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(Communicated by I. Perić)

Abstract. Our aim in this paper is to deal with Sobolev embeddings for Riesz potentials of func-
tions in Morrey spaces L1,ν,β1 ,β2 (Rn) , as an extension of Trudinger [17], Serrin [14] and the
authors [5] in the case of bounded open sets. We are mainly concerned with Trudinger’s type
exponential integrability.

1. Introduction

The space introduced by Morrey [9] in 1938 has become a useful tool of the study
for the existence and regularity of solutions of partial differential equations. Let Rn

denote the n -dimensional Euclidean space. In the present paper, we aim to establish
Sobolev embeddings for Riesz potentials of functions in Morrey spaces L1,ν,β1,β2(Rn) ,
as an extension of Trudinger [17], Serrin [14] and the authors [5] in the case of bounded
open sets. We are mainly concerned with Trudinger’s type exponential integrability.

Let B(x,r) denote the open ball centered at x of radius r . In particular, we set
B = B(0,1) . For 0 < α < n , we define the generalized Riesz potential of order α for
a locally integrable function f on Rn by

Iα ,0 f (x) =
∫

Rn
{|x− y|α−n−|y|α−nχRn\B(y)} f (y) dy,

where χE denotes the characteristic functions of a measurable set E ⊂ Rn ; the integral
converges almost everywhere when

∫
Rn

(1+ |y|)α−n−1| f (y)| dy < ∞. (1)

We set

Ĩα f (x) =
∫

Rn
||x− y|α−n−|y|α−nχRn\B(y)| | f (y)| dy. (2)
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For an integrable function u on a measurable set E ⊂ Rn of positive measure, we
define the integral mean over E by

−
∫

E
u(x) dx =

1
|E|

∫
E

u(x) dx,

where |E| denotes the Lebesgue measure of E .
In the present paper, f is assumed to satisfy the Morrey condition : if 0 � ν � n

and β1 and β2 are real numbers, then

−
∫

B(x,r)
| f (y)|dy � r−ν(log(e+ r−1))−β1(log(e+ r))−β2 (3)

for all x ∈ Rn and r > 0. We denote by L1,ν,β1,β2(Rn) the family of all measurable
functions f on Rn satisfying condition (3) ; for Morrey spaces, we refer to [9] and
[13].

The famous Trudinger’s inequality ([17]) insists that Sobolev functions in W 1,n

satisfy finite exponential integrability (see also [2], [4] and [18]). For another proof, see
Serrin [14]. The authors [5] gave a result on Sobolev embeddings for Riesz potentials
of functions satisfying (3) with β2 = 0 in the case of bounded open sets.

Our first aim in this paper is to give a Morrey version of Trudinger’s type expo-
nential integrability for Riesz potentials of functions satisfying (3) , as an extension of
[14], [17] and [5, Theorem 1.1].

THEOREM 1. Let f be a nonnegative measurable function on Rn satisfying (3)
with ν = α and real numbers β1 and β2 . If 0 < ε < α/2 , then there exist constants
c j = C(n,α,β1,β2,ε) > 0 ( j = 1,2) such that

(1) in case 1 > β1 � β2 ,

−
∫

B(z,r)
(e+ |x|)−ε exp

(
1
c1

(
Ĩα f (x)

(log(e+ |x|))β1−β2

)1/(1−β1)
)

dx � c2(1+ r−ε)

for all z ∈ Rn and r > 0;

(2) in case 1 = β1 > β2 ,

−
∫

B(z,r)
exp

(
exp

(
Ĩα f (x)

c1(log(e+ |x|))1−β2

))
dx � c2(1+ r−ε)

for all z ∈ Rn and r > 0;

(3) in case β1 > 1 ,

|Iα ,0 f (x)− Iα ,0 f (z)| � c2(log |x− z|−1)−β1+1

for all x,z ∈ Rn with |x− z| < 1/e.



SOBOLEV EMBEDDINGS 1401

The sharpness of Theorem 1 will be discussed in Section 3 (see Remark 3 below).

REMARK 1. Suppose

−
∫

B(z,r)
(e+ |x|)−ε0 exp

(
1
c1

(
Ĩα f (x)

(log(e+ |x|))β1−β2

)1/(1−β1)
)

dx � c2(1+ r−ε0)

for z ∈ Rn and r > 0. Then Jensen’s inequality gives

−
∫

B(z,r)
(e+ |x|)−ε exp

(
ε

c1ε0

(
Ĩα f (x)

(log(e+ |x|))β1−β2

)1/(1−β1)
)

dx

�
(
−
∫

B(z,r)
(e+ |x|)−ε0 exp

(
1
c1

(
Ĩα f (x)

(log(e+ |x|))β1−β2

)1/(1−β1)
)

dx

)ε/ε0

� {c2(1+ r−ε0)}ε/ε0

� (2c2)ε/ε0(1+ r−ε)

when 0 < ε < ε0 .

REMARK 2. Theorem 1 (1) gives the exponential inequality by letting r → ∞ :

∫
Rn

(e+ |x|)−n−ε exp

(
1
c1

(
Ĩα f (x)

(log(e+ |x|))β1−β2

)1/(1−β1)
)

dx � c3

with c3 = C(n,α,β1,β2,ε) > 0.

We next give the following Morrey version of Sobolev’s type inequality for Riesz
potentials of functions satisfying (3) , as an extension of [14] and [5, Theorem 1.2].

THEOREM 2. Let f be a nonnegative measurable function on Rn satisfying (3)
with α < ν � n and real numbers β1 and β2 . If p = ν/(ν −α) and γ > 1 , then there
exists a constant C =C(n,α,ν,β1,β2,γ) > 0 such that

(1) in case β2 < 1 ,(
−
∫

B(z,r)
(Ĩα f (x))p(log(e+ Ĩα f (x)))−γ+αβ1 p/ν(log(e+(Ĩα f (x))−1))−γ+αβ2 p/νdx

)1/p

� Crα−ν(log(e+ r−1))(1−γ−β1)/p(log(e+ r))−β2/p

+C(log(e+ r+ |z|))−β2+1(log(e+(log(e+ r+ |z|))−β2+1))−γ/p+αβ1/ν (4)

for all z ∈ Rn and r > 0;
(2) in case β2 = 1 ,(
−
∫

B(z,r)
(Ĩα f (x))p(log(e+ Ĩα f (x)))−γ+αβ1 p/ν(log(e+(Ĩα f (x))−1))−γ+α p/νdx

)1/p

� Crα−ν (log(e+ r−1))(1−γ−β1)/p(log(e+ r))−1/p
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for all z ∈ Rn and r > 0;
(3) in case β2 > 1 ,(

−
∫

B(z,r)
(Ĩα f (x))p(log(e+ Ĩα f (x)))−γ+αβ1 p/ν(log(e+(Ĩα f (x))−1))−γ+αβ2 p/νdx

)1/p

� Crα−ν(log(e+ r−1))(1−γ−β1)/p(log(e+ r))−β2/p

+C(log(e+ r+ |z|))−β2+1(log(e+(log(e+ r+ |z|))β2−1))−γ/p+αβ2/ν

for all z ∈ Rn and r > 0 .

We will show that the condition γ > 1 is sharp in Theorem 2 (see Remark 5
below).

For related results, we also refer to Adams [1], Chiarenza-Frasca [3] and the au-
thors [6, 7, 8, 11, 12].

2. Preliminary lemmas

Throughout this paper, let C denote various positive constants independent of the
variables in question and C(a,b, · · ·) be a constant which may depend on a,b, · · · .

First we note the following lemma.

LEMMA 1. ([5, Lemma 2.2]) Let f be a nonnegative measurable function on Rn

satisfying (3) with ν = α .

(1) If 0 < ε < α/2 , then∫
B(x,1)\B(x,δ )

|x− y|α−ε−n f (y)dy � Cδ−ε (log(e+ δ−1))−β1 ;

(2) if β1 < 1 , then∫
B(x,1)\B(x,δ )

|x− y|α−n f (y)dy � C(log(e+ δ−1))−β1+1;

(3) if β1 = 1 , then∫
B(x,1)\B(x,δ )

|x− y|α−n f (y)dy � C log(log(ee + δ−1))

for x ∈ Rn and 0 < δ < 1 , where C = C(n,β1,ε) .

LEMMA 2. Let f be a nonnegative measurable function on Rn satisfying (3)
with ν = α . If 0 < ε < α/2 , then∫

Rn\B(x,δ )
|x− y|α−ε−n f (y)dy � Cδ−ε(log(e+ δ−1))−β1 +C

for x ∈ Rn and δ > 0 , where C = C(n,α,β1,β2,ε) .
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Proof. Let f be a nonnegative measurable function on Rn satisfying (3) with
ν = α . If 0 < ε < α/2, then we have by Lemma 1 (1)

∫
B(x,1)\B(x,δ )

|x− y|α−ε−n f (y)dy � Cδ−ε(log(e+ δ−1))−β1 .

Next we will estimate
∫
Rn\B(x,1) |x− y|α−ε−n f (y)dy . Integrating by parts and changing

to polar coordinates, we have by (3)
∫

Rn\B(x,1)
|x− y|α−ε−n f (y)dy

=
[
rα−ε−n

∫
B(x,r)

f (y)dy

]∞

1
+
∫ ∞

1

(∫
B(x,r)

f (y)dy

)
d(−rα−ε−n)

� C
∫ ∞

1
r−ε(log(e+ r))−β2

dr
r

.

When β2 � 0, we have

∫ ∞

1
r−ε(log(e+ r))−β2

dr
r

� C
∫ ∞

1
r−ε dr

r
= C/ε.

Next consider the case β2 < 0. Note that sε/2(log(e + 1/s))−β2 attains a maximum
value of eβ2(−2β2/ε)−β2 at s = e2β2/ε . Therefore

∫ ∞

1
r−ε(log(e+ r))−β2

dr
r

=
∫ 1

0
sε(log(e+1/s))−β2

ds
s

� eβ2(−2β2/ε)−β2

∫ 1

0
sε/2 ds

s
< ∞.

Hence ∫
Rn\B(x,1)

|x− y|α−ε−n f (y)dy � C.

Thus it follows that∫
Rn\B(x,δ )

|x− y|α−ε−n f (y)dy � Cδ−ε(log(e+ δ−1))−β1 +C,

where C is a positive constant depending on n,α,β1,β2,ε . �

LEMMA 3. Let f be a nonnegative measurable function on Rn satisfying (3)
with ν = α .

(1) If β1 < 1 and β2 < 1 , then

∫
B(0,1+2|x|)\B(x,δ )

|x−y|α−n f (y)dy �C(log(e+δ−1))−β1+1+C(log(e+ |x|))−β2+1;
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(2) if 1 = β1 > β2 , then∫
B(0,1+2|x|)\B(x,δ )

|x−y|α−n f (y)dy �C log(log(ee +δ−1))+C(log(e+ |x|))−β2+1

for x ∈ Rn and 0 < δ < 1 , where C = C(n,α,β1,β2) .

Proof. Let f be a nonnegative measurable function on Rn satisfying (3) with
ν = α . If β1 < 1, then we have by Lemma 1 (2)∫

B(x,1)\B(x,δ )
|x− y|α−n f (y)dy � C(log(e+ δ−1))−β1+1.

Next we will estimate
∫
B(0,1+2|x|)\B(x,1) |x−y|α−n f (y)dy . Integrating by parts and chang-

ing to polar coordinates, we have by (3)∫
B(0,1+2|x|)\B(x,1)

|x− y|α−n f (y)dy

�
∫

B(x,1+3|x|)\B(x,1)
|x− y|α−n f (y)dy

=
[
rα−n

∫
B(x,r)

f (y)dy

]1+3|x|

1
+
∫ 1+3|x|

1

(∫
B(x,r)

f (y)dy

)
d(−rα−n)

� C(log(e+ |x|))−β2 +C
∫ 1+3|x|

1
(log(e+ r))−β2

dr
r

� C(log(e+ |x|))−β2 +C(log(e+ |x|))−β2+1

� C(log(e+ |x|))−β2+1.

Thus it follows that∫
B(0,1+2|x|)\B(x,δ )

|x− y|α−n f (y)dy � C(log(e+ δ−1))−β1+1 +C(log(e+ |x|))−β2+1,

where C is a positive constant depending on n,α,β1,β2 .
The remaining case can be proved similarly. �

As in the proof of Lemma 3, we can prove the following lemma.

LEMMA 4. (cf. [5, Lemma 2.3]) Let α < ν � n. Let f be a nonnegative mea-
surable function on Rn satisfying (3) . Then∫

Rn\B(x,δ )
|x− y|α−n f (y)dy � Cδ α−ν(log(e+ δ−1))−β1(log(e+ δ ))−β2

for x ∈ Rn and δ > 0 , where C = C(n,α,ν,β1,β2) .

As in the proof of [5, Lemma 2.4], we can prove the following lemma in view of
Lemma 2.
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LEMMA 5. Let 0 < ε < α/2 . Let f be a nonnegative measurable function on Rn

satisfying (3) with ν = α . Then

−
∫

B(z,δ )
Iα−ε f (x)dx � Cδ−ε(log(e+ δ−1))−β1(log(e+ δ ))−β2 +C

for z ∈ Rn and δ > 0 , where C = C(n,α,β1,β2,ε) .

LEMMA 6. Let β2 < 1 . Let f be a nonnegative measurable function on Rn sat-
isfying (3) with ν = α . Then

G1(x) ≡
∫

B(0,|x|)\B
|y|α−n f (y)dy � C(log(e+ |x|))−β2+1

for x ∈ Rn , where C = C(n,α,β1,β2) .

Proof. Let f be a nonnegative measurable function on Rn satisfying (3) with
ν = α . We have

G1(x) =
[
rα−n

∫
B(0,r)

f (y)dy

]|x|
1

+
∫ |x|

1

(∫
B(0,r)

f (y)dy

)
d(−rα−n)

� C(log(e+ |x|))−β2 +C
∫ |x|

1
(log(e+ r))−β2

dr
r

� C(log(e+ |x|))−β2+1,

as required. �

LEMMA 7. Let f be a nonnegative measurable function on Rn satisfying (3)
with ν = α . Then

G2(x) ≡ |x|
∫

Rn\B(0,2|x|)
|y|α−n−1 f (y)dy � C(log(e+ |x|))−β2

for x ∈ Rn \B , where C = C(n,α,β1,β2) .

Proof. Let f be a nonnegative measurable function on Rn satisfying (3) with
ν = α . We have

G2(x) = |x|
{[

rα−n−1
∫

B(0,r)
f (y)dy

]∞

2|x|
+
∫ ∞

2|x|

(∫
B(0,r)

f (y)dy

)
d(−rα−n−1)

}

� C|x|
∫ ∞

2|x|
(log(e+ r))−β2r−2dr

� C(log(e+ |x|))−β2 ,

as required. �



1406 Y. MIZUTA AND T. SHIMOMURA

3. Proof of Theorem 1

To complete the proof of Theorem 1, we prepare the following results.

THEOREM 3. Let f be a nonnegative measurable function on Rn satisfying (3)
with ν = α and real numbers β1 and β2 with 1 > β1 � β2 . If ε > 0 , then there exist
constants c j = C(n,α,β1,β2,ε) > 0 ( j = 1,2) such that

−
∫

B(z,r)
(e+ |x|)−ε exp

(
1
c1

(
Ĩα f (x)

(log(e+ |x|))β1−β2

)1/(1−β1)
)

dx � c2(1+ r−ε)

for all z ∈ Rn and r > 0 .

Proof. Let f be a nonnegative measurable function on Rn satisfying (3) with
ν = α . Note that

||x− y|α−n−|y|α−nχRn\B(y)| � C|x||y|α−n−1

whenever |y|> 2|x| , which is derived by the mean value theorem; see e.g. [15, Section
3]. For 0 < ε < α/2, by Lemmas 3, 6 and 7, we have

Ĩα f (x) =
∫

B(0,1+2|x|)
||x− y|α−n−|y|α−nχRn\B(y)| f (y) dy

+
∫

Rn\B(0,1+2|x|)
||x− y|α−n−|y|α−nχRn\B(y)| f (y) dy

�
∫

B(x,δ )
|x− y|α−n f (y)dy+

∫
B(0,1+2|x|)\B(x,δ )

|x− y|α−n f (y)dy

+
∫

B(0,1+2|x|)\B
|y|α−n f (y)dy+C|x|

∫
Rn\B(0,1+2|x|)

|y|α−n−1 f (y)dy

� δ ε
∫

B(x,δ )
|x− y|α−ε−n f (y)dy+C(log(e+ δ−1))−β1+1 +C(log(e+ |x|))−β2+1

� δ ε Iα−ε f (x)+C(log(e+ δ−1))−β1+1 +C(log(e+ |x|))−β2+1

for 0 < δ < 1. Considering

δ = min{1/2,(Iα−ε f (x))−1/ε (log(e+ Iα−ε f (x)))(1−β1)/ε},
we see that

Ĩα f (x) � C(log(e+ Iα−ε f (x)))−β1+1 +C(log(e+ |x|))−β2+1,

so that

−
∫

B(z,r)
(e+ |x|)−ε exp

(
1
c1

(
Ĩα f (x)

(log(e+ |x|))β1−β2

)1/(1−β1)
)

dx

� 1+−
∫

B(z,r)
Iα−ε f (x)dx
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for z ∈ Rn and r > 0. Hence Lemma 5 gives

−
∫

B(z,r)
(e+ |x|)−ε exp

(
1
c1

(
Ĩα f (x)

(log(e+ |x|))β1−β2

)1/(1−β1)
)

dx

� 1+Cr−ε(log(e+ r−1))−β1(log(e+ r))−β2 +C

� C{1+ r−ε(log(e+ r−1))−β1(log(e+ r))−β2}
� c2(1+ r−2ε)

for such z and r , which proves the present theorem. �

THEOREM 4. Let f be a nonnegative measurable function on Rn satisfying (3)
with ν = α and real numbers 1 = β1 > β2 . If ε > 0 , then there exist constants c j =
C(n,α,β2,ε) > 0 ( j = 1,2) such that

−
∫

B(z,r)
exp

(
exp

(
Ĩα f (x)

c1(log(e+ |x|))1−β2

))
dx � c2(1+ r−ε)

for all z ∈ Rn and r > 0 .

Proof. Let 1 = β1 > β2 . For 0 < ε < α/2, by Lemmas 3, 6 and 7, we have as
above

Ĩα f (x) � δ ε Iα−ε f (x)+C log(log(ee + δ−1))+C(log(e+ |x|))−β2+1

for 0 < δ < 1. Considering

δ = min{1/2,(Iα−ε f (x))−1/ε (log(log(ee + Iα−ε f (x))))1/ε},

we see that

(log(e+ |x|))β2−1Ĩα f (x) � C log(log(ee + Iα−ε f (x))) ,

so that

−
∫

B(z,r)
exp

(
exp

(
Ĩα f (x)

c1(log(e+ |x|))−β2+1

))
dx � −

∫
B(z,r)

{ee + Iα−ε f (x)}dx

for z ∈ Rn and r > 0. Hence Lemma 5 gives

−
∫

B(z,r)
exp

(
exp

(
Ĩα f (x)

c1(log(e+ |x|))−β2+1

))
dx

� Cr−ε (log(e+ r−1))−1(log(e+ r))−β2 +C

� c2(1+ r−2ε)

for such z and r , which proves the present theorem. �
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THEOREM 5. Let f be a nonnegative measurable function on Rn satisfying (3)
with ν = α and real numbers β1 > 1 and β2 . Then

|Iα ,0 f (x)− Iα ,0 f (z)| � C(log |x− z|−1)−β1+1

for all x,z ∈ Rn with |x− z|< 1/e.

Proof. Let β1 > 1. Write

Iα ,0 f (x)− Iα ,0 f (z) =
∫

B(x,2|x−z|)
|x− y|α−n f (y)dy−

∫
B(x,2|x−z|)

|z− y|α−n f (y)dy

+
∫

Rn\B(x,2|x−z|)
(|x− y|α−n−|z− y|α−n) f (y)dy.

As in the proof of Lemma 1, we have∫
B(x,2|x−z|)

|x− y|α−n f (y)dy � C(log |x− z|−1)−β1+1

and ∫
B(x,2|x−z|)

|z− y|α−n f (y)dy �
∫

B(z,3|x−z|)
|z− y|α−n f (y)dy

� C(log |x− z|−1)−β1+1

for x,z ∈ Rn with |x− z| < 1/e . On the other hand, by the mean value theorem for
analysis, we have by Lemma 4∫

Rn\B(x,2|x−z|)
||x− y|α−n−|z− y|α−n| f (y)dy

� C|x− z|
∫
Rn\B(x,2|x−z|)

|x− y|α−n−1 f (y)dy

� C(log |x− z|−1)−β1

for all x,z ∈ Rn with |x− z|< 1/e . As a consequence we obtain

|Iα ,0 f (x)− Iα ,0 f (z)| � C(log |x− z|−1)−β1+1

for x,z ∈ Rn with |x− z|< 1/e , which proves the present theorem. �

REMARK 3. Let f (y) = (e+ |y|)−α . Then f ∈ L1,α ,0,0(Rn) . In fact, if r < |x|/2,
then

−
∫

B(x,r)
f (y)dy � C|x|−α � Cr−α

and if r � |x|/2, then the inequality is easily obtained.
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We see that

Ĩα f (x) � C
∫

B(0,|x|/3)
(e+ |y|)α−n f (y)dy

= C
∫

B(0,|x|/3)
(e+ |y|)−ndy

� C log(e+ |x|),

so that for C1 > 0,

−
∫

B(0,r)
exp

(
Ĩα f (x)

C1

)
dx � −

∫
B(0,r)

(e+ |x|)C/C1dx

� C(e+ r)C/C1 ,

which implies that one can not take ε = 0 in Theorem 1 (1).
Further we find

−
∫

B(0,r)
(e+ |x|)−ε exp

((
Ĩα f (x)

C1

)1+δ)
dx

� C(e+ r)−ε{exp((C/C1)1+δ (log(e+ r))1+δ )},

which assures that the exponent 1 is sharp in Theorem 1 (1).

REMARK 4. Let f be a nonnegative measurable function on Rn satisfying

(
−
∫

B(x,r)
f (y)p(log(e+ f (y))pqdy

)1/p

� Cr−ν(log(e+ r−1))−β1(log(e+ r))−β2 (5)

for all x ∈ Rn and r > 0, with p > 1, ν > 0, q � 0 and real numbers β1,β2 . Then
f ∈ L1,ν,β1+q,β2(Rn) , that is,

−
∫

B(x,r)
f (y)dy � Cr−ν(log(e+ r−1))−β1−q(log(e+ r))−β2 . (6)

In fact, taking a > ν when r > 1 (0 < a < ν when r � 1), we have by (5)

∫
B(x,r)

f (y)pdy �
∫

B(x,r)
r−apdy+

∫
B(x,r)

f (y)p
(

log(e+ f (y))
log(e+ r−a)

)pq

dy

� Crn−ap +C
(
log(e+ r−1)

)−pq
∫

B(x,r)
f (y)p (log(e+ f (y)))pq dy

� Crn−ap +Crn−ν p(log(e+ r−1)
)(−β1−q)p

(log(e+ r))−β2p,

so that Jensen’s inequality yields (6) .
Hence Theorem 1 yields the following result.
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COROLLARY 1. Let f be a nonnegative measurable function on Rn satisfying(
−
∫

B(x,r)
f (y)n/α(log(e+ f (y))nq/αdy

)α/n

� Cr−ν(log(e+ r−1))−β

for all x ∈ Rn and r > 0 , where q � 0 . If ε > 0 , then there exist constant c j =
C(n,α,q,β ,ε) > 0 ( j = 1,2) such that

(1) in case 0 � q+ β < 1 ,

−
∫

B(z,r)
(e+ |x|)−ε exp

(
1
c1

(
Ĩα f (x)

(log(e+ |x|))q+β

)1/(1−q−β )
)

dx � c2(1+ r−ε)

for all z ∈ Rn and r > 0;

(2) in case q+ β = 1 ,

−
∫

B(z,r)
exp

(
exp

(
Ĩα f (x)

c1 log(e+ |x|)
))

dx � c2(1+ r−ε)

for all z ∈ Rn and r > 0;

(3) in case q+ β > 1 ,

|Iα ,0 f (x)− Iα ,0 f (z)| � C(log |x− z|−1)1−q−β

for all x,z ∈ Rn with |x− z| < 1/e.

4. Proof of Theorem 2

For γ > 0, let

ργ(r) = r−n(log(e+ r−1))−γ (log(e+ r))−γ .

For a proof of Theorem 2, we prove the following lemma.

LEMMA 8. Let α < ν � n and γ > 1 . If f is a nonnegative measurable function
on Rn satisfying (3) , then

∫
B(z,r)

(∫
Rn

ργ(|x− y|) f (y)dy

)
dx � Crn−ν(log(e+ r−1))−γ−β1+1(log(e+ r))−β2

for all z ∈ Rn and r > 0 , where C = C(n,ν,β1,β2,γ) .

Proof. Let f be a nonnegative measurable function on Rn satisfying (3) . Write∫
Rn

ργ(|x− y|) f (y)dy =
∫

B(z,2r)
ργ (|x− y|) f (y)dy+

∫
Rn\B(z,2r)

ργ(|x− y|) f (y)dy

= H1(x)+H2(x).
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By Fubini’s theorem, we have by (3)∫
B(z,r)

H1(x)dx

�
∫

B(z,2r)

(∫
B(z,r)

ργ(|x− y|)dx

)
f (y)dy

�
∫

B(z,2r)

(∫
B(y,3r)

|x− y|−n(log(e+ |x− y|−1))−γ (log(e+ |x− y|))−γdx

)
f (y)dy

� C(log(e+ r−1))−γ+1
∫

B(z,2r)
f (y)dy

� Crn−ν(log(e+ r−1))−γ−β1+1(log(e+ r))−β2 .

For H2 , we have by (3)
∫

B(z,r)
H2(x)dx �

∫
B(z,r)

(∫
Rn\B(x,r)

ργ(|x− y|) f (y)dy

)
dx

� Crn
{[

t−n(log(e+ t−1))−γ(log(e+ t))−γ
∫

B(x,t)
f (y)dy

]∞

r

+
∫ ∞

r

(∫
B(x,t)

f (y)dy

)
d(−ργ(t))

}

� Crn
∫ ∞

r
t−ν(log(e+ t−1))−β1−γ(log(e+ t))−β2−γ dt

t

� Crn−ν(log(e+ r−1))−β1−γ(log(e+ r))−β2−γ .

Thus this lemma is proved. �

LEMMA 9. Let ω be a nonnegative continuous function on (0,∞) such that raω(r)
is almost increasing for some 0 < a < n, that is,

ra
1ω(r1) � Cra

2ω(r2) whenever 0 < r1 < r2 .

Then
−
∫

B(z,r)
ω(|x|) dx � Cω(|z|+ r)

for all z ∈ Rn and r > 0 .

Proof. If x ∈ B(z,r) , then |x| � |z|+ |z− x|� |z|+ r , so that

|x|aω(|x|) � C(|z|+ r)aω(|z|+ r).

Hence we obtain

−
∫

B(z,r)
ω(|x|) dx � C(|z|+ r)aω(|z|+ r)−

∫
B(z,r)

|x|−a dx

� Cω(|z|+ r)
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by considering two cases (i) r < |z|/2 and (ii) r > |z|/2. �

Proof of Theorem 2. Let f be a nonnegativemeasurable function on Rn satisfying
(3) with α < ν � n . Let

Jγ(x) =
∫

Rn
ργ(|x− y|) f (y)dy

and
p =

ν
ν −α

.

As in the proof of Theorem 1 (1), we find by Lemmas 4, 6 and 7,

Ĩα f (x) =
∫

B(0,1+2|x|)
||x− y|α−n−|y|α−nχRn\B(y)| f (y) dy

+
∫

Rn\B(0,1+2|x|)
||x− y|α−n−|y|α−nχRn\B(y)| f (y) dy

�
∫

B(x,δ )
|x− y|α−n f (y)dy+

∫
Rn\B(x,δ )

|x− y|α−n f (y)dy

+
∫
B(0,1+2|x|)\B

|y|α−n f (y)dy+C|x|
∫

Rn\B(0,1+2|x|)
|y|α−n−1 f (y)dy

� Cδ α (log(e+ δ−1))γ (log(e+ δ ))γJγ(x)

+Cδ α−ν(log(e+ δ−1))−β1(log(e+ δ ))−β2 +C(log(e+ |x|))−β2+1

for δ > 0. Considering

δ = Jγ (x)−1/ν(log(e+ Jγ(x)))−(γ+β1)/ν(log(e+ Jγ(x)−1))−(γ+β2)/ν ,

we see that

Ĩα f (x)

� CJγ (x)(ν−α)/ν(log(e+ Jγ(x)))γ(ν−α)/ν−αβ1/ν(log(e+ Jγ(x)−1))γ(ν−α)/ν−αβ2/ν

+C(log(e+ |x|))−β2+1

= CJγ (x)1/p(log(e+ Jγ(x)))γ/p−αβ1/ν(log(e+ Jγ(x)−1))γ/p−αβ2/ν

+C(log(e+ |x|))−β2+1,

so that∫
B(z,r)

{Ĩα f (x)(log(e+ Ĩα f (x)))−γ/p+αβ1/ν(log(e+(Ĩα f (x))−1))−γ/p+αβ2/ν}pdx

� C
∫

B(z,r)
Jγ(x)dx

+C
∫

B(z,r)
{(log(e+ |x|))−β2+1(log(e+(log(e+ |x|))−β2+1))−γ/p+αβ1/ν

(log(e+(log(e+ |x|)β2−1))−γ/p+αβ2/ν}pdx
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for all z ∈ Rn and r > 0. Hence Lemmas 8 and 9 give

−
∫

B(z,r)
{Ĩα f (x)(log(e+ Ĩα f (x)))−γ/p+αβ1/ν(log(e+(Ĩα f (x))−1))−γ/p+αβ2/ν}pdx

� Cr−ν (log(e+ r−1))−γ−β1+1(log(e+ r))−β2

+C{(log(e+ r+ |z|))−β2+1(log(e+(log(e+ r+ |z|))−β2+1))−γ/p+αβ1/ν

(log(e+(log(e+ r+ |z|))β2−1))−γ/p+αβ2/ν}p

for all z ∈ Rn and r > 0, which completes the proof of Theorem 2. �

REMARK 5. In general, (4) does not hold when γ = 1.
To show this when n = 2, we consider

f (y) = f (y1,y2) = |y2|−1(log(e+ |y2|−1))−1(log(e+ log(e+ |y2|−1)))−δ

with 1 < δ < 2−α . Then

−
∫

B(x,r)
| f (y)|dy

� C
r

∫ r

0
|y2|−1(log(e+ |y2|−1))−1(log(e+ log(e+ |y2|−1)))−δ dy2 � Cr−1

for x ∈ B . For 0 < α < 1, consider the potential

Ĩα f (x) = Iα f (x) =
∫

B
|x− y|α−2 f (y)dy.

Here we may assume that x2 �= 0. Setting

Q(x) = {y = (y1,y2) ∈ B : |x1− y1| < |x2|, |y2| < |x2|},
we note that

Ĩα f (x) �
∫

Q(x)
|x− y|α−2 f (y)dy

� C|x2|α−2
∫

Q(x)
f (y)dy

� C|x2|α−1
∫ |x2|

0
|y2|−1(log(e+ |y2|−1))−1(log(e+ log(e+ |y2|−1)))−δ dy2

� C|x2|α−1(log(e+ log(e+ |x2|−1)))−δ+1,

so that ∫
B(0,1)

(Ĩα f (x))p(log(e+ Ĩα f (x))−1(log(e+(Ĩα f (x))−1)−1dx

� C
∫

B(0,1)
|x2|−1(log(e+ log(e+ |x2|−1)))(−δ+1)p(log(e+ |x2|−1))−1dx

= ∞

when p = 1/(1−α),ν = 1 and 1 < δ < 2−α .
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