|2 − r2

)2

. (11)

It follows from (9), (10) and (11) we get the desired inequality (6). �

REMARK 2. If δ := mint∈[m,M] f (t) and Δ := maxt∈[m,M] f (t) , then the condition

(5) holds with a = δ+Δ
2 and r = Δ−δ

2 .

COROLLARY 1. Let f : [m,M] → C be continuous on [m,M] , a ∈ C , r > 0 with
|a| > r and

| f (t)−a|� r

for any t ∈ [m,M] , Then, for any self-adjoint operators A j ∈ B(H ) with sp(Aj) ⊆
[m,M] (1 � j � n) ,

‖( f (A1)x1, · · · , f (An)xn)‖ � |a|√
|a|2− r2

∣∣∣∣∣
〈

n

∑
j=1

f (Aj)x j,x j

〉∣∣∣∣∣
for any x j ∈ H (1 � j � n) with ∑n

j=1

∥∥x j
∥∥2 = 1.

Proof. Considering

x̃ =

⎛⎜⎝ x1
...
xn

⎞⎟⎠ ∈ H n, Ã =

⎛⎜⎜⎜⎝
A1 0

A2
. . .

0 An

⎞⎟⎟⎟⎠ ∈ B(H n)

and applying Theorem 1 for Ã and x̃ , we deduce the desired result. �
Now, for any γ,Γ ∈ C and an interval of real numbers [a,b] , let us define the sets

of complex-valued functions as follows:

U [a,b] (γ,Γ) :=
{

f : [a,b] → C|Re
[
(Γ− f (t))

(
f (t)− γ

)]
� 0, ∀t ∈ [a,b]

}
and

Δ[a,b] (γ,Γ) :=
{

f : [a,b]→ C|
∣∣∣∣ f (t)− γ + Γ

2

∣∣∣∣� 1
2
|Γ− γ| , ∀t ∈ [a,b]

}
.

The following representation result may be stated:
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PROPOSITION 2. Let γ,Γ ∈ C with γ �= Γ . Then U [a,b] (γ,Γ) and Δ[a,b] (γ,Γ) are
nonempty, convex and closed sets and

U [a,b] (γ,Γ) = Δ[a,b] (γ,Γ) .

Proof. For any z ∈ C , we observe that∣∣∣∣z− γ + Γ
2

∣∣∣∣� 1
2
|Γ− γ|

if and only if
Re [(Γ− z)(z − γ )] � 0.

This follows from the equality

1
4
|Γ− γ|2 −

∣∣∣∣z− γ + Γ
2

∣∣∣∣2 = Re [(Γ− z)(z − γ )]

for any z ∈ C . �
By using an application of the properties of the complex numbers, we can also

state the following:

COROLLARY 2. For any γ,Γ ∈ C with γ �= Γ , it holds that

U [a,b](γ,Γ) := { f : [a,b] → C : (Re(Γ)−Re f (t))(Re f (t)−Re(γ))

+ (Im(Γ)− Im f (t))(Im f (t)− Im(γ)) � 0, ∀t ∈ [a,b]}.

Now, if we assume that Re(Γ) � Re(γ) and Im(Γ) � Im(γ) , then we can define
the following set of functions:

S[a,b](γ,Γ) := { f : [a,b] → C : Re(Γ) � Re f (t) � Re(γ),

Im(Γ) � Im f (t) � Im(γ), ∀t ∈ [a,b]}.

One can easily observe that S[a,b] (γ,Γ) is closed convex and

/0 �= S[a,b] (γ,Γ) ⊆U [a,b] (γ,Γ) .

Making use of the classes of functions defined above, we can provide a general-
ization of inequality (3) as follows:

COROLLARY 3. Let A ∈ B(H ) be a self-adjoint operator with sp(A) ⊆ [m,M]
for some scalars m < M. If f : [m,M] → C is continuous on [m,M] and there exist two
numbers γ,Γ ∈ C , γ �= Γ , with Re(Γγ ) > 0 and such that

f ∈U [m,M] (γ,Γ)
(
= Δ[m,M] (γ,Γ)

)
,
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then

‖ f (A)x‖ � |γ + Γ|
2
√

Re(Γγ )
|〈 f (A)x,x〉| (12)

for any x ∈ H with ‖x‖ = 1.

Proof. We apply Theorem 1 for a = γ+Γ
2 and r = 1

2 |Γ− γ| and observe that

|a|2− r2 =
∣∣∣∣γ + Γ

2

∣∣∣∣2− ∣∣∣∣Γ− γ
2

∣∣∣∣2 = Re(Γγ ) > 0 .

Now the desired result (12) is deduced from (6). �

REMARK 3. If f : [m,M] → (0,∞) is continuous on [m,M] and 0 < δ :=
mint∈[m,M] f (t) , Δ := maxt∈[m,M] f (t) , then f ∈ S[a,b] (δ ,Δ) ⊆U [a,b] (δ ,Δ) and so, by
(12), we get inequality (3). The inequality is also useful for applications (see the last
section).

The following result, where the condition |a|> r from Theorem 1 is dropped, may
be stated as follows:

THEOREM 3. If f : [m,M] → C is continuous on [m,M] , a ∈ C\{0} and r > 0
such that

| f (t)−a|� r

for any t ∈ [m,M] , then

‖ f (A)x‖ � |〈 f (A)x,x〉|+ r2

2 |a|
for any self-adjoint operator A ∈ B(H ) with sp(A) ⊆ [m,M] and any x ∈ H with
‖x‖ = 1.

Proof. Let x ∈ H be a unit vector. As in the proof of Theorem 1, we have

2‖ f (A)x‖|a| � ‖ f (A)x‖2 + |a|2 � 2Re(〈 f (A)x,x〉 a)+ r2 � 2 |〈 f (A)x,x〉 a|+ r2 ,

which immediately gives the desired inequality. �
A computation as used in the proof of Corollary 3 gives rise the following asser-

tion.

COROLLARY 4. Assume that A ∈ B(H ) is a self-adjoint operator with sp(A) ⊆
[m,M] for some scalars m < M. If f : [m,M]→C is continuous on [m,M] and there ex-

ists two numbers γ,Γ∈C such that γ �=±Γ such that f ∈U [m,M] (γ,Γ)
(
= Δ[m,M] (γ,Γ)

)
,

then

‖ f (A)x‖ � |〈 f (A)x,x〉|+ |Γ− γ|2
4 |γ + Γ| (13)

for any x ∈ H with ‖x‖ = 1.
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REMARK 4. If f : [m,M] → R is continuous on [m,M] and δ := mint∈[m,M] f (t) ,
Δ := maxt∈[m,M] f (t) with Δ �=−δ , then f ∈ S[a,b] (δ ,Δ)⊆U [a,b] (δ ,Δ) and so, by (13),
we get

‖ f (A)x‖ � |〈 f (A)x,x〉|+ (Δ− δ )2

4 |Δ + δ |
for any x ∈ H with ‖x‖ = 1. Inequality (13) is also useful for applications (see the
next section).

3. Some Examples

For the first example, let A∈B(H ) be a selfadjoint operator with sp(A)⊆ [m,M]
and let λ ∈ R such that λ �= 0 and λ 2 +mM > 0. Define the complex number

a := −λ +
m+M

2
i

and the positive number r := M−m
2 . Then

|a|2 − r2 =
(

M +m
2

)2

+ λ 2−
(

M−m
2

)2

= λ 2 +mM > 0.

If we take the complex-valued continuous function

f : [m,M] → C, f (t) = it−λ ,

then we have

| f (t)−a| =
∣∣∣∣it−λ −

(
−λ +

m+M
2

i

)∣∣∣∣
=
∣∣∣∣t− m+M

2

∣∣∣∣� M−m
2

= r

for any t ∈ [m,M] .
If we apply Theorems 1 and 3, then we reach the following inequalities

‖(iA−λ I)x‖ � 1
2

√
(M +m)2 +4λ 2

mM + λ 2 |〈(iA−λ I)x,x〉| (14)

and

‖(iA−λ I)x‖ � |〈(iA−λ I)x,x〉|+ 1
4

(M−m)2√
(M +m)2 +4λ 2

(15)

for any x ∈ H with ‖x‖ = 1.
We notice that the operator Tλ := iA−λ I for all λ ∈ R�{0} is not selfadjoint

and therefore the usual inequalities for selfadjoint operators cannot be applied to get
(14) and (15).
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For the second example, consider the class of functions fα ,β : [0,M]⊆ [0, π
2

)→C

with α,β > 0, α �= β and

fα ,β (t) := α cost + iβ sin t.

If we define the complex numbers Γ := α + iβ sinM and γ := α cosM , then we have
fα ,β (t) ∈U [0,M] (γ,Γ) . Using Corollaries 3 and 4 yield that

∥∥ fα ,β (A)x
∥∥� 1

2
·
√

α2 (1+ cosM)2 + β 2 sin2 M
α2 cosM

|〈 fα ,β (A)x,x〉|

as well as ∥∥ fα ,β (A)x
∥∥� |〈 fα ,β (A)x,x〉|+ α2(1− cosM)2 + α2 sin2 M

4
√

α2 (1+ cosM)2 + β 2 sin2 M

for any selfadjoint operator A such that 0 � A � MI and any x ∈ H with ‖x‖ = 1.
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