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COMMUTATORS FOR THE MAXIMAL FUNCTIONS

ON LEBESGUE SPACES WITH VARIABLE EXPONENT

PU ZHANG AND JIANGLONG WU

(Communicated by J. Pečarić)

Abstract. Let M be the Hardy-Littlewood maximal function, the commutator generated by M
and a suitable function b is defined by [M,b] f = M(b f )−bM f . In this paper, the authors give
some characterizations of b for which [M,b] is bounded on the Lebesgue spaces with variable
exponent. The similar results are also proved for the commutator of the sharp maximal function.

1. Introduction and main results

Let T be the classical singular integral operator. The commutator [T,b] generated
by T and a suitable function b is defined by

[T,b] f = T (b f )−bT f .

A well known and important result due to Coifman, Rochberg and Weiss [2] states
that if b ∈ BMO(Rn) , then [T,b] is bounded on Lp(Rn) (1 < p < ∞) . They also gave
a characterization of BMO in virtue of the Lp -boundedness of the above commutator.
In 1990, Milman and Schonbek [14] established a commutator result that applies to the
Hardy-Littlewood maximal function as well as a large class of nonlinear operators.

As usual, a cube Q ⊂ R
n always means its sides parallel to the coordinate axes.

Denote by |Q| the Lebesgue measure of Q and χQ the characteristic function of Q .
For a function f ∈ L1

loc(R
n) , we write fQ = |Q|−1 ∫

Q f (x)dx . The Hardy-Littlewood
maximal function M is defined by

M f (x) = sup
Q�x

1
|Q|

∫
Q
| f (y)|dy,

and the sharp maximal function M� f is defined by

M� f (x) = sup
Q�x

1
|Q|

∫
Q
| f (y)− fQ|dy,
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where the supremum is taken over all cubes Q ⊂ R
n containing x .

The commutators of M and M� with a suitable function b are formally defined by

[M,b] f = M(b f )−bM f and [M�,b] f = M�(b f )−bM� f .

In 2000, Bastero, Milman and Ruiz [1] studied the necessary and sufficient condi-
tions for the boundedness of [M,b] and [M�,b] on Lp spaces. In 2009, the authors [21]
considered the same problem for the fractional maximal function.

In this paper, we will extend the results of Bastero, Milman and Ruiz [1] to the
variable exponent Lebesgue spaces. To state our results, we first introduce some nota-
tions.

Let p(·) : R
n → [1,∞) be a measurable function. Consider the convex modular

(see Chapter I of [15] for definitions and properties)

m( f , p) :=
∫

Rn
| f (x)|p(x)dx.

Denote by Lp(·)(Rn) the set of all Lebesgue measurable functions f on R
n such

that m( f/λ , p) < ∞ for some λ > 0. This set becomes a Banach space with respect to
the Luxemburg-Nakano norm

‖ f‖Lp(·)(Rn) = inf

{
λ > 0 : m( f/λ , p) =

∫
Rn

( | f (x)|
λ

)p(x)

dx � 1

}
.

The theory of function spaces with variable exponent have been intensely inves-
tigated in the past twenty years since some elementary properties were established by
Kováčik and Rákosnı́k [11]. One of the main problems on this theory is the bound-
edness of the Hardy-Littlewood maximal operator. By virtue of the works such as
[4, 5, 6, 7, 12, 13, 16, 17, 18, 19], some important conditions on variable exponent
have been obtained. For more recent progress and applications on function spaces with
variable exponent, we refer the readers to [8].

If a measurable function p(·) : R
n → [1,∞) satisfies

1 < p− := ess inf
x∈Rn

p(x), p+ := esssup
x∈Rn

p(x) < ∞, (1.1)

then the function p′(x) := p(x)/(p(x)−1) is well defined and satisfies (1.1).
Denote by P(Rn) the set of all measurable functions p(·) : R

n → [1,∞) such
that (1.1) holds. Let B(Rn) be the set of all functions p(·) ∈ P(Rn) such that the
Hardy-Littlewood maximal function M is bounded on Lp(·)(Rn) .

We say that p(·) ∈ P log(Rn) if p(·) ∈ P(Rn) and there exists a constant C > 0
such that for any x,y ∈ R

n ,

|p(x)− p(y)| � −C
log(|x− y|) if |x− y|� 1/2, (1.2)

and

|p(x)− p(y)| � C
log(e+ |x|) if |y| � |x|. (1.3)
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Condition (1.2) is usually called the locally log-Hölder continuity or the Dini-
Lipschitz condition. (1.3) is the natural analogue of (1.2) at infinity, which is originally
defined in this form in [4].

When p(·) ∈ P log(Rn) , Cruz-Uribe, Fiorenza and Neugebauer [4] proved that
the Hardy-Littlewood maximal function M is bounded from Lp(·)(Rn) to itself (see
Theorem 1.5 of [4]), that is, if p(·) ∈ P log(Rn) then p(·) ∈ B(Rn) .

Let Q0 be a fixed cube in R
n , the Hardy-Littlewood maximal function relative to

Q0 is given by

MQ0( f )(x) = sup
Q0⊇Q�x

1
|Q|

∫
Q
| f (y)|dy.

For a function b defined on R
n , we denote by

b−(x) =
{

0, if b(x) � 0,
|b(x)|, if b(x) < 0,

and b+(x) := |b(x)|−b−(x) . Obviously, b+(x)−b−(x) = b(x) .
Our main result can be stated as follows.

THEOREM 1.1. Let q(·) ∈ P log(Rn) . If b ∈ BMO(Rn) and b � 0 , then [M,b]
and [M�,b] are bounded from Lq(·)(Rn) to itself.

THEOREM 1.2. Let b(x) be a real valued, locally integrable function in R
n . The

following assertions are equivalent:
(I) b ∈ BMO(Rn) and b− ∈ L∞(Rn) .
(II) The commutator [M,b] is bounded in Lq(·)(Rn) for all q(·) ∈ P log(Rn) .
(III) The commutator [M,b] is bounded in Lq(·)(Rn) for some q(·) ∈ P log(Rn) .
(IV) There exists q(x) ∈ P log(Rn) such that

sup
Q

∥∥(
b−MQ(b)

)
χQ

∥∥
Lq(·)(Rn)

‖χQ‖Lq(·)(Rn)
< ∞.

(V) For all q(x) ∈ P log(Rn) we have

sup
Q

∥∥(
b−MQ(b)

)
χQ

∥∥
Lq(·)(Rn)

‖χQ‖Lq(·)(Rn)
< ∞.

For the commutators of the sharp maximal function, there holds the similar results.

THEOREM 1.3. Let b(x) be a real valued, locally integrable function in R
n . The

following assertions are equivalent:
(i) b ∈ BMO(Rn) and b− ∈ L∞(Rn) .
(ii) The commutator [M�,b] is bounded in Lq(·)(Rn) for all q(·) ∈ P log(Rn) .
(iii) The commutator [M�,b] is bounded in Lq(·)(Rn) for some q(·) ∈ P log(Rn) .
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(iv) There exists q(x) ∈ P log(Rn) such that

sup
Q

∥∥(
b−2M�(bχQ)

)
χQ

∥∥
Lq(·)(Rn)

‖χQ‖Lq(·)(Rn)
< ∞.

(v) For all q(x) ∈ P log(Rn) we have

sup
Q

∥∥(
b−2M�(bχQ)

)
χQ

∥∥
Lq(·)(Rn)

‖χQ‖Lq(·)(Rn)
< ∞.

In what follows, the symbol C always means a positive constant independent of
the main parameters and may change from one occurrence to another.

2. Some proposition and lemmas

In this section, we recall some know results which will be used in the proof of our
theorems. The first lemma is known as the generalized Hölder’s inequality on Lebesgue
spaces with variable exponent, and the proof can be found in [11].

LEMMA 2.1. (generalized Hölder’s inequality) Suppose that p(·)∈P(Rn) , then
for any f ∈ Lp(·)(Rn) and any g ∈ Lp′(·)(Rn) we have

∫
Rn

| f (x)g(x)|dx � Cp‖ f‖Lp(·)(Rn)‖g‖Lp′(·)(Rn), (2.1)

where Cp = 1+1/p−−1/p+ .

LEMMA 2.2. ([4] Theorem 1.5) If p(·) ∈ P log(Rn) then p(·) ∈ B(Rn) .

Noting that M� f (x) � 2M f (x) , it follows from Lemma 2.2 that M� is bounded
from Lp(·)(Rn) to itself when p(·) ∈ P log(Rn) .

The following lemma is due to Diening (see Theorem 8.1 and Lemma 5.5 in [5]).
We remark that Diening has proved general results on Musielak-Orlicz spaces. Here,
we describe them for Lebesgue spaces with variable exponent (also see Proposition 2.4
of [9]).

LEMMA 2.3. (1) p(·) ∈B(Rn) if and only if there is a constant C > 0 such that
for any family of pairwise disjoint cubes π and any f ∈ Lp(·)(Rn) ,

∥∥∥ ∑
Q∈π

(| f |Q)χQ

∥∥∥
Lp(·)(Rn)

� C‖ f‖Lp(·)(Rn).

(2) p(·) ∈ B(Rn) if and only if p′(·) ∈ B(Rn) .

From Lemma 2.1 and the first part of Lemma 2.3, Izuki [9] obtained the following
result (see the proof of Lemma 2.9 in [9]).
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LEMMA 2.4. Let p(·) ∈ B(Rn) , then there exists a constant C > 0 such that

1
|Q| ‖χQ‖Lp(·)(Rn)‖χQ‖Lp′(·)(Rn) � C. (2.2)

LEMMA 2.5. ([10]) Let p(·) ∈ B(Rn) and b ∈ BMO(Rn) , denote by ‖b‖∗ the
BMO-norm of b. Then there is a constant C > 0 such that

C−1‖b‖∗ � sup
Q

1
‖χQ‖Lp(·)(Rn)

‖(b−bQ)χQ‖Lp(·)(Rn) � C‖b‖∗. (2.3)

To prove our theroems, we also need the following notation and result due to Xu
[20]. Let b ∈ BMO(Rn) , we define

Mb f (x) = sup
Q�x

1
|Q|

∫
Q
|b(x)−b(y)|| f (y)|dy. (2.4)

LEMMA 2.6. ([20]) Suppose that p(·) ∈ P log(Rn) and b(x) ∈ BMO(Rn) , then
Mb is bounded from Lp(·)(Rn) to itself.

To end this section, we show that the commutators [M,b] and [M�,b] are well
defined on Lp(·)(Rn) when p(·) ∈ B(Rn) .

PROPOSITION 2.1. If p(·) ∈ B(Rn) and b ∈ BMO(Rn) , then the commutators
[M,b] and [M�,b] are well-defined on Lp(·)(Rn) .

Proof. For any f ∈ Lp(·)(Rn) and p(·) ∈ B(Rn) , we have

‖M f‖Lp(·)(Rn) � C‖ f‖Lp(·)(Rn),

which implies that M f (x) , and then b(x)M f (x) , is finite almost everywhere in R
n .

This shows that [M,b] f (x) = M(b f )(x)−b(x)M f (x) is well-defined on Lp(·)(Rn) .
Since |b(x)M� f (x)| � 2|b(x)|M f (x) < ∞ (a.e. x ∈ R

n) , then [M�,b] f (x) is also
well-defined on Lp(·)(Rn) . �

3. Proof of the theorems

In this section, we will prove the theorems. Some idea in the proof of Theorems
1.2 and 1.3 comes from [1]. Now, let us prove Theorem 1.1 first.

Proof. (Proof of Theorem 1.1.) Let b ∈ BMO(Rn) and b � 0. For a fixed
x ∈ R

n such that M f (x) < ∞ , noting that b � 0, we have

|[M,b] f (x)| =
∣∣∣∣sup
Q�x

1
|Q|

∫
Q

b(y)| f (y)|dy− sup
Q�x

1
|Q|

∫
Q

b(x)| f (y)|dy

∣∣∣∣
� sup

Q�x

1
|Q|

∣∣∣∣
∫

Q
b(y)| f (y)|dy−

∫
Q

b(x)| f (y)|dy

∣∣∣∣
� sup

Q�x

1
|Q|

∫
Q
|b(y)−b(x)|| f (y)|dy

= Mb f (x).

(3.1)
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Similarly, we have

|[M�,b] f (x)| =
∣∣∣∣sup
Q�x

1
|Q|

∫
Q

∣∣b(y) f (y)− (b f )Q
∣∣dy− sup

Q�x

b(x)
|Q|

∫
Q

∣∣ f (y)− fQ
∣∣dy

∣∣∣∣
� sup

Q�x

1
|Q|

∣∣∣∣
∫

Q

∣∣b(y) f (y)− (b f )Q
∣∣dy−

∫
Q

∣∣b(x) f (y)−b(x) fQ
∣∣dy

∣∣∣∣
� sup

Q�x

1
|Q|

∫
Q

∣∣(b(y)−b(x)
)
f (y)+b(x) fQ − (b f )Q

∣∣dy

� sup
Q�x

{
1
|Q|

∫
Q
|b(y)−b(x)|| f (y)|dy+

∣∣b(x) fQ − (b f )Q
∣∣}

� Mb f (x)+ sup
Q�x

∣∣∣∣b(x)
|Q|

∫
Q

f (z)dz− 1
|Q|

∫
Q

b(z) f (z)dz

∣∣∣∣
� Mb f (x)+ sup

Q�x

1
|Q|

∫
Q
|b(x)−b(z)|| f (z)|dz

� 2Mb f (x).

(3.2)

Since M f (x) < ∞ for a.e x ∈ R
n when f ∈ Lq(·)(Rn) and q(·) ∈ P log(Rn) , then

(3.1) and (3.2) valid almost everywhere in R
n . It follows from Lemma 2.6 that [M,b]

and [M�,b] are bounded from Lp(·)(Rn) to itself. �
Proof. (Proof of Theorem 1.2) Since the implications (II) =⇒ (III) and (V) =⇒

(IV) follow readily, we only have to prove (I) =⇒ (II), (III) =⇒ (IV) and (IV) =⇒ (I)
(the implication (II) =⇒ (V) is similar to (III) =⇒ (IV)).

(I) =⇒ (II). By the definition of [M,b] and noting that |b|−b = 2b− and M(b f )(x)=
M(|b| f )(x) , we have∣∣[M,b] f (x)− [M, |b|] f (x)∣∣

�
∣∣M(b f )(x)−M(|b| f )(x)∣∣+ ∣∣(|b(x)|−b(x)

)
M( f )(x)

∣∣
� 2b−(x)M( f )(x).

Hence, ∣∣[M,b] f (x)
∣∣ �

∣∣[M,b] f (x)− [M, |b|] f (x)∣∣+ ∣∣[M, |b|] f (x)∣∣
� 2b−(x)M( f )(x)+

∣∣[M, |b|] f (x)∣∣. (3.3)

Noting that |b| ∈BMO(Rn) when b∈ BMO(Rn) , M is bounded in Lq(·)(Rn) and
b− ∈ L∞(Rn) , it follows from (3.3) and Theorem 1.1 that, for all q(·) ∈ P log(Rn)

‖[M,b] f‖Lq(·)(Rn) � 2‖b−‖L∞(Rn)‖M( f )‖Lq(·)(Rn) +‖[M, |b|] f‖Lq(·)(Rn)

� C‖ f‖Lq(·)(Rn).

(III) =⇒ (IV). For any Q ⊂ R
n , noting that we have for all x ∈ Q ,

M(χQ)(x) = MQ(χQ)(x) = χQ(x)
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and
M(bχQ)(x) = MQ(bχQ)(x) = MQ(b)(x),

then, it follows from (III) that there exists q(·) ∈ P log(Rn) such that
∥∥(

b−MQ(b)
)
χQ

∥∥
Lq(·)(Rn) =

∥∥(
bM(χQ)−M(bχQ)

)
χQ

∥∥
Lq(·)(Rn)

�
∥∥bM(χQ)−M(bχQ)

∥∥
Lq(·)(Rn)

=
∥∥[M,b]χQ

∥∥
Lq(·)(Rn)

� C‖χQ‖Lq(·)(Rn).

(IV) =⇒ (I). Let Q be a fixed cube. By Lemma 2.1 (the generalized Hölder’s
inequality), the hypothesis (IV) and Lemma 2.4, we have

1
|Q|

∫
Q

∣∣b(x)−MQ(b)(x)
∣∣dx =

1
|Q|

∫
Q

∣∣(b(x)−MQ(b)(x)
)
χQ(x)

∣∣dx

� C
|Q|

∥∥(
b−MQ(b)

)
χQ

∥∥
Lq(·)(Rn)‖χQ‖Lq′(·)(Rn)

� C
|Q| ‖χQ‖Lq(·)(Rn)‖χQ‖Lq′(·)(Rn)

� C.

(3.4)

Let E = {x∈Q : b(x) � bQ} and F = {x∈Q : b(x) > bQ} . The following equality
is trivially true (see [1] p.3331):

∫
E
|b(x)−bQ|dx =

∫
F
|b(x)−bQ|dx.

Since for any x ∈ E we have b(x) � bQ � |bQ| � MQ(b)(x) , then for x ∈ E there
has

|b(x)−bQ| �
∣∣b(x)−MQ(b)(x)

∣∣.
Applying (3.4), we obtain

1
|Q|

∫
Q
|b(x)−bQ|dx =

1
|Q|

∫
E∪F

∣∣b(x)−bQ
∣∣dx

=
2
|Q|

∫
E
|b(x)−bQ|dx

� 2
|Q|

∫
E

∣∣b(x)−MQ(b)(x)
∣∣dx

� 2
|Q|

∫
Q

∣∣b(x)−MQ(b)(x)
∣∣dx

� C.

So, using the definition of BMO, we have b ∈ BMO(Rn) .
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Now, let us show that b− ∈ L∞(Rn) . Observe that 0 � b+(x) � |b(x)|� MQ(b)(x)
for x ∈ Q , therefore, for any x ∈ Q , there holds

0 � b−(x) � MQ(b)(x)−b+(x)+b−(x) = MQ(b)(x)−b(x).

Then for any cube Q , we have

1
|Q|

∫
Q

b−(x)dx � 1
|Q|

∫
Q

(
MQ(b)(x)−b(x)

)
dx

=
1
|Q|

∫
Q

∣∣b(x)−MQ(b)(x)
∣∣dx

� C,

where the last step follows from (3.4).

Thus, by the Lebesgue’s differentiation theorem, we have b− ∈ L∞(Rn) . �

Proof. (Proof of Theorem 1.3) Similar to Theorem 1.2, we only need to prove (i)
=⇒ (ii), (iii) =⇒ (iv) and (iv) =⇒ (i).

(i) =⇒ (ii). Noting that |b|−b = 2b− , by the definition of [M�,b] , we have

∣∣[M�,b] f (x)− [M�, |b|] f (x)∣∣
�

∣∣M�(b f )(x)−M�(|b| f )(x)∣∣+ ∣∣|b(x)|M�( f )(x)−b(x)M� f (x)
∣∣

�
∣∣M�

(
(b−|b|) f

)
(x)

∣∣+2b−(x)M� f (x)

� M�(2b− f )(x)+2b−(x)M� f (x).

Therefore,

∣∣[M�,b] f (x)
∣∣ �

∣∣[M�,b] f (x)− [M�, |b|] f (x)∣∣+ ∣∣[M�, |b|] f (x)∣∣
� M�(2b− f )(x)+2b−(x)M�( f )(x)+

∣∣[M�, |b|] f (x)∣∣.

Since M� is bounded in Lq(·)(Rn) for all q(·) ∈ P log(Rn) and b− ∈ L∞(Rn) ,
then, by Theorem 1.1 and the triangle’s inequality, we can see that [M�,b] is bounded
in Lq(·)(Rn) for all q(·) ∈ P log(Rn) .

(iii) =⇒ (iv). Let Q be a fixed cube and Q1 be another cube. By the inequality
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4ac � (a+ c)2 , it is easy to compute that

1
|Q1|

∫
Q1

|χQ(x)− (χQ)Q1 |dx

=
1

|Q1|
{∫

Q1\Q
|χQ(x)− (χQ)Q1 |dx+

∫
Q1∩Q

|χQ(x)− (χQ)Q1 |dx

}

=
1

|Q1|
{∫

Q1\Q
|(χQ)Q1 |dx+

∫
Q1∩Q

|1− (χQ)Q1 |dx

}

=
1

|Q1|
{∫

Q1\Q

∣∣∣∣ 1
|Q1|

∫
Q1∩Q

χQ(y)dy

∣∣∣∣dx

+
∫
Q1∩Q

∣∣∣∣ 1
|Q1|

∫
Q1

χQ1(y)dy− 1
|Q1|

∫
Q1

χQ(y) · χQ1(y)dy

∣∣∣∣dx

}

=
1

|Q1|
{ |Q1∩Q||Q1 \Q|

|Q1| +
1

|Q1|
∫

Q1∩Q

∣∣∣∣
∫

Q1

χQ1(y)
(
1− χQ(y)

)
dy

∣∣∣∣dx

}

=
1

|Q1|2
{
|Q1∩Q||Q1 \Q|+ |Q1∩Q||Q1 \Q|

}

=
2|Q1∩Q||Q1 \Q|

(|Q1 ∩Q|+ |Q1 \Q|)2 � 1
2
.

(3.5)

On the other hand, for any x ∈ Q , there always exists a cube Q0 ⊃ Q such that
|Q0| = 2|Q| . Then, it follows from (3.5) and |Q0 \Q| = |Q0∩Q| = |Q| that

1
|Q0|

∫
Q0

|χQ(x)− (χQ)Q0 |dx =
2|Q0∩Q||Q0 \Q|

(|Q0 ∩Q|+ |Q0 \Q|)2 =
1
2
.

This shows that for all x ∈ R
n ,

(
M�(χQ)χQ

)
(x) = sup

Q1�x

1
|Q1|

∫
Q1

|χQ(y)− (χQ)Q1 |dy =
1
2

=
1
2

χQ(x).

Note that χQ(x) ∈ Lq(·)(Rn) . Then, using the hypothesis (iii), we have

∥∥(
b−2M�(bχQ)

)
χQ

∥∥
Lq(·)(Rn) =

∥∥∥2
(1

2
bχQ−M�(bχQ)

)
χQ

∥∥∥
Lq(·)(Rn)

=
∥∥∥2

(
bM�(χQ)χQ −M�(bχQ)

)
χQ

∥∥∥
Lq(·)(Rn)

=
∥∥∥2

(
bM�(χQ)−M�(bχQ)

)
χQ

∥∥∥
Lq(·)(Rn)

�
∥∥2[M�,b](χQ)

∥∥
Lq(·)(Rn)

� C‖χQ‖Lq(·)(Rn).

Hence the conclusion is proved.
(iv) =⇒ (i). For a cube Q⊂R

n , Bastero, Milman and Ruiz obtained the following
inequality (see (2) in [1] p.3333):

|bQ| � 2M�(bχQ)(x), for x ∈ Q. (3.6)
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Now, we can achieve that b ∈ BMO(Rn) . Indeed, let E = {x ∈ Q : b(x) � bQ}
and F = {x ∈ Q : b(x) > bQ} , then∫

E
|b(x)−bQ|dx =

∫
F
|b(x)−bQ|dx.

Since for any x ∈ E , we have b(x) � bQ � |bQ| � 2M�(bχQ)(x) , then

|b(x)−bQ| �
∣∣b(x)−2M�(bχQ)(x)

∣∣, for x ∈ E.

By Lemma 2.1, the hypothesis (iv) and Lemma 2.4, we obtain

1
|Q|

∫
Q
|b(x)−bQ|dx =

1
|Q|

∫
E∪F

∣∣b(x)−bQ
∣∣dx

=
2
|Q|

∫
E
|b(x)−bQ|dx

� 2
|Q|

∫
E

∣∣b(x)−2M�(bχQ)(x)
∣∣dx

� 2
|Q|

∫
Q

∣∣b(x)−2M�(bχQ)(x)
∣∣dx

� C
|Q|

∥∥(
b−2M�(bχQ)

)
χQ

∥∥
Lq(·)(Rn)‖χQ‖Lq′(·)(Rn)

� C
|Q| ‖χQ‖Lq(·)(Rn)‖χQ‖Lq′(·)(Rn)

� C,

which implies b ∈ BMO(Rn) .
Now, let us show that b− ∈ L∞(Rn) . By (3.6) we have

2M�(bχQ)(x)−b(x) � |bQ|−b(x) = |bQ|−b+(x)+b−(x), x ∈ Q.

Then
1
|Q|

∫
Q

∣∣2M�(bχQ)(x)−b(x)
∣∣dx � 1

|Q|
∫

Q

(
2M�(bχQ)(x)−b(x)

)
dx

� 1
|Q|

∫
Q

(|bQ|−b+(x)+b−(x)
)
dx

= |bQ|− 1
|Q|

∫
Q

b+(x)dx+
1
|Q|

∫
Q

b−(x)dx.

(3.7)

On the other hand, applying Lemma 2.1, the hypothesis (iv) and Lemma 2.4, sim-
ilar to (3.4), we have

1
|Q|

∫
Q

∣∣2M�(bχQ)(x)−b(x)
∣∣dx

� C
|Q|

∥∥(
2M�(bχQ)(x)−b(x)

)
χQ

∥∥
Lq(·)(Rn)‖χQ‖Lq′(·)(Rn)

� C|Q|−1‖χQ‖Lq(·)(Rn)‖χQ‖Lq′(·)(Rn)

� C.
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This, together with (3.7), gives

|bQ|− 1
|Q|

∫
Q

b+(x)dx+
1
|Q|

∫
Q

b−(x)dx � C.

Let |Q| → 0 with x ∈ Q , Lebesgue’s differentiation theorem assures that

C � |b(x)|−b+(x)+b−(x) = 2b−(x) = 2|b−(x)|
and the desired result follows.

Therefore, the proof is completed. �
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variable exponents, Lecture Notes in Mathematics 2017, Springer-Verlag, Berlin, 2011.

[9] M. IZUKI, Boundedness of sublinear operators on Herz spaces with variable exponent and application
to wavelet characterization, Analysis Mathematica, 36 (2010), 33–50.

[10] M. IZUKI, Boundedness of commutators on Herz spaces with variable exponent, Rend. Circ. Mat.
Palermo, 59 (2010), 199–213.
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